
6. Regression with Qualitative Information

Qualitative information: ”family owns a car

or not”, ”a person smokes or not”, ”firm is

in bankruptcy or not”, ”industry of a firm”,

”gender of a person”, etc

Some of the above examples can be both in

a role of background (independent) variable

or dependent variable.

Technically these kinds of variables are coded

by a binary values (1 = ”yes”) (0 = ”no”). In

Econometrics these variables are called gen-

erally called dummy variables.

Remark 6.1 Usual practice is to denote the dummy

variable by the name of one of the categories. For

example, instead of using gender one can define the

variable e.g. as female, which equals 1 if the gender

is female and 0 if male.

1



6.1 Single Dummy Independent Variable

Dummy variables can be incorporated into a

regression model as any other variables.

Consider the simple regression

(1) y = β0 + δ0D + β1x+ u,

where D = 1 if individual has the property

and D = 0 otherwise, and E[u|D, x] = 0. Pa-

rameter δ0 indicated the difference with re-

spect to the reference group (D = 0), for

which the parameter is β0.

Then

(2) δ0 = E[y|D = 1, x]− E[y|D = 0, x].

The value of x is same in both expectations,

thus the difference is only due to the property

D.
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E[y|D = 0, x] = β0 + β1x

E[y|D = 1, x] = β0 + δ0 + β1x

β0

δ0

Figure 6.1: E[y|D,x] = β0 + δ0D + x+ u, δ0 > 0.

The category with D = 0 makes the refer-

ence category, and δ0 indicates the change

in the intercept with respect to the reference

group.
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From interpretation point of view it may also

be beneficial to associate the categories di-

rectly to the regression coefficients.

Consider the wage example, where

(3)

wage = β0 + β1educ + β2exper + β3tenure + u.

Suppose we are interested about the differ-

ence in wage levels between men an women.

Then we can model β0 as a function of gen-

der as

(4) β0 = βm + δffemale,

where subscripts m and f refer to male and

female, respectively. Model (3) can be writ-

ten as

(5)
wage = βm + δffemale + β1educ

+β2exper + β3tenure + u.
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In the model the female dummy is zero for

men. All other factors remain the same.

Thus the expected difference between wages

in terms of the model is according to (2)

equal to δf

We can also run a regression of wage on the

female dummy alone, without any additional

controls. This is a convenient form of run-

ning the independent sample t-test known

from the introductory statistics course. The

intercept βm equals then the average wage of

men and δf the average difference between

mens and womens wages.
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If we use logarithmic wages log(w) instead

of levels on the left hand side, then 100 δf

approximates the relative difference in per-

centages. The log approximation may be in-

accurate if the percentage difference is large.

A more accurate approximation is obtained

by using the fact that

log(wf)− log(wm) = log(wf/wm) = δf ,

where wf and wm refer to a woman’s and a

man’s wage, respectively, thus

(6) 100

(
wf − wm
wm

)
% = 100 (exp(δf)− 1) %.
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Example 6.1: Augment the wage example with squared
exper and squared tenure to account for possible re-
ducing incremental effect of experience and tenure
and account for the possible wage difference with the
female dummy. Thus the model is

(7)

log(w) = βm + δffemale + β1educ

+β2exper + β3tenure

+β4(exper)2 + β5(tenure)2 + u.

EViews Estimation Results:
Dependent Variable: LOG(WAGE)
Method: Least Squares
Sample: 1 526
Included observations: 526
=======================================================
Variable Coefficient Std. Error t-Statistic Prob.
-------------------------------------------------------
C 0.416691 0.098928 4.212066 0.0000
FEMALE -0.296511 0.035805 -8.281169 0.0000
EDUC 0.080197 0.006757 11.86823 0.0000
EXPER 0.029432 0.004975 5.915866 0.0000
TENURE 0.031714 0.006845 4.633036 0.0000
EXPER^2 -0.000583 0.000107 -5.430528 0.0000
TENURE^2 -0.000585 0.000235 -2.493365 0.0130
======================================================
R-squared 0.440769 Mean dependent var 1.623268
Adjusted R-squared 0.434304 S.D. dependent var 0.531538
S.E. of regression 0.399785 Akaike info criterion 1.017438
Sum squared resid 82.95065 Schwarz criterion 1.074200
Log likelihood -260.5861 F-statistic 68.17659
Durbin-Watson 1.795726 Prob(F-statistic) 0.000000
===========================================================
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Using (6), with δ̂f = −0.296511

(8) 100
ŵf − ŵm
ŵm

= 100[exp(δ̂f)− 1] ≈ −25.7%,

which suggests that, given the other factors, women’s

wages (wf) are on average 25.7 percent lower than

men’s wages (wm).

It is notable that exper and tenure squared have statis-

tically significant negative coefficient estimates, which

supports the idea of diminishing marginal increase due

to these factors.
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6.2 Multiple categories

Additional dummy variables can be included

to the regression model as well. In the wage

example if married (married = 1, if married,

and 0, otherwise) is included we have the

following possibilities

female married characteization
1 0 single woman
1 1 married woman
0 1 married man
0 0 single man

and the intercept parameter refines to

(9) β0 = βsm + δffemale + δmamarr.

Coefficient δma is the wage ”marriage pre-

mium”.
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Example 6.2: Including ”married” dummy into the

wage model yields

Dependent Variable: LOG(WAGE)
Method: Least Squares
Sample: 1 526
Included observations: 526
======================================================
Variable Coefficient Std. Error t-Statistic Prob.
------------------------------------------------------
C 0.41778 0.09887 4.226 0.0000
FEMALE -0.29018 0.03611 -8.036 0.0000
MARRIED 0.05292 0.04076 1.299 0.1947
EDUC 0.07915 0.00680 11.640 0.0000
EXPER 0.02695 0.00533 5.061 0.0000
TENURE 0.03130 0.00685 4.570 0.0000
EXPER^2 -0.00054 0.00011 -4.813 0.0000
TENURE^2 -0.00057 0.00023 -2.448 0.0147
======================================================
R-squared 0.443 Mean dependent var 1.623
Adjusted R-squared 0.435 S.D. dependent var 0.532
S.E. of regression 0.400 Akaike info crit. 1.018
Sum squared resid 82.682 Schwarz criterion 1.083
Log likelihood -259.731 F-statistic 58.755
Durbin-Watson stat 1.798 Prob(F-statistic) 0.000
======================================================

The estimate of the ”marriage premium” is about

5.3%, but it is not statistically significant.

A major limitation of this model is that it assumes

that the marriage premium is the same for men and

women.

We relax this next.
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Generating dummies: ”singfem”, ”marrfem”,

and ”marrmale” we can investigate the ”mar-

riage premiums” for men women.

The intercept term becomes

(10)
β0 = βsm + δmmmarrmale

+δmfmarrfem + δsfsingfem.

The needed dummy-variables can be gen-

erated as cross-products form the ”female”

and ”married” dummies.

For example, the ”singfem” dummy is

singfem = (1−married)× female.
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Example 6.3: Estimating the model with the intercept

modeled as (10) gives

Dependent Variable: LOG(WAGE)
Method: Least Squares
Sample: 1 526
Included observations: 526
======================================================
Variable Coefficient Std. Error t-Statistic Prob.
------------------------------------------------------
C 0.3214 0.1000 3.213 0.0014
MARRMALE 0.2127 0.0554 3.842 0.0001
MARRFEM -0.1983 0.0578 -3.428 0.0007
SINGFEM -0.1104 0.0557 -1.980 0.0483
EDUC 0.0789 0.0067 11.787 0.0000
EXPER 0.0268 0.0052 5.112 0.0000
TENURE 0.0291 0.0068 4.302 0.0000
EXPER^2 -0.0005 0.0001 -4.847 0.0000
TENURE^2 -0.0005 0.0002 -2.306 0.0215
======================================================
R-squared 0.461 Mean dependent var 1.623
Adjusted R-squared 0.453 S.D. dependent var 0.532
S.E. of regression 0.393 Akaike info crit. 0.988
Sum squared resid 79.968 Schwarz criterion 1.061
Log likelihood -250.955 F-statistic 55.246
Durbin-Watson stat 1.785 Prob(F-statistic) 0.000
======================================================
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The reference group is single men.

Single women and men estimated wage difference:
-11.0%, just borderline statistically significant in the
two sided test.

”Marriage premium” for men: 21.3% (more accu-
rately, using (7), 23.7%).

Married women are estimated to earn 19.8% less than
single men.

”Marriage premium” for women:

δ̂mf − δ̂sf = −0.198− (−0.110) ≈ −0.088

or −8.8%.

The statistical significance of this can be tested either
by redefining the dummies such that the single women
become the base.

Another option is to use advanced econometric soft-
ware. EVievs Wald test produces for

(11) H0 : δmf = δsf

F = 2.821 (df 1 and 517) with p-value 0.0937, which

is not statistically significant and there is not empiri-

cal evidence for wage difference between married and

single women.

In the same manner testing for H0 : δmm = δmf pro-

duces F = 80.61 with p-value 0.0000, i.e., highly sta-

tistically significant. Thus, there is strong empirical

evidence of ’marriage premium’ for men.
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Remark 6.1: If there are q then q − 1 dummy vari-

ables are needed. The category which does not have a

dummy variable becomes the base category or bench-

mark.

Remark 6.2: ”Dummy variable trap”. If the model

includes the intercept term, defining q dummies for

q categories leads to an exact linear dependence, be-

cause 1 = D1 + · · ·+Dq. Note also that D2 = D, which

again leads to an exact linear dependency if a ”dummy

squared” is added to the model. All these cases which

lead to the exact linear dependency with dummy-variables

are called the ”dummy variable trap”.
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Ordinal Information

If the categories include ordinal information

(e.g. 1 = ”good”, 2 = ”better”, 3 = ”best”),

sometimes people these variables as such in

regressions. However, interpretation may be

a problem, because ”one unit change” im-

plies a constant partial effect. That is the

difference between ”better” and ”good” is

as big as ”best” and ”better”.
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The usual alternative to use dummy-variables.

In the above example two dummies are needed.

D1 = 1 is ”better”, and 0 otherwise, D2 = 1

for ”best” and 0 otherwise. As a conse-

quence, the reference group is ”good”.

The constant partial effect can be tested by

testing the restricted model

(12) y = β0 + δ(D1 + 2D2) + x+ u

against the unrestricted alternative

(13) yi = β0 + δ1D1 + δ2D2 + x+ u.
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Example 6.4: Effects of law school ranking on start-

ing salaries. Dummy variables top10, r11 25, r26 40,

r41 60, and r61 100. The reference group is the

schools ranked below 100.

Below are estimation results with some additional co-

variates (Wooldridge, Example 7.8).

Dependent Variable: LOG(SALARY)
Method: Least Squares
Sample (adjusted): 1 155
Included observations: 136 after adjustments
======================================================
Variable Coefficient Std. Error t-Statistic Prob.
------------------------------------------------------
C 9.1653 0.4114 22.277 0.0000
TOP10 0.6996 0.0535 13.078 0.0000
R11_25 0.5935 0.0394 15.049 0.0000
R26_40 0.3751 0.0341 11.005 0.0000
R41_60 0.2628 0.0280 9.399 0.0000
R61_100 0.1316 0.0210 6.254 0.0000
LSAT 0.0057 0.0031 1.858 0.0655
GPA 0.0137 0.0742 0.185 0.8535
LOG(LIBVOL) 0.0364 0.0260 1.398 0.1647
LOG(COST) 0.0008 0.0251 0.033 0.9734
======================================================
R-squared 0.911 Mean dependent var 10.541
Adjusted R-squared 0.905 S.D. dependent var 0.277
S.E. of regression 0.086 Akaike info crit. -2.007
Sum squared resid 0.924 Schwarz criterion -1.792
Log likelihood 146.452 F-statistic 143.199
Durbin-Watson stat 1.829 Prob(F-statistic) 0.000
======================================================
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The estimation results indicate that the ranking has

a big influence on the staring salary. The estimated

median salary at a law school ranked between 61 and

100 is about 13% higher than in those ranked below

100. The coefficient estimate for the top 10 is 0.6996,

using (7) we get 100 [exp(0.6996)− 1] ≈ 101.4%, that

is median starting salaries in top 10 schools tend to

be double to those ranked below 100.
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Example 6.5: Although not fully relevant, let us for
just illustration purposes test constant partial effect
hypothesis. I.e., whether

(14) H0 :


δtop10 = 5δ61 100,
δ11 25 = 4δ61 100,
δ26 40 = 3δ61 100,
δ41 60 = 2δ61 100.

Using Wald test for coefficient restrictions in EViews

gives F = 1.456 with df1 = 4 and df2 = 126 and p-

value 0.2196. This indicates that the there is not

much empirical evidence against the constant partial

effect for the starting salary increment. The estimated

constant partial coefficient is 0.139782, i.e., at each

ranking class starting median salary is estimated to

increase approximately by 14%.
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6.3 Different Slopes

Consider

(15) y = β0 + β1x1 + u.

If the slope depends also on the group, we

get in addition to

(16) β0 = β00 + δ0D,

for the slope coefficient similarly

(17) β1 = β11 + δ1D.

The regression equation is then

(18) y = β00 + δ0D + β11x1 + δ1Dx1 + u.
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Example 6.6: Wage example. Test whether return of
eduction differs between women and men. This can
be tested by defining

(19) βeduc = βmeduc + δfeducfemale.

The null hypothesis is H0 : δfeduc = 0.

Dependent Variable: LOG(WAGE)
Method: Least Squares
Sample: 1 526
Included observations: 526
======================================================
Variable Coefficient Std. Error t-Statistic Prob.
------------------------------------------------------
C 0.31066 0.11831 2.626 0.0089
MARRMALE 0.21228 0.05546 3.828 0.0001
MARRFEM -0.17093 0.17100 -1.000 0.3180
SINGFEM -0.08340 0.16815 -0.496 0.6201
FEMALE*EDUC -0.00219 0.01288 -0.170 0.8652
EDUC 0.07976 0.00838 9.521 0.0000
EXPER 0.02676 0.00525 5.095 0.0000
TENURE 0.02916 0.00678 4.299 0.0000
EXPER^2 -0.00053 0.00011 -4.829 0.0000
TENURE^2 -0.00054 0.00023 -2.309 0.0213
======================================================
R-squared 0.461 Mean dependent var 1.623
Adjusted R-squared 0.452 S.D. dependent var 0.532
S.E. of regression 0.394 Akaike info crit. 0.992
Sum squared resid 79.964 Schwarz criterion 1.073
Log likelihood -250.940 F-statistic 49.018
Durbin-Watson stat 1.785 Prob(F-statistic) 0.000
======================================================

δ̂feduc = −0.00219 with p-value 0.8652. Thus there

is no empirical evidence that the return of education

would differ between men and women.
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Chow Test

Suppose there are two populations (e.g. men

and women) and we want to test whether

the same regression function applies to both

groups.

All this can be handled by introducing a dummy

variable, D with D = 1 for group 1 and zero

for group 2.
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If the regression in group g (g = 1,2) is

(20) yg,i = βg,0 + βg,1xg,i,1 + · · ·+ βg,kxg,i,k + ug,i,

i = 1, . . . , ng, where ng is the number of ob-

servations from group g.

Using the group dummy, we can write

(21) βg,j = βj + δjD,

j = 0,1, . . . , k. An important assumption is

that in both groups Var[ug,i] = σ2
u.

The null hypothesis is

(22) H0 : δ0 = δ1 = · · · = δk = 0.
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The null hypothesis (22) can be tested with

the F -test, given in (4.20).

In the first step the unrestricted model is es-

timated over the pooled sample with coef-

ficients of the form in equation (20) (thus

2(k + 1)-coefficients).

Next the restricted model, with all δ-coefficients

set to zero, is estimated again over the pooled

sample.

Using the SSRs from restricted and unre-

stricted models, test statistic (4.20) becomes

(23) F =
(SSRr − SSRur)/(k + 1)

SSRur/[n− 2(k + 1)]
,

which has the F -distribution under the null

hypothesis with k + 1 and n− 2(k + 1) de-

grees of freedom.
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Exactly the same result is obtained if one es-

timates the regression equations separately

from each group and sums up the SSRs.

That is

(24) SSRur = SSR1 + SSR2,

Where SSRg is from the regression estimated

from group g, g = 1,2.

Thus, statistic (23) can be written alterna-

tively as

(25) F =
[SSRr − (SSR1 + SSR2)]/(k + 1)

(SSR1 + SSR2)/[n− 2(k + 1)]
,

which is known as Chow statistic (or Chow

test).
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