
8. Model Specification and Data Problems

8.1 Functional Form Misspecification

A functional form misspecification generally

means that the model does not account for

some important nonlinearities.

Recall that omitting important variable is also

model misspecification.

Generally functional form misspecification causes

bias in the remaining parameter estimators
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Example 8.1: Suppose that the correct specification
of the wage equation is

(1)

log(wage) = β0 + β1educ+ β2exper+ β3(exper)
2 + u.

Then the return for an extra year of experience is

∂ log(wage)

∂ exper
= β2 + 2β3exper.(2)

If the second order term is dropped from (1), use of

the resulting biased estimate of β2 can be misleading.
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RESET test

Ramsey (1969)∗ proposed a general func-

tional form misspecification test, Regression

Specification Error Test (RESET), which has

proven to be useful.

Estimate first

y = β0 + β1x1 + · · ·+ βkxk + u,(3)

get ŷ and test in the augmented model

y = β0 + β1x1 + · · ·+ βkxk + δ1ŷ2 + δ2ŷ3 + e

(4)

the null hypothesis

H0 : δ1 = δ2 = 0.(5)

The test is the F -test with numerator df1 = 2

and denominator df2 = n− k − 3.

∗Ramsey, J.B. (1969). Tests for specification errors
in classical linear least-squares analysis, Journal of
the Royal Statistical Society, Series B, 71, 350–371.
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Example 8.2: Consider the the house price data (Ex-
ercise 3.1) and estimate

price = β0 + β1lotsize + β2sqrft + β3bdrms + u.(6)

Estimation results are:

Dependent Variable: PRICE
Method: Least Squares
Sample: 1 88
Included observations: 88
==========================================================
Variable Coefficient Std. Error t-Statistic Prob.
----------------------------------------------------------
C -21.77031 29.47504 -0.738601 0.4622
LOTSIZE 0.002068 0.000642 3.220096 0.0018
SQRFT 0.122778 0.013237 9.275093 0.0000
BDRMS 13.85252 9.010145 1.537436 0.1279
==========================================================

============================================================
R-squared 0.672362 Mean dependent var 293.5460
Adjusted R-squared 0.660661 S.D. dependent var 102.7134
S.E. of regression 59.83348 Akaike info criterion 11.06540
Sum squared resid 300723.8 Schwarz criterion 11.17800
Log likelihood -482.8775 F-statistic 57.46023
Durbin-Watson stat 2.109796 Prob(F-statistic) 0.000000
============================================================

Estimate next (6) augmented with (p̂rice)2 and (p̂rice)3

as in (4). The F -statistic for the null hypothesis (5)

becomes F = 4.67 with 2 and 82 degrees of freedom.

The p-value is 0.012, such that we reject the null hy-

pothesis at the 5% level. Thus, there is some evidence

of non-linearity.
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Estimate next

log(price) = β0 + β1 log(lotsize)

+β2 log(sqrft) + β3bdrms + u.
(7)

Estimation results:

Dependent Variable: LOG(PRICE)
Method: Least Squares
Date: 10/19/06 Time: 00:01
Sample: 1 88
Included observations: 88
============================================================
Variable Coefficient Std. Error t-Statistic Prob.
============================================================
C -1.297042 0.651284 -1.991517 0.0497
LOG(LOTSIZE) 0.167967 0.038281 4.387714 0.0000
LOG(SQRFT) 0.700232 0.092865 7.540306 0.0000
BDRMS 0.036958 0.027531 1.342415 0.1831
============================================================

==============================================================
R-squared 0.642965 Mean dependent var 5.633180
Adjusted R-squared 0.630214 S.D. dependent var 0.303573
S.E. of regression 0.184603 Akaike info criterion -0.496833
Sum squared resid 2.862563 Schwarz criterion -0.384227
Log likelihood 25.86066 F-statistic 50.42374
Durbin-Watson stat 2.088996 Prob(F-statistic) 0.000000
==============================================================

The F -statistic for the the null hypothesis (5) is now

F = 2.56 with p-value 0.084. Thus (5) is not rejected

at the 5% level. Thus overall, on the basis of the

RESET test the log-log model (7) is preferred.
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Non-nested alternatives

For example if the model choices are

y = β0 + β1x1 + β2x2 + u(8)

and

y = β0 + β1 log(x1) + β2 log(x2) + u.(9)

Because the models are non-nested the usual

F -test does not apply.

A common approach is to estimate a com-
bined model

y = γ0 + γ1x1 + γ2x2 + γ3 log(x1) + γ4 log(x2) + u.

(10)

H0 : γ3 = γ4 = 0 is a hypothesis for (8) and

H0 : γ1 = γ2 = 0 is a hypothesis for (9). The

usual F -test applies again here.
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Davidson and MacKinnon (1981)∗ procedure:

For example to test (8), estimate first

y = β0 + β1x1 + β2x2 + θ1ˆ̂y + v,(11)

where ˆ̂y is the fitted value of (9). A signifi-

cant t value of the θ1-estimate is a rejection

of (8).

Similarly, if ŷ denotes the fitted values of

(8), the test of (9) is the t-staistic of the

θ1-estimate from

(12)

y = β0 + β1 log(x1) + β2 log(x2) + θ1ŷ + v,

∗Davidson, R. and J.G. MacKinnon (1981). Several
tests for model specification in the presence of alter-
native hypotheses, Econometrica 49, 781–793.
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Remark 8.1: A clear winner need not emerge. Both

models may be rejected or neither may be rejected. In

the latter case adjusted R-square can be used to select

the better fitting one. If both models are rejected,

more work is needed. ∗

∗For more complicated cases, see Wooldridge, J.M.
(1994). A simple specification test for the predic-
tive ability of transformation models, Review of Eco-
nomics and Statistics 76, 59–65.
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8.2 Outliers

Particularly in small data sets OLS estimates

are influenced by one or several observations.

Generally such observations are called out-

liers or influential observations.

Loosely, an observation is an outlier if drop-

ping it changes estimation results materially.

In detection of outliers a usual practice is to

investigate standardized (or ”studentized”)

residuals.

If an outlier is an obvious mistake in recording

the data, it can be corrected. Usual practice

also is to eliminate such observations.

Data transformations, like taking logarithms

often narrow the range of data and hence

may alleviate outlier problems, too.

9


