9 Regression with Time Series

9.1 Some Basic Concepts

Static Models

 $(1) y_t = \beta_0 + \beta_1 x_t + u_t$

t = 1, 2, ..., T, where T is the number of observation in the time series. The relation between y and x is contemporaneous.

Example: Static Phillips Curve:

inflation_t = $\beta_0 + \beta_1$ unemployment_t + u_t .

Finite Distributed Lag Model (FDL)

In FDL models earlier values of one or more explanatory variables affect the current value of y.

(2) $y_t = \alpha_0 + \delta_0 x_t + \delta_1 x_{t-1} + \delta_2 x_{t-2} + u_t$

is a FDL of order two.

Multipliers

Multipliers indicate the impact of a unit change in x on y.

<u>Impact Multiplier</u>: Indicates the immediate one unit change in x on y. In (2) δ_0 is the impact multiplier.

To see this, suppose x_t is constant, say c, before time point t, increases by one unit to c+1 at time point t and returns back to cat t+1. That is

$$\cdots, x_{t-2} = c, x_{t-1} = c, x_t = c+1, x_{t+1} = c, x_{t+2} = c, \dots$$

Suppose for the sake of simplicity that the error term is zero, then

$$y_{t-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$$

$$y_t = \alpha_0 + \delta_0 (c+1) + \delta_1 c + \delta_2 c$$

$$y_{t+1} = \alpha_0 + \delta_0 c + \delta_1 (c+1) + \delta_2 c$$

$$y_{t+2} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 (c+1)$$

$$y_{t+3} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$$

from which we find

$$y_t - y_{t-1} = \delta_0,$$

which is the immediate change in y_t .

In the next period, t + 1, the change is

$$y_{t+1} - y_{t-1} = \delta_1,$$

after that

$$y_{t+2} - y_{t-1} = \delta_2,$$

after which the series returns to its initial level $y_{t+3} = y_{t-1}$. The series $\{\delta_0, \delta_1, \delta_2\}$ is called the <u>lag distribution</u>, which summarizes the dynamic effect that a temporary increase in x has on y.

Lag Distribution: A graph of δ_j as a function of j. Summarizes the distribution of the effects of a one unit change in x on y as a function of j, j = 0, 1, ...

Particularly, if we standardize the initial value of y at $y_{t-1} = 0$, the lag distribution traces out the subsequent values of y due to a oneunit, temporary change in x. Interim multiplier of order J:

(3)
$$\delta(J) = \sum_{j=0}^{J} \delta_j.$$

Indicates the cumulative effect up to J of a unit change in x on y. In (2) e.g., $\delta(1) = \delta_0 + \delta_1$.

Total Multiplier: (Long-Run Multiplier)

Indicates the total (long-run) change in y as a response of a unit change in x.

(4)
$$\delta_{\infty} = \sum_{j=0}^{\infty} \delta_j.$$

Example 9.1: Suppose that in annual data

 $int_t = 1.6 + 0.48 inf_t - 0.15 inf_{t-1} + 0.32 inf_{t-2} + u_t$

where int is an interest rate and inf is inflation rate. Impact and long-run multipliers?

Assumptions

Regarding the Classical Assumption, we need to account for the dependencies in time dimension.

Assumption (4) $\mathbb{E}[u_i|\mathbf{x}_i] = 0$ is replaced by

(5) $\mathbb{E}[u_t|\mathbf{x}_s] = 0$ for all $t, s = 1, \dots, T$.

In such a case we say that \mathbf{x} is <u>strictly exo-</u> <u>genous</u>. Explanatory variables that are strictly exogeneous cannot react to what happened in the past. The assumption of strict exogeneity implies <u>unbiasedness</u> of OLS-estimates.

A weaker assumption is <u>contemporaneous exo-</u> geneity:

(6) $\mathbb{E}[u_t|\mathbf{x}_t] = 0$

It implies only consistency of OLS-estimates.

Assumption

(7) $\mathbb{C}ov[u_s, u_t] = 0$, for all $s \neq t$

is the assumption of no <u>serial correlation</u> or no <u>autocorrelation</u>.

Lack of serial correlation is required for the standard errors and the usual t- and F-statistics to be valid.

Unfortunately, this assumption is often violated in economic time series.

9.2 Trends and Seasonality

Economic time series have a common tendency of growing over time. Some series contain a <u>time trend</u>.

Usually two or more series are trending over time for reasons related to some unobserved common factors. As a consequence correlation between the series may be for the most part of the trend.

Linear time trend:

- $(8) y_t = \alpha_0 + \alpha_1 t + e_t.$
- (9) $\mathbb{E}[y_t] = \alpha_0 + \alpha_1 t.$

 $\alpha_1 > 0$, upward trend, $\alpha_1 < 0$, downward trend. Exponential trend:

If the growth rate $\Delta y/y$ of an economy is β_1 . That is

(10) $\frac{dy(t)/dt}{y(t)} = \beta_1,$

then

(11) $y(t) = y(0)e^{\beta_1 t}$.

Thus a constant growth rate leads to exponential trend model (c.f. continuously compounded interest rate).

Typical such series are GDP, Manufacturing production, and CPI.

Exponential trend is modeled in practice as

- (12) $\log(y_t) = \beta_0 + \beta_1 t + e_t,$
- $t = 1, 2, \ldots$, where β_1 is the growth rate.

Example 9.2: U.S. GDP growth 1950–1987.

Dependent Variable: LOG(USGNP) Method: Least Squares Sample: 1950 1987 Included observations: 38 Variable Coefficient Std. Error t-Statistic Prob. _____ С 7.1549 0.012264 583.43 0.0000 0.000570 53.31 **@TREND** 0.0304 0.0000 R-squared 0.987 Mean dependent var 7.717 Adjusted R-squared 0.987 S.D. dependent var 0.340 S.E. of regression 0.039 Akaike info criterion -3.623Sum squared resid 0.053 Schwarz criterion -3.536 Log likelihood 70.830 F-statistic 2841.678 Durbin-Watson stat 0.446 Prob(F-statistic) 0.000 _____ _____

According to the estimation results the average growth has been about 3 percent per year.

Trending Variables in Regression

Common growth over time of series in the regression model may cause spurious regression relationships. Adding a time trend to the regression eliminates usually this problem.

Example 9.3: Housing Investment and Prices:

Regressing anual observations on housing investment per capita invpc on a housing price index price in constant elasticity form yields

(13a) $\log(\hat{n}vpc) = -0.550 + 2.241 \log(price)$

The standard error on the slope coefficient of log(price) is 0.382, so it is statistically significant. However, both invpc and price have upward trends. Adding a time trend yields

(13b)

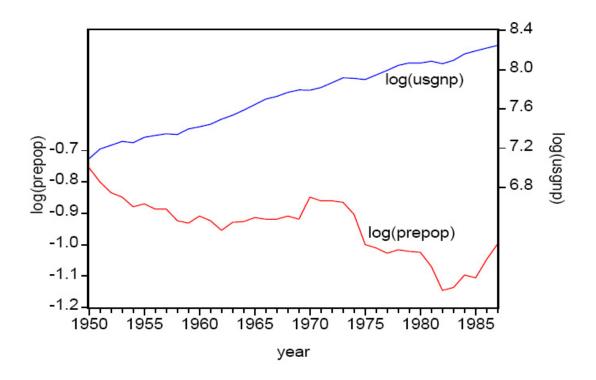
 $log(\hat{n}vpc) = -0.913 - 0.381 log(price) + 0.0098t$

with a standard error of 0.679 on the price elasticity and 0.0035 on time. The time trend is statistically significant and it implies an approximate 1% increase in invpc per year. The estimated price elasticity is now negative and not statistically different from zero. Example 9.4: Puerto Rican Employment and the U.S. Minimum Wage.

prepop = Puerto Rican employment/popul ratio mincov = (average minimum wage/average wage)*avgcov, where avgcov is the proportion of workers covered by the minimum wage law.

mincov measures the importance of minimum wage relative to average wage.

Sample period 1950–1987



The specified model is (14a) $\log(\text{prepop}_t) = \beta_0 + \beta_i \log(\text{mincov}_t) + \beta_2 \log(\text{usgnp}_t) + u_t.$

Method: Leas Sample: 1950	-		?) 		
Variable	Coefficient	Std.	Error	t-Statistic	Prob.
C LOG(MINCOV) LOG(USGNP)			765)65)89	-1.378 -2.380 -0.138	0.177 0.023 0.891
R-squared Adjusted R-s S.E. of reg Sum squared Log likeliho Durbin-Watso	ression resid pod {	0.056 0.109 57.376	S.D. Akail Schwa F-sta	dependent var dependent var ke info criterio arz criterion atistic (F-statistic)	-0.944 0.093 n -2.862 -2.733 34.043 0.000

Elasticity estimate of mincov is -0.154 and is statistically significant. This suggests that a higher minimum wage lowers the employment rate (as expected). The US GNP is not statistically significant.

Example 9.4: Puerto Rican Employment:

Adding a trend to (14a):
(14b)
$\log(\operatorname{prepop}_t) = \beta_0 + \beta_i \log(\operatorname{mincov}_t)$
$+\beta_2 \log(\text{usgnp}_t) + \beta_3 t + u_t$

produces estimation results:

Dependent Variable: LOG(PREPOP) Method: Least Squares Sample: 1950 1987 Included observations: 38						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C LOG(MINCOV) LOG(USGNP) @TREND	-8.729 -0.169 1.057 -0.032	1.300 0.044 0.177 0.005	-6.712 -3.813 5.986 -6.442	0.0000 0.0006 0.0000 0.0000		
R-squared Adjusted R-squa S.E. of regress Sum squared res Log likelihood Durbin-Watson s	ion 0.038 id 0.049 72.532	Mean depend S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stat	lent var criterion terion	-0.944 0.093 -3.607 -3.435 62.784 0.000		

Seasonality

Monthly or quarterly series include often *seasonality* which shows up as regular cycles in the series.

A common way to account for the seasonality is to include a set of *seasonal dummy variables* into the model.

For example, monthly data: (15) $y_t = \beta_0 + \delta_1 \text{feb}_t + \delta_2 \text{mar}_t + \dots + \delta_{11} \text{dec}_t$ $+\beta_1 x_{t1} + \dots + \beta_k x_{tk} + u_t$ feb_t,..., dec_t are dummy variables. January is the base month.

9.3 Time Series Models

Stationarity:

A stochastic process $\{y_t : t = 1, 2, ...\}$ is (co-variance) stationary, if

(i) $\mathbb{E}[y_t] = \mu$ for all t(ii) $\mathbb{V}ar[y_t] = \sigma^2 < \infty$ for all t(iii) $\mathbb{C}ov[y_t, y_{t+h}] = \gamma_h$ for all t, i.e., the covariance depends only on the lag length h, not time.

Example:

A process with a time trend is not stationary, because its mean changes through time.

Establishing stationarity can be very difficult. However, we often must assume it since nothing can be learnt from time series regressions when the relationship between y_t and x_t is allowed to change arbitrarily out of sample. Weakly Dependent Series

 y_t is weakly dependent if y_t and y_{t+h} are "almost independent" as $h \to \infty$.

Covariance stationary sequences are said to be *asymptotically uncorrelated* if $\mathbb{C}ov[x_t, x_{t+h}] \to 0$ as $h \to \infty$. (Intuitive characterization of weak dependence.)

The weak dependence replaces the notion of random sampling implying law of large numbers (LLN) and the central limit theorem (CLT) holds.

Basic Time Series Processes

<u>White Noise</u>: Series y_t is (weak) white noise (WN) if

(i) $\mathbb{E}[y_t] = \mu$ for all t(ii) $\mathbb{V}ar[y_t] = \sigma^2 < \infty$ for all t(iii) $\mathbb{C}ov[y_s, y_t] = 0$ for all $s \neq t$.

<u>Remark 9.1</u>: (i) Usually $\mu = 0$. (ii) WN-process is stationary.

Random Walk (RW): y_t is a random walk process if

(13) $y_t = y_{t-1} + e_t,$

where $e_t \sim WN(0, \sigma_e^2)$.

If $y_t \sim \mathsf{RW}$ and assuming $y_0 = 0$, it can be easily shown $\mathbb{E}[y_t] = 0$,

(14)
$$\operatorname{Var}[y_t] = t\sigma_e^2,$$

and

(15)
$$\mathbb{C}\operatorname{orr}[y_t, y_{t+h}] = \sqrt{\frac{t}{t+h}}.$$

<u>Remark 9.2</u>: RW is a nonstationary process.

Random walk with drift:

(16) $y_t = \mu + y_{t-1} + e_t, e_t \sim WN(0, \sigma_e^2).$

AR(1)-process:

(17) $y_t = \phi_0 + \phi_1 y_{t-1} + e_t,$

where $e_t \sim WN(0, \sigma_e^2)$ and $|\phi_1| < 1$.

The condition $|\phi_1| < 1$ is the condition for y_t to be stationary.

Integrated process:

We say that y_t is integrated of order one, denoted as I(1), if $\Delta y_t = y_t - y_{t-1}$ is stationary (and weakly dependent).

<u>Remark 9.3</u>: A series is trend-stationary if it is of the form (8) $y_t = \alpha_0 + \alpha_1 t + e_t$, where e_t is stationary. A trend-stationary process is I(1).

MA(1)-process:

(18)

 $y_t = \theta_0 + \theta_1 e_{t-1} + e_t, \quad e_t \sim WN(0, \sigma_e^2).$

All MA processes are covariance stationary.

9.4 Serial Correlation and Heteroscedasticity in Time Series Regression

Assumption 3 $\mathbb{C}ov[u_t, u_{t+h}] = 0$ is violated if the error terms are correlated.

This problem is called the autocorrelation problem.

Consequences of error term autocorrelation in OLS:

(i) OLS is no more BLUE

(ii) Standard errors are (downwards) biased (*t*-statistics etc. become invalid), and the situation does not improve for $n \to \infty$.

However

(iii) OLS estimators are still unbiased for strictly exogeneous regressors.

(iv) OLS estimators are still consistent for stationary, weekly dependent data with contemporaneously exogeneous regressors. Testing for Serial Correlation

(22)
$$y_t = \beta_0 + \beta_1 x_{t1} + \cdots + \beta_k x_{tk} + u_t.$$

AR(1) errors

(23)
$$u_t = \rho u_{t-1} + e_t, \quad e_t \sim WN(0, \sigma_e^2).$$

Typical procedure to test the first order autocorrelation is to obtain OLS residuals \hat{u}_t by estimating (22), fit AR(1) in the \hat{u}_t series, and use the resulting *t*-statistic to infer to test H_0 : $\rho = 0$.

An alternative is to use the traditional Durbin-Watson (DW) test.

(24)
$$DW = \frac{\sum_{t=2}^{T} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{T} \hat{u}_t^2}$$

It can be shown that

(25)
$$DW \approx 2(1-\hat{\rho}).$$

Ljung-Box test

A general test for serial correlation is the Ljung-Box Q-statistic,

(26)
$$Q = T(T+2) \sum_{j=1}^{k} \frac{\hat{\rho}_j^2}{(T-j)}.$$

If the null hypothesis

(27)
$$H_0: \rho_1 = \rho_2 = \dots = \rho_k = 0$$

is true Q has the asymptotic χ_k^2 distribution.

Serial Correlation-Robust Inference with OLS

The idea is to find robust standard errors for the OLS estimates.

Again using matrix notations simplifies considerably exposure. Let

(28) $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u},$

where

(29) $\mathbb{C}ov[\mathbf{u}] = \Sigma_u,$

Again, write

(30) $\hat{\boldsymbol{\beta}} = \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{u}.$

Then

(31) $\mathbb{C}ov[\widehat{\boldsymbol{\beta}}] = (\mathbf{X}'\mathbf{X})^{-1}\Omega(\mathbf{X}'\mathbf{X})^{-1}.$

The problem is how to estimate $\Omega = \mathbf{X}' \Sigma_u \mathbf{X}$.

Newey and West (1987)suggest and estimator (32)

 $\hat{\Omega} = \frac{T}{T-k} \left[\sum_{t=1}^{T} \hat{u}_t^2 \mathbf{x}_t \mathbf{x}_t' \right]$

 $+ \sum_{v=1}^{q} \left(\left(1 - \frac{v}{q+1} \right) \sum_{t=v+1}^{T} (\mathbf{x}_{t} \widehat{u}_{t} \widehat{u}_{t-v} x_{t-v}' + \mathbf{x}_{t-v} \widehat{u}_{t-v} \widehat{u}_{t} \mathbf{x}_{t}') \right) \right]$

which is supposed to be robust both against heteroscedasticity and autocorrelation. The q-variable is determined as a function of the number of observations.

Example 9.5: Puerto Rican Wage:

Autocorrelation Partial Correlation AC PAC Q-Stat Prob 1 1 0.443 0.443 8.0658 0.005 2 0.153 -0.054 9.0537 0.011 3 0.085 0.047 9.3684 0.025 4 0.065 0.020 9.5595 0.049 5 -0.143 -0.228 10.500 0.062 1 1 1 1 6 -0.167 -0.020 11.821 0.066 1 1 1 1 8 -0.270 -0.115 18.397 0.040 1 1 1 1 1 1 8 -0.270 -0.115 18.397 0.040 1 1 1 1 1 1 1 1 1 0.007 1 1 1 1 1 0.0112 23.098 0.010 1 1 1 1 1 0.063	Sample: 1950 1987 Included observations	s: 38	
2 0.153 -0.054 9.0537 0.011 3 0.085 0.047 9.3684 0.025 4 0.065 0.020 9.5595 0.049 5 -0.143 -0.228 10.500 0.062 6 -0.167 -0.020 11.821 0.066 7 -0.243 -0.189 14.707 0.040 8 -0.270 -0.115 18.397 0.018 9 -0.288 -0.120 22.740 0.007 10 -0.081 0.112 23.098 0.010 11 -0.117 -0.153 23.865 0.013 12 -0.063 0.019 24.099 0.020 13 -0.035 -0.188 24.179 0.044	Autocorrelation	Partial Correlation	AC PAC Q-Stat Prob
			2 0.153 -0.054 9.0537 0.011 3 0.085 0.047 9.3684 0.025 4 0.065 0.020 9.5595 0.049 5 -0.143 -0.228 10.500 0.062 6 -0.167 -0.020 11.821 0.066 7 -0.243 -0.189 14.707 0.040 8 -0.270 -0.115 18.397 0.018 9 -0.288 -0.120 22.740 0.007 10 -0.081 0.112 23.098 0.010 11 -0.117 -0.153 23.865 0.013 12 -0.063 0.019 24.099 0.020 13 -0.008 -0.035 24.104 0.030

Correlogram of Residuals

The residuals are obviously autocorrelated. Using the the above autocorrelation robust standard errors yields the following results.

Dependent Variable: LOG(PREPOP) Method: Least Squares Sample: 1950 1987 Included observations: 38 Newey-West HAC Standard Errors & Covariance (lag truncation=3)						
Variable	Coeffici	ent Std.	Error	t-Statisti	.c Prob.	
C LOG(MINCOV) LOG(USGNP) @TREND	-8.7286 -0.1686 1.0573 -0.0323	895 0.0 851 0.2	38469 19516	-5.492994 -4.385230 4.816736 -4.898514	0.0001 0.0000	
R-squared Adjusted R-squared S.E. of regress Sum squared real Log likelihood Durbin-Watson	ared 0. sion 0. sid 0. 72	833597 037928 048910 2.53218	S.D. de Akaike Schwarz F-stati	ep. var ep. var info crit. z criterion istic -statistic)	-3.606957 -3.434580 62.78374	

We observe that particularly the standard error of log(usgnb) increases compared to Example 9.4.

Estimating the residual autocorrelation as an AR-process

An alternative to the robustifying of the standard errors with the Newy-White procedure (32), is to explicitly model the error term as an autoregressive process as is done in equation (23) and estimate it.

Example 9.6: Estimation the Puerto Rican example with AR(1) errors yields:

	===========			========
Dependent Variable				
Method: Least Squa Sample (adjusted):				
Included observati		adiustments		
Convergence achiev		•		
	================	=======================================		========
Variable C	oefficient	Std. Error	t-Statis	tic Prob.
с.		1.492220		0.0013
•	-0.090233	0.048103		
	0.588807	0.207160		
	-0.019385	0.006549		
AR(1)	0.701498	0.123959		
===================	================			=========
R-squared	0.907075	Mean dependent	var	-0.949183
Adjusted R-squared	0.895459	S.D. dependent	var	0.088687
S.E. of regression	0.028675	Akaike info cr	iterion	-4.140503
Sum squared resid	0.026312	Schwarz criter:	ion	-3.922811
Log likelihood	81.59930	F-statistic		78.09082
Durbin-Watson stat	1.468632	Prob(F-statist:	ic)	0.000000
	=================	=======================================	=========	=======

Residual autocorrelations:

Sample: 1951 1987 Included observations: 37 Q-statistic probabilities adjusted for 1 ARMA term(s)						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
I 🗖 I		1	0.187	0.187	1.4071	
I I I	I 🛛 I	2	0.078	0.044	1.6551	0.198
I I I		3	0.097	0.078	2.0557	0.358
I I I	I 🛛 I	4	0.085	0.053	2.3723	0.499
		5	-0.273	-0.320	5.7274	0.220
		6	-0.016	0.088	5.7395	0.332
		7	-0.013	-0.005	5.7475	0.452
I 🔲 I		8	-0.122	-0.096	6.4908	0.484
		9	-0.226	-0.156	9.1276	0.332
ı pı	i pi	10	0.061	0.064	9.3267	0.408

Correlogram of Residuals

The results indicate no additional autocorrelation in the residuals.

Residual Autocorrelation and Common Factor

The lag operator L is defined as $Ly_t = y_{t-1}$ (generally $L^p y_t = y_{t-p}$).

Thus, equation (23) can be written as

$$(33) \qquad (1-\rho L)u_t = e_t$$

or

$$(34) u_t = \frac{e_t}{1 - \rho L}$$

Using this in (22), we can write (for the simplicity, assume k = 1 and denote $x_t = x_{t1}$)

(35)
$$y_t = \beta_0 + \beta_1 x_t + \frac{e_t}{1 - \rho L}$$

or

(36)

$$(1 - \rho L)y_t = (1 - \rho L)\beta_0 + \beta_1(1 - \rho L)x_t + e_t$$

This implies that the dynamics of y_t and x_t share $1 - \rho L$ in common, called common factor.

Thus, the autocorrelation in u_t is equivalent that there is a common factor in the regression in (23).

This can be tested by estimating the unrestricted regression

(37) $y_t = \alpha_0 + \alpha_1 y_{t-1} + \alpha_2 x_t + \alpha_3 x_{t-1} + e_t$

and testing whether it satisfies restrictions implied by (36), which can be written as (38)

 $y_t = (1 - \rho)\beta_0 + \rho y_{t-1} + \beta_1 x_t - \beta_1 \rho x_{t-1} + e_t$

That is, whether

$(39) \qquad \qquad \alpha_3 = -\alpha_1 \alpha_2$

If this hypothesis is not accepted, the question is of wrong dynamic specification of the model, not autocorrelation in the residuals.

Example 9.7: Puerto Rican example. The unrestricted

model estimates are:

Dependent Variable: LOG(PREPOP) Method: Least Squares Sample (adjusted): 1951 1987 Included observations: 37 after adjustments							
Variable	Coefficient	Std. Error					
LOG(PREPOP(-1)) LOG(MINCOV) LOG(MINCOV(-1)) LOG(USGNP) LOG(USGNP(-1))	-0.142230 0.033409 0.561893 0.137353	0.124932 0.047224 0.046831 0.188654 0.226785	-3.011794 0.713386 2.978437	0.4811 0.0057 0.5493			
R-squared Adj R-squared S.E. of reg Sum squared resi Log likelihood F-statistic Prob(F-statistic	0.914578 0.025921 d 0.020156 86.52972 65.23934	S.D. depende Akaike info Schwarz crit Hannan-Quinr Durbin-Watso	ent var -0 ent var 0 criterion -4 terion -3 n criter4 on stat 1	.088687 .298904 .994136 .191459 .634219			

Testing for the implied restriction by AR(1)-residuals by imposing restrictions in EViews (View > Coefficient Tests > Wald-Coefficient Restrictions...)

Wald Test	×
Coefficient restrictions separated by commas c(4) = -c(3)*c(2), c(6) = -c(5)*c(2)	
Examples C(1)=0, C(3)=2*C(4)	

gives:

Wald Test: Equation: EX97			
Test Statistic	Value	df	Probability
F-statistic Chi-square =============	4.436898 8.873795	(2, 30) 2	0.0205 0.0118
Null Hypothesis	Summary:		

C(2)*C(3) + C(4) -0.042736 0.033279	Normalized Restriction	(= 0) Value	Std. Err.
C(2)*C(5) + C(6) = 0.438171 = 0.150355	C(2)*C(3) + C(4)	-0.042736	0.033279
	C(2)*C(5) + C(6)	0.438171	0.150355

The null hypothesis is rejected, which implies that rather than the error term is autocorrelated the model should be specified as

 $y_t = \beta_0 + \alpha_1 y_{t-1} + \beta_1 x_{t1} + \beta_{11} x_{t-1,1} + \beta_2 x_{t,2} + \beta_{21} x_{t-1,2} + e_t$, where $y = \log(\text{prepop})$, $x_1 = \log(\text{mincov})$, $x_2 = \log(\text{usgnp})$, and $x_3 = \text{trend}$.

Finally, because the coefficient estimates of $log(mincov_{t-1})$ and $log(usgnp_{t-1})$ are not statistically significant, they can be dropped from the model, such that the final model becomes:

Dependent Variable: LOG(PREPOP) Method: Least Squares Included observations: 37 after adjustments							
Variable Coe	fficient	Std. Error	t-Statistic	Prob.			
LOG(PREPOP(-1))	-5.104888 0.558090 -0.106787 0.630332 -0.017463	0.103817 0.031282 0.154822	4.071322	0.0000 0.0018 0.0003			
R-squared Adj R-squared S.E. of reg Sum sqerd resid Log likelihood F-statistic Prob(F-statistic)	0.917004 0.025550 0.020889 85.86878 100.4388	Mean depend S.D. depend Akaike info Schwarz crit Hannan-Quinn Durbin-Watso	ent var 0. criter4.3 erion -4.1 criter4.2	949183 088687 371286 .53594 294539 68436			

39

Autocorrelation has also disappeared from the residu-

als:

Sample: 1951 1987 Included observations: 37								
Autocorr		Partial Corr			AC	PAC	Q-Stat	Prob
. *.	Ι	. *.	Ι	1	0.203	0.203	1.6465	0.199
. *.	I	. .	Ι	2	0.079	0.039	1.9008	0.387
. *.	Ι	. .	Ι	3	0.092	0.072	2.2586	0.521
. .	Ι	. .	Ι	4	0.018	-0.017	2.2724	0.686
*** .	I	*** .	Ι	5	-0.346	-0.372	7.6823	0.175
.* .	I	. .	Ι	6	-0.111	0.020	8.2560	0.220
.* .	Ι	. .	Ι	7	-0.067	-0.010	8.4747	0.293
.* .	I	. .	Ι	8	-0.124	-0.052	9.2354	0.323
.* .		.* .	Ι	9	-0.143	-0.091	10.2920	0.327
. *.		. *.		10	0.156	0.110	11.5860	0.314

40

Autoregressive Conditional Heteroscedasticity ARCH

Temporal volatility clustering is typical for speculative series like stock returns, interest rates, currencies, etc. Example 9.7: The following time series plot shows Microsoft's weekly (log) returns ($r_t = 100 \log(P_t/P_{t-1})$) for the sample period from January 1990 through October 2006.

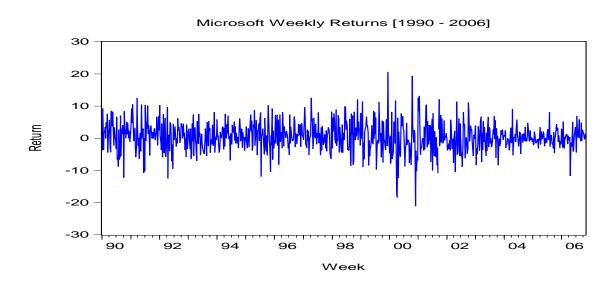


Figure 9.1: Microsoft weekly returns for the sample period January 1990 through November 2006.

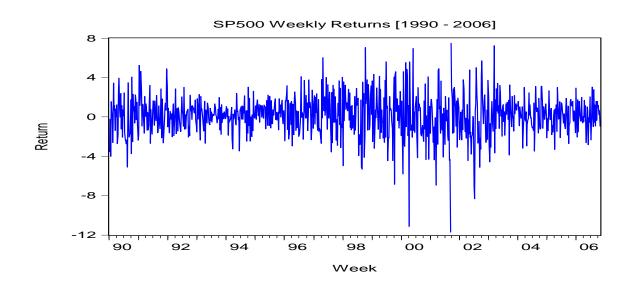


Figure 9.1: SP500 weekly returns for the sample period January 1990 through November 2006.

There is probably some volatility clustering present in both return series.

Engle (1982) suggested modeling the clustering volatility with the ARCH models.

A time series u_t follows an ARCH(1)-process (AutoRegressive Conditional Heteroscedasticity) if

$$(40) \mathbb{E}[u_t] = 0,$$

(41)
$$\mathbb{C}ov[u_t, u_s] = 0$$
, for all $t \neq s$,

and

(42)
$$h_t = \operatorname{Var}[u_t | u_{t-1}] = \alpha_0 + \alpha_1 u_{t-1}^2,$$

where $\alpha_0 > 0$ and $0 \le \alpha_1 < 1$.

We say that u_t follows and ARCH(1)-process and denote $u_t \sim \text{ARCH}(1)$. An important property of an ARCH process is that if $u_t \sim ARCH$, then

(43)
$$z_t = \frac{u_t}{\sqrt{h_t}} \sim WN(0,1).$$

That is the standardized variable z_t is white noise ($\mathbb{E}[z_t] = 0$, $\mathbb{V}ar[z_t] = 1$, and $\mathbb{C}ov[z_t, z_{t+k}] = 0$ for all $k \neq 0$).

Furthermore

(44)
$$\operatorname{Var}[z_t|u_{t-1}] = \operatorname{Var}\left[\frac{u_t}{\sqrt{h_{t-1}}}|u_{t-1}\right] = \frac{1}{h_t}\operatorname{Var}[u_t|u_{t-1}] = 1.$$

That is, z_t has constant conditional variance.

This implies that there should not remain any volatility clustering in z_t .

This can be checked by investigating the autocorrelations of the squared z_t -series, z_t^2 , for example with the Ljung-Box Q-statistic, defined in (26).

It may be noted further that if $z_t \sim N(0, 1)$, then

(45)
$$u_t|u_{t-1} \sim N(0, h_t).$$

<u>Remark 9.4</u>: If (43) holds, using (43) we can always write

$$(46) u_t = \sqrt{h_t} z_t,$$

where z_t are independent N(0, 1) random variables.

The parameters of the ARCH-process are estimated by the method of maximum likelihood (ML). Example 9.8: Consider the SP500 returns. With EViews we can estimate by selecting Quick > Estimate Equation ..., specifying rm c in the model box, selecting Estimation Method:

ARCH-Autoregressive Conditional Heteroscedasticity, selecting ARCH option equal to 1 and GARCH option equal to 0.

Note that specifying in the model box rm c implies that we estimate $u_t = r_{m,t} - \mathbb{E}[r_{mt}]$.

These specifications yield the following results:

Dependent Variable: RM Method: ML - ARCH (Marquardt) - Normal distribution Sample (adjusted): 1/08/1990 10/30/2006 Included observations: 877 after adjustments Convergence achieved after 9 iterations Variance backcast: ON GARCH = C(2) + C(3)*RESID(-1)^2							
Coefficient S	td. Error	z-Statistic	 Prob.				
C 0.189986	0.062065	3.061069	0.0022				
Variance Equation	Variance Equation						
C 3.237585 RESID(-1)^2 0.247032							
R-squared -0.000294 Adjusted R-squared -0.002583 S.E. of regression 2.080063 Sum squared resid 3781.503 Log likelihood -1856.588	S.D. depen Akaike inf Schwarz cr	dent var dent var o criterion iterion son stat	2.077382 4.240795 4.257134				

Thus the estimated ARCH(1) model is

(47)
$$\hat{h}_t = 3.238 + 0.247 u_{t-1}^2, (0.135) (0.0396)$$

where $u_t = r_{m,t} - \mu$ with $\mu = \mathbb{E}[r_{m,t}]$, estimated from the sample period as $\hat{\mu} = 0.18986$ (i.e., the average weekly return has been approximately 0.19%, or \approx 9.9% per year). Check next the autocorrelation of the squared standardized residuals $\hat{z}_t = \hat{u}_t / \sqrt{\hat{h}_t}$.

Sample: 1/02/1990 10/24/2006 Included observations: 877							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
1	I	1	-0.006	-0.006	0.0274	0.869	
iĝi	I	2	0.028	0.028	0.7023	0.704	
		3	0.098	0.098	9.1175	0.028	
		4	0.083	0.084	15.178	0.004	
1 I I I I I I I I I I I I I I I I I I I	I I	5	0.044	0.041	16.884	0.005	
		6	0.104	0.093	26.502	0.000	
		7	0.096	0.084	34.603	0.000	
i 🗊	I I	8	0.037	0.023	35.787	0.000	
i 🛛	I]I	9	0.036	0.010	36.945	0.000	
	ı <mark>þ</mark> ı	10	0.065	0.033	40.685	0.000	

Correlogram of Standardized	Residuals	Squared
-----------------------------	-----------	---------

It seems that there is still left some volatility clustering especially due to the longer lags. The p-value from the third order forwards is statistically significant. Thus the simple ARCH(1) does not seem to fully capture the volatility clustering in the series. We can try to improve the model.

GARCH

An important extension to the ARCH model is due to Bollerslev (1986), which is called GARCH, Generalized ARCH. GARCH(1,1) is of the form

(48)
$$h_t = \alpha_0 + \alpha_1 u_{t-1}^2 + \beta h_{t-1},$$

where it is assumed that $\alpha_0 > 0$ and $0 < \alpha + \beta < 1$.

<u>Remark 9.5</u>: If $\beta > 0$ then α must also be > 0.

The GARCH-term h_{t-1} essentially accumulates the historical volatility and β indicates the persistence of the volatility.

Example 9.9: GARCH(1,1) model for the SP500 re-

turns

<pre>Dependent Variable: RM Method: ML - ARCH (Marquardt) - Normal distribution Sample (adjusted): 1/02/1990 10/24/2006 Included observations: 877 after adjustments Convergence achieved after 17 iterations Variance backcast: ON GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)</pre>								
			z-Statistic					
			3.363410					
Variance Equation								
C RESID(-1) ² GARCH(-1)	0.057345	0.012168	1.767719 4.712861 72.52709	0.0000				
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	2.081394 3782.013	Akaike inf Schwarz cr	e=====================================	4.119464 4.141250				

The autocorrelations of the squared standardized residuals indicate still some possible first order autocorrelation remained in the series. Nevertheless the estimate of the first order autocorrelation, though statistically significant (*p*-value 0.022) at the 5% level, is small by magnitude (0.078). Thus, we can conclude that the GARCH(1,1) fits pretty well to the data.

Sample: 1/02/1990 10/24/2006 Included observations: 877							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
		3 4 5 6 7 8	-0.007 0.041 -0.007 -0.017 -0.011 -0.026 -0.040 -0.017	-0.014 0.043 -0.014 -0.015 -0.011 -0.024 -0.035	6.9687 7.2345 7.3509 7.9459 9.3347 9.5916	0.066 0.074 0.138 0.204 0.290 0.337	

Correlogram of Standardized Residuals Squared

There are several other extensions of the basic ARCH-model (see EViews manual or help, or for a comprehensive presentation Taylor, Stephen J. (2005). *Asset Price Dynamics, Volatility, and Prediction*. Princeton University Press).

ARCH in regression

Consider the simple regression

(49) $y_t = \beta_0 + \beta_1 x_t + u_t.$

If the error term u_t follows a GARCH-process then accounting for it and estimating the regression parameters with the method of maximum likelihood rather than the OLS yield more accurate estimates.

Particularly, if the ARCH-effect is strong, OLS may lead highly unstable estimates to β_0 and β_1 (usually, however, OLS works pretty well).

Example 9.11: Consider next the market model of Microsoft weekly returns on SP500.

Estimating the market model

 $(50) r_t = \beta_0 + \beta_1 r_m + u_t,$

with OLS yields

Estimation results:

Dependent Variable: R Method: Least Squares Sample (adjusted): 1/08/1990 10/30/2006 Included observations: 877 after adjustments						
Variable	Coeff	icient	Std. Error	t-Statistic	Prob.	
C RM		272492 169974	0.128328 0.061639	2.123402 18.98110	0.0340 0.0000	
R-squared Adjusted R-so S.E. of regree Sum squared n Log likelihoo Durbin-Watson	ession resid od	0.291660 0.290850 3.789860 12567.66 -2411.861 2.013695	Mean deper S.D. deper Akaike inf Schwarz cr F-statisti Prob(F-sta	ndent var So criterion Siterion	0.453150 4.500432 5.504813 5.515706 360.2821 0.000000	

ML with GARCH(1,1) error specification yields the following results:

		============	================	
Dependent Variable: R Method: ML - ARCH (Marquardt) - Normal distribution Sample (adjusted): 1/02/1990 10/24/2006 Included observations: 877 after adjustments Convergence achieved after 20 iterations Variance backcast: ON GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)				
	Coefficient	Std. Error	z-Statistic	Prob.
C RM			2.227670 16.49795	
Variance Equation				
C RESID(-1)^2 GARCH(-1)	0.038894	0.009150	2.644976 4.250488 76.52862	0.0000
1	3.796977 12571.65 -2369.804	S.D. dependent var Akaike info criterion Schwarz criterion F-statistic		0.453150 4.500432 5.415744 5.442976 89.66397 0.000000

The results show that in terms of standard errors there are no material differences.

End of the notes: