8. Model Specification and Data Problems

8.1 Functional Form Misspecification

A functional form misspecification generally means that the model does not account for some important nonlinearities.

Recall that omitting important variable is also model misspecification.

Generally functional form misspecification causes bias in the remaining parameter estimators

(1)

 $\log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 (exper)^2 + u.$ Then the return for an extra year of experience is

(2)
$$\frac{\partial \log(\text{wage})}{\partial \exp r} = \beta_2 + 2\beta_3 \exp r.$$

If the second order term is dropped from (1), use of the resulting biased estimate of β_2 can be misleading.

RESET test

Ramsey (1969)* proposed a general functional form misspecification test, Regression Specification Error Test (RESET), which has proven to be useful.

Estimate first

(3) $y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$,

get \hat{y} and test in the augmented model

 $y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \delta_1 \hat{y}^2 + \delta_2 \hat{y}^3 + e$ (4)

the null hypothesis

 $(5) H_0: \delta_1 = \delta_2 = 0.$

The test is the *F*-test with numerator $df_1 = 2$ and denominator $df_2 = n - k - 3$.

^{*}Ramsey, J.B. (1969). Tests for specification errors in classical linear least-squares analysis, *Journal of the Royal Statistical Society*, Series B, 71, 350–371.

Example 8.2: Consider the the house price data (Exercise 3.1) and estimate

(6) price = $\beta_0 + \beta_1$ lotsize + β_2 sqrft + β_3 bdrms + u.

Estimation results are:

Dependent N Method: Lea Sample: 1 & Included ob	Variable: Ast Square 38 Oservation	PRICE s s: 88	:						
 Variable	Coeffici	ent	Std.	Erro	or t	 -Stati	===== stic	Prob.	
C LOTSIZE SQRFT BDRMS	-21.77 0.002 0.122 13.85	031 068 778 252	29 0. 0. 9.	.4750 00064 01323 01014)4 12 37 15	-0.73 3.22 9.27 1.53	8601 0096 5093 7436	0.4622 0.0018 0.0000 0.1279	
======================================	-squared	0.672	 362 661	===== Mean S.D.	depeno depeno	lent v lent v	ar ar	293.5460 102.713	=) 1

S.E. of regression 59.83348 Akaike info criterion 11.06540 Sum squared resid 300723.8 Schwarz criterion 11.17800 Log likelihood -482.8775 F-statistic 57.46023 Durbin-Watson stat 2.109796 Prob(F-statistic) 0.000000

Estimate next (6) augmented with $(\widehat{\text{price}})^2$ and $(\widehat{\text{price}})^3$ as in (4). The *F*-statistic for the null hypothesis (5) becomes F = 4.67 with 2 and 82 degrees of freedom. The *p*-value is 0.012, such that we reject the null hypothesis at the 5% level. Thus, there is some evidence of non-linearity.

Estimate next

```
(7)  \begin{array}{rcl} \log(\text{price}) &=& \beta_0 + \beta_1 \log(\text{lotsize}) \\ && +\beta_2 \log(\text{sqrft}) + \beta_3 \text{bdrms} + u. \end{array}
```

Estimation results:

Dependent Vari Method: Least Date: 10/19/06 Sample: 1 88 Included obser	able: Squar Ti vatio	LOG(PRIC es me: 00:01 ns: 88	E)		
Variable	Coef	ficient	Std. Error	t-Statistic	Prob.
C LOG(LOTSIZE) LOG(SQRFT) BDRMS ========	-1 0 0 	.297042 .167967 .700232 .036958	0.651284 0.038281 0.092865 0.027531	-1.991517 4.387714 7.540306 1.342415	0.0497 0.0000 0.0000 0.1831
R-squared Adjusted R-squ S.E. of regres Sum squared re Log likelihood Durbin-Watson	ared sion sid stat	0.642965 0.630214 0.184603 2.862563 25.86066 2.088996	Mean depen S.D. depen Akaike inf Schwarz cr F-statisti Prob(F-sta	dent var dent var o criterion iterion c tistic)	5.633180 0.303573 -0.496833 -0.384227 50.42374 0.000000

The *F*-statistic for the the null hypothesis (5) is now F = 2.56 with *p*-value 0.084. Thus (5) is not rejected at the 5% level. Thus overall, on the basis of the RESET test the log-log model (7) is preferred.

Non-nested alternatives

For example if the model choices are

(8)
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$

and

(9) $y = \beta_0 + \beta_1 \log(x_1) + \beta_2 \log(x_2) + u$.

Because the models are <u>non-nested</u> the usual F-test does not apply.

A common approach is to estimate a combined model

 $y = \gamma_0 + \gamma_1 x_1 + \gamma_2 x_2 + \gamma_3 \log(x_1) + \gamma_4 \log(x_2) + u.$

(10)

 $H_0: \gamma_3 = \gamma_4 = 0$ is a hypothesis for (8) and $H_0: \gamma_1 = \gamma_2 = 0$ is a hypothesis for (9). The usual *F*-test applies again here. Davidson and MacKinnon (1981)* procedure:

For example to test (8), estimate first

(11) $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \theta_1 \hat{\hat{y}} + v,$

where \hat{y} is the fitted value of (9). A significant t value of the θ_1 -estimate is a rejection of (8).

Similarly, if \hat{y} denotes the fitted values of (8), the test of (9) is the *t*-staistic of the θ_1 -estimate from

(12)

 $y = \beta_0 + \beta_1 \log(x_1) + \beta_2 \log(x_2) + \theta_1 \hat{y} + v,$

^{*}Davidson, R. and J.G. MacKinnon (1981). Several tests for model specification in the presence of alternative hypotheses, *Econometrica* 49, 781–793.

<u>Remark 8.1</u>: A clear winner need not emerge. Both models may be rejected or neither may be rejected. In the latter case adjusted R-square can be used to select the better fitting one. If both models are rejected, more work is needed. *

^{*}For more complicated cases, see Wooldridge, J.M. (1994). A simple specification test for the predictive ability of transformation models, *Review of Economics and Statistics* **76**, 59–65.

8.2 Outliers

Particularly in small data sets OLS estimates are influenced by one or several observations. Generally such observations are called *outliers* or *influential observations*.

Loosely, an observation is an outlier if dropping it changes estimation results materially.

In detection of outliers a usual practice is to investigate standardized (or "studentized") residuals.

If an outlier is an obvious mistake in recording the data, it can be corrected. Usual practice also is to eliminate such observations.

Data transformations, like taking logarithms often narrow the range of data and hence may alleviate outlier problems, too.