
7. Heteroscedasticity

(1) y = β0 + β1x1 + · · ·+ βkxk + u.

Assumption 5 (classical assumptions) states

that the variance of u (conditional on the

explanatory variables) is constant. This is

called the homoscedasticity assumption.

We use the term heteroscedasticity for the

situation that this assumption fails, that is,

the variance of the error terms depends in

some way on the values of the regressors.
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7.1 Consequences

In the presence of heteroscedasticity:

(i) OLS estimators are not BLUE

(ii) Var[β̂j] are biased, implying that t-, F -,

and LM-statistics, and confidence intervals

are no more reliable.

(iii) OLS estimator are no more asymptoti-

cally efficient.

However,

(iv) OLS estimators are still unbiased.

(v) OLS estimators are still consistent
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7.2 Heteroscedasticity-robust inference

Consider for the sake of simplicity

(2) yi = β0 + β1xi + ui,

i = 1, . . . , n, where

(3) Var[ui|xi] = σ2
i .

Then writing the OLS-estimator of β1 in the

form

(4) β̂1 = β1 +

∑n
i=1(xi − x̄)ui∑n
i=1(xi − x̄)2

.

Because the error terms are uncorrelated,

(5) Var[β̂1] =

∑n
i=1(xi − x̄)2σ2

i

(SSTx)2
,

where

(6) SSTx =
n∑
i=1

(xi − x̄)2.
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In the homoscedastic case, where σ2
i = σ2 for

all i formula (5) reduces to the usual variance

σ2
u/
∑

(xi − x̄)2.

White (1980)∗ derives a robust estimator for

(5) as

(7) V̂ar[β̂1] =

∑n
i=1(xi − x̄)2û2

i

(SSTx)2
,

where ûi are the OLS residuals.

If we rewrite (1) in the matrix form

(8) y = Xb + u,

and write b̂ = (X′X)−1X′y as

(9) b̂ = b + (X′X)−1X′u

∗White, H. (1980). A Heteroscedasticity-consistent
covariance matrix estimator and direct test for het-
eroscedasticity. Econometrica 48, 817–838.
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Given X, the variance-covariance matrix of b̂

is

(10) Cov[b̂] = (X′X)−1

(
n∑
i=1

σ2
i xix

′
i

)
(X′X)−1,

where x′i = (1, xi1, . . . xik) is the ith row of the

data matrix X on x-variables.

Analogous to (7), an estimator of (10) is

(11) Ĉov[b̂] = (X′X)−1

(
n∑
i=1

û2
i xix

′
i

)
(X′X)−1,

Heteroscedasticity robust standard error for

estimate β̂j is the square root of the jth di-

agonal element of (11).

5



Remark 7.1: If the residual variances Var[ui] = σ2
i = σ2

u
are the same, then because

X′X =
n∑
i=1

xix
′
i,

(11) is

Cov[b̂] = σ2
u(X′X)−1

(
n∑
i=1

xix
′
i

)
(X′X)−1 = σ2

u(X′X)−1,

i.e., the usual case.
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Example 7.1: Wage example with heteroscedasticity-

robust standard errors.

Dependent Variable: LOG(WAGE)
Method: Least Squares
Sample: 1 526
Included observations: 526
White Heteroscedasticity-Consistent Standard Errors & Covariance
================================================================
Variable Coefficient Std. Error t-Statistic Prob.
----------------------------------------------------------------
C 0.321378 0.109469 2.936 0.0035
MARRMALE 0.212676 0.057142 3.722 0.0002
MARRFEM -0.198268 0.058770 -3.374 0.0008
SINGFEM -0.110350 0.057116 -1.932 0.0539
EDUC 0.078910 0.007415 10.642 0.0000
EXPER 0.026801 0.005139 5.215 0.0000
TENURE 0.029088 0.006941 4.191 0.0000
EXPER^2 -0.000535 0.000106 -5.033 0.0000
TENURE^2 -0.000533 0.000244 -2.188 0.0291
================================================================
R-squared 0.461 Mean dependent var 1.623
Adjusted R-squared 0.453 S.D. dependent var 0.532
S.E. of regression 0.393 Akaike info criterion 0.988
Sum squared resid 79.968 Schwarz criterion 1.061
Log likelihood -250.955 F-statistic 55.246
Durbin-Watson stat 1.785 Prob(F-statistic) 0.000
================================================================

Comparing to Example 6.3 the standard errors change

slightly (usually little increase). However, conclusions

do not change.
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7.3 Testing for Heteroscedasticity

Start, as usual, with the linear model

(12) y = β0 + β1x1 + · · ·+ βkxk + u.

The null hypothesis of homoscedasticity is

(13)

Var[u|x1, . . . , xk] = E[u2|x1, . . . , xk] = σ2,

since E[u|x1, . . . , xk]2 = 0 by assumption 4.

Test therefore, whether u2 is in some way

related to the regressors xi. The simplest

approach is a linear function:

(14) u2
i = δ0 + δ1x1 + · · ·+ δkxk + vi.

The homoscadasticity hypothesis is then

(15) H0 : δ1 = · · · = δk = 0,

i.e., σ2 = δ0.
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The error terms ui are unobservable. They

must be replaced by the OLS-residuals ûi.

Run therefore the regression

(16) û2
i = δ0 + δ1x1 + · · ·+ δkxk + vi.

Estimating the parameters with OLS, the

null hypothesis (15) can be tested with the

overall F -statistic defined in (4.25), which

can be written in terms of the R-square as

(17) F =
R2
û2/k

(1−R2
û2)/(n− k − 1)

,

where R2
û2 is the R-square of the regression

(16).

The F -statistic is asymptotically F -distributed

under the null hypothesis with k and n− k − 1

degrees for freedom.
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Breuch-Bagan test:

Asymptotically (17) is equivalent to the La-

grange Multiplier (LM) test

(18) LM = nR2
û2,

which is asymptotically χ2-distributed with k

degrees of freedom when the null hypothesis

is true.

Remark 7.2: In regression (16) the explanatory vari-

ables can be also some external variables (not just

x-variables).
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White test:

Suppose, for the sake of simplicity, that in

(1) k = 3, then the White-procedure is to

estimate

(19)
û2
i = δ0 + δ1x1 + δ2x2 + δ3x3

+δ4x
2
1 + δ5x

2
2 + δ6x

2
3

+δ7x1x2 + δ8x1x3 + δ9x2x3 + vi

Estimate the model and use LM-statistic of

the form (18) to test whether the coefficients

δj, j = 1, . . . ,9, are zero.

Another option, which is more conserving on

degrees of freedom, is to estimate

û2
i = δ0 + δ1ŷi + δ2ŷ

2
i + vi

and use the F or LM statistic for the null

hypothesis H0 : δ1 = 0, δ2 = 0.

Remark 7.3: As is obvious, Breuch-Pagan (BP) test

with x-variables is White test without the cross-terms.
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Example 7.2: In the wage example Breusch-Pagan
yields R2

û2 = 0.025075. With n = 526,

LM = nR2
û2 ≈ 13.19

df = 8, producing p-value 0.1055. Thus there is not
empirical evidence of heteroscedasticity.

White with cross-terms gives

R2
û2 = 0.086858

and

LM ≈ 45.69

with df = 36 and p-value of 0.129. Again we do not
reject the null hypothesis of homoscedasticity.

The alternative form of the White test gives

R2
û2 = 0.0079

and

LM ≈ 4.165

with df = 2 and p-value of 0.125. Again we do not

reject the null hypothesis of homoscedasticity.

Remark 7.4: When x-variables include dummy-variables,

be aware of the dummy-variable trap due to D2 = D!

I.e., you can only include Ds. Modern econometric

packages, like EViews, avoid the trap automatically if

the procedure is readily available in the program.
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7.4 Weighted Least Squares (WLS)

Suppose the heteroscedasticity is of the form

(20) Var[ui|xi] = σ2h(xi),

where hi = h(xi) > 0 is some (known) func-

tion of the explanatory (and possibly some

other variables).
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Dividing both sides of (1) by
√
hi and denot-

ing the new variables as ỹi = yi/
√
hi, x̃ij = xij/

√
hi,

and ũi = ui/
√
hi, we get regression

(21) ỹi = β0
1√
hi

+ β1x̃i1 + · · ·+ βkx̃ik + ũi,

where

(22)

Var[ũi|xi] = 1
hi
Var[ui|xi]

= 1
hi
hiσ

2

= σ2,

i.e., homoscedastic (satisfying the classical

assumption 2).

Applying OLS to (22) produces again BLUE

for the parameters.
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From estimation point of view the transfor-

mation leads, in fact, to the minimization of

(23)
n∑
i=1

(yi − β0 − β1xi1 − · · · − βkxik)2/hi.

This is called Weighted Least Squares (WLS),

where the observations are weighted by the

inverse of
√
hi.
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Example 7.3: Speed and stopping distance for cars,

n = 50 observations.
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Visual inspection suggests somewhat increasing vari-
ability as a function of speed. From the linear model

dist = β0 + β1speed + u

White test gives LM = 3.22 with df = 2 and p-val

0.20, which is not statistically significant.
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Physics: stopping distance proportional to square of
speed, i.e., β1(speed)2.

Thus instead of a linear model a better alternative
should be

(24) disti = β1(speedi)
2 + errori,

Human factor: reaction time vi = β0 + ui, where β0 is
the average reaction time and the error term ui ∼ N(0, σ2

u).

During the reaction time the car moves a distance

(25) vi × speedi = β0speedi + uispeedi.

Thus modeling the error term in (24) as (25), gives

(26) disti = β0speedi + β1(speedi)
2 + ei,

where

(27) ei = ui × speedi.

Because

(28)
Var[ei|speedi] = (speedi)

2Var[ui]

= (speed)2σ2
u,

the heteroscedasticity is of the form (20) with

(29) hi = (speedi)
2.
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Estimating (26) by ignoring the inherent heteroscedas-

ticity yields

Dependent Variable: DISTANCE
Method: Least Squares
Included observations: 50
==============================================================
Variable Coefficient Std. Error t-Statistic Prob.
--------------------------------------------------------------
SPEED 1.239 0.560 2.213 0.032
SPEED^2 0.090 0.029 3.067 0.004
==============================================================
R-squared 0.667 Mean dependent var 42.980
Adjusted R-squared 0.660 S.D. dependent var 25.769
S.E. of regression 15.022 Akaike info criterion 8.296
Sum squared resid 10831.117 Schwarz criterion 8.373
Log likelihood -205.401 Durbin-Watson stat 1.763
==============================================================

Accounting for the heteroscedasticity and estimating
the coefficients from

(30)
disti

speedi
= β0 + β1speedi + ui

gives

==============================================================
Variable Coefficient Std. Error t-Statistic Prob.
--------------------------------------------------------------
SPEED 1.261 0.426 2.963 0.00472
SPEED^2 0.089 0.026 3.402 0.00136
==============================================================

The results are not materially different. Thus the

heteroscedasticity is not a big problem here.
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Remark 7.5: The R-squares from (26) and (30) are
not comparable. Comparable R-squares can be ob-
tained by computing d̂ist using the coefficient esti-
mates of (30) and squaring the correlation

(31) R = Corr(disti, d̂isti).

The R-square for (30) is 0.194 while for (26) 0.667. A

comparable R-square, however, is obtained by squar-

ing (31), which gives 0.667, i.e., the same in this case

(usually it is slightly smaller; why?).
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Feasible generalized Least Squares (GLS)

In practice the h(x) function is rarely known.

In order to guarantee strict positivity, a com-

mon practice is to model it as

(32) h(xi) = exp(δ0 + δ1x1 + · · ·+ δkxk).

In such a case we can write

(33) log(u2) = α0 + δ1x1 + · · ·+ δkxk + e,

where α0 = logσ2 + δ0 and e is an error term.
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In order to estimate the unknown parameters

the procedure is:

(i) Obtain OLS residuals û from regression

equation (1)

(ii) Run regression (33) for log(û2), and gen-

erate the fitted values, ĝi.

(iii) Re-estimate (1) by WLS using 1/ĥi, where

ĥi = exp(ĝi).

This is called a feasible GLS.

Another possibility is to obtain the ĝi by re-

gressing log(û2) on ŷ and ŷ2.
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