
9 Regression with Time Series

9.1 Some Basic Concepts

Static Models

(1) yt = β0 + β1xt + ut

t = 1,2, . . . , T , where T is the number of ob-

servation in the time series. The relation be-

tween y and x is contemporaneous.

Example: Static Phillips Curve:

inflationt = β0 + β1unemploymentt + ut.
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Finite Distributed Lag Model (FDL)

In FDL models earlier values of one or more

explanatory variables affect the current value

of y.

(2) yt = α0 + δ0xt + δ1xt−1 + δ2xt−2 + ut

is a FDL of order two.

Multipliers

Multipliers indicate the impact of a unit change

in x on y.

Impact Multiplier: Indicates the immediate

one unit change in x on y. In (2) δ0 is the

impact multiplier.
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To see this, suppose xt is constant, say c,

before time point t, increases by one unit to

c+ 1 at time point t and returns back to c

at t+ 1. That is

· · · , xt−2 = c, xt−1 = c, xt = c+ 1, xt+1 = c, xt+2 = c, . . .

Suppose for the sake of simplicity that the

error term is zero, then

yt−1 = α0 + δ0c+ δ1c+ δ2c

yt = α0 + δ0(c+ 1) + δ1c+ δ2c

yt+1 = α0 + δ0c+ δ1(c+ 1) + δ2c

yt+2 = α0 + δ0c+ δ1c+ δ2(c+ 1)

yt+3 = α0 + δ0c+ δ1c+ δ2c

from which we find

yt − yt−1 = δ0,

which is the immediate change in yt.
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In the next period, t+ 1, the change is

yt+1 − yt−1 = δ1,

after that

yt+2 − yt−1 = δ2,

after which the series returns to its initial

level yt+3 = yt−1. The series {δ0, δ1, δ2} is

called the lag distribution, which summarizes

the dynamic effect that a temporary increase

in x has on y.
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Lag Distribution: A graph of δj as a func-

tion of j. Summarizes the distribution of the

effects of a one unit change in x on y as a

function of j, j = 0,1, . . ..

Particularly, if we standardize the initial value

of y at yt−1 = 0, the lag distribution traces

out the subsequent values of y due to a one-

unit, temporary change in x.
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Interim multiplier of order J:

(3) δ(J) =
J∑

j=0

δj.

Indicates the cumulative effect up to J of a

unit change in x on y. In (2) e.g., δ(1) = δ0 + δ1.

Total Multiplier: (Long-Run Multiplier)

Indicates the total (long-run) change in y as

a response of a unit change in x.

(4) δ∞ =
∞∑
j=0

δj.
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Example 9.1: Suppose that in annual data

intt = 1.6 + 0.48 inft − 0.15 inft−1 + 0.32 inft−2 + ut,

where int is an interest rate and inf is inflation rate.

Impact and long-run multipliers?
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Assumptions

Regarding the Classical Assumption, we need

to account for the dependencies in time di-

mension.

Assumption (4) E[ui|xi] = 0 is replaced by

(5) E[ut|xs] = 0 for all t, s = 1, . . . , T .

In such a case we say that x is strictly exo-

genous. Explanatory variables that are strictly

exogeneous cannot react to what happened

in the past. The assumption of strict exo-

geneity implies unbiasedness of OLS-estimates.

A weaker assumption is contemporaneous exo-

geneity:

(6) E[ut|xt] = 0

It implies only consistency of OLS-estimates.
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Assumption

(7) Cov[us, ut] = 0, for all s 6= t

is the assumption of no serial correlation or

no autocorrelation.

Lack of serial correlation is required for the

standard errors and the usual t- and F-statistics

to be valid.

Unfortunately, this assumption is often vio-

lated in economic time series.
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9.2 Trends and Seasonality

Economic time series have a common ten-

dency of growing over time. Some series

contain a time trend.

Usually two or more series are trending over

time for reasons related to some unobserved

common factors. As a consequence correla-

tion between the series may be for the most

part of the trend.
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Linear time trend:

(8) yt = α0 + α1t+ et.

(9) E[yt] = α0 + α1t.

α1 > 0, upward trend,

α1 < 0, downward trend.
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Exponential trend:

If the growth rate ∆y/y of an economy is β1.

That is

(10)
dy(t)/dt

y(t)
= β1,

then

(11) y(t) = y(0)eβ1t.

Thus a constant growth rate leads to expo-

nential trend model (c.f. continuously com-

pounded interest rate).

Typical such series are GDP, Manufacturing

production, and CPI.

Exponential trend is modeled in practice as

(12) log(yt) = β0 + β1t+ et,

t = 1,2, . . ., where β1 is the growth rate.
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Example 9.2: U.S. GDP growth 1950–1987.

Dependent Variable: LOG(USGNP)
Method: Least Squares
Sample: 1950 1987
Included observations: 38
========================================================
Variable Coefficient Std. Error t-Statistic Prob.
--------------------------------------------------------
C 7.1549 0.012264 583.43 0.0000
@TREND 0.0304 0.000570 53.31 0.0000
========================================================
R-squared 0.987 Mean dependent var 7.717
Adjusted R-squared 0.987 S.D. dependent var 0.340
S.E. of regression 0.039 Akaike info criterion -3.623
Sum squared resid 0.053 Schwarz criterion -3.536
Log likelihood 70.830 F-statistic 2841.678
Durbin-Watson stat 0.446 Prob(F-statistic) 0.000
========================================================

According to the estimation results the average growth

has been about 3 percent per year.
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Trending Variables in Regression

Common growth over time of series in the

regression model may cause spurious regres-

sion relationships. Adding a time trend to the

regression eliminates usually this problem.

Example 9.3: Housing Investment and Prices:

Regressing anual observations on housing investment
per capita invpc on a housing price index price in con-
stant elasticity form yields

(13a) ˆlog(invpc) = −0.550 + 2.241 log(price)

The standard error on the slope coefficient of log(price)
is 0.382, so it is statistically significant. However,
both invpc and price have upward trends. Adding a
time trend yields
(13b)

ˆlog(invpc) = −0.913− 0.381 log(price) + 0.0098t

with a standard error of 0.679 on the price elasticity

and 0.0035 on time. The time trend is statistically

significant and it implies an approximate 1% increase

in invpc per year. The estimated price elasticity is

now negative and not statistically different from zero.
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Example 9.4: Puerto Rican Employment and the U.S.

Minimum Wage.

prepop = Puerto Rican employment/popul ratio

mincov = (average minimum wage/average wage)*avgcov,

where avgcov is the proportion of workers covered by

the minimum wage law.

mincov measures the importance of minimum wage

relative to average wage.

Sample period 1950–1987
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The specified model is
(14a)
log(prepopt) = β0 + βi log(mincovt) + β2 log(usgnpt) + ut.

Dependent Variable: LOG(PREPOP)
Method: Least Squares
Sample: 1950 1987
Included observations: 38
===========================================================
Variable Coefficient Std. Error t-Statistic Prob.
-----------------------------------------------------------
C -1.054 0.765 -1.378 0.177
LOG(MINCOV) -0.154 0.065 -2.380 0.023
LOG(USGNP) -0.012 0.089 -0.138 0.891
===========================================================
R-squared 0.660 Mean dependent var -0.944
Adjusted R-squared 0.641 S.D. dependent var 0.093
S.E. of regression 0.056 Akaike info criterion -2.862
Sum squared resid 0.109 Schwarz criterion -2.733
Log likelihood 57.376 F-statistic 34.043
Durbin-Watson stat 0.340 Prob(F-statistic) 0.000
===========================================================

Elasticity estimate of mincov is −0.154 and is statisti-

cally significant. This suggests that a higher minimum

wage lowers the employment rate (as expected). The

US GNP is not statistically significant.
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Example 9.4: Puerto Rican Employment:

Adding a trend to (14a):
(14b)

log(prepopt) = β0 + βi log(mincovt)

+β2 log(usgnpt) + β3t+ ut

produces estimation results:

Dependent Variable: LOG(PREPOP)
Method: Least Squares
Sample: 1950 1987
Included observations: 38
===========================================================
Variable Coefficient Std. Error t-Statistic Prob.
-----------------------------------------------------------
C -8.729 1.300 -6.712 0.0000
LOG(MINCOV) -0.169 0.044 -3.813 0.0006
LOG(USGNP) 1.057 0.177 5.986 0.0000
@TREND -0.032 0.005 -6.442 0.0000
===========================================================
R-squared 0.847 Mean dependent var -0.944
Adjusted R-squared 0.834 S.D. dependent var 0.093
S.E. of regression 0.038 Akaike info criterion -3.607
Sum squared resid 0.049 Schwarz criterion -3.435
Log likelihood 72.532 F-statistic 62.784
Durbin-Watson stat 0.908 Prob(F-statistic) 0.000
===========================================================
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Seasonality

Monthly or quarterly series include often sea-

sonality which shows up as regular cycles in

the series.

A common way to account for the season-

ality is to include a set of seasonal dummy

variables into the model.

For example, monthly data:

(15)
yt = β0 + δ1febt + δ2mart + · · ·+ δ11dect

+β1xt1 + · · ·+ βkxtk + ut

febt, . . . ,dect are dummy variables. January

is the base month.
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9.3 Time Series Models

Stationarity:

A stochastic process {yt : t = 1,2, . . .} is (co-

variance) stationary, if

(i) E[yt] = µ for all t

(ii) Var[yt] = σ2 <∞ for all t

(iii) Cov[yt, yt+h] = γh for all t, i.e., the co-

variance depends only on the lag length h,

not time.

Example:

A process with a time trend is not stationary,

because its mean changes through time.

Establishing stationarity can be very difficult.

However, we often must assume it since noth-

ing can be learnt from time series regressions

when the relationship between yt and xt is al-

lowed to change arbitrarily out of sample.
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Weakly Dependent Series

yt is weakly dependent if yt and yt+h are ”al-

most independent” as h→∞.

Covariance stationary sequences are said to

be asymptotically uncorrelated if

Cov[xt, xt+h]→ 0 as h→∞. (Intuitive char-

acterization of weak dependence.)

The weak dependence replaces the notion of

random sampling implying law of large num-

bers (LLN) and the central limit theorem

(CLT) holds.
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Basic Time Series Processes

White Noise: Series yt is (weak) white noise

(WN) if

(i) E[yt] = µ for all t

(ii) Var[yt] = σ2 <∞ for all t

(iii) Cov[ys, yt] = 0 for all s 6= t.

Remark 9.1: (i) Usually µ = 0. (ii) WN-process is

stationary.
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Random Walk (RW): yt is a random walk

process if

(13) yt = yt−1 + et,

where et ∼WN(0, σ2
e ).

If yt ∼ RW and assuming y0 = 0, it can be

easily shown E[yt] = 0,

(14) Var[yt] = tσ2
e ,

and

(15) Corr[yt, yt+h] =

√
t

t+ h
.

Remark 9.2: RW is a nonstationary process.

Random walk with drift:

(16) yt = µ+ yt−1 + et, et ∼WN(0, σ2
e ).
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AR(1)-process:

(17) yt = φ0 + φ1yt−1 + et,

where et ∼WN(0, σ2
e ) and |φ1| < 1.

The condition |φ1| < 1 is the condition for yt
to be stationary.

Integrated process:

We say that yt is integrated of order one, de-

noted as I(1), if ∆yt = yt − yt−1 is stationary

(and weakly dependent).

Remark 9.3: A series is trend-stationary if it is of the

form (8) yt = α0 + α1t + et, where et is stationary. A

trend-stationary process is I(1).

MA(1)-process:

(18)

yt = θ0 + θ1et−1 + et, et ∼WN(0, σ2
e ).

All MA processes are covariance stationary.
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9.4 Serial Correlation and Heteroscedasticity

in Time Series Regression

Assumption 3 Cov[ut, ut+h] = 0 is violated if

the error terms are correlated.

This problem is called the autocorrelation

problem.

Consequences of error term autocorrelation

in OLS:

(i) OLS is no more BLUE

(ii) Standard errors are (downwards) biased

(t-statistics etc. become invalid), and the

situation does not improve for n → ∞.

However

(iii) OLS estimators are still unbiased for strictly

exogeneous regressors.

(iv) OLS estimators are still consistent for

stationary, weekly dependent data with con-

temporaneously exogeneous regressors.
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Testing for Serial Correlation

(22) yt = β0 + β1xt1 + · · ·βkxtk + ut.

AR(1) errors

(23) ut = ρut−1 + et, et ∼WN(0, σ2
e ).

Typical procedure to test the first order au-

tocorrelation is to obtain OLS residuals ût
by estimating (22), fit AR(1) in the ût se-

ries, and use the resulting t-statistic to infer

to test H0 : ρ = 0.

An alternative is to use the traditional Durbin-

Watson (DW) test.

(24) DW =

∑T
t=2(ût − ût−1)2∑T

t=1 û
2
t

.

It can be shown that

(25) DW ≈ 2(1− ρ̂).
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Ljung-Box test

A general test for serial correlation is the

Ljung-Box Q-statistic,

(26) Q = T (T + 2)
k∑

j=1

ρ̂2
j

(T − j)
.

If the null hypothesis

(27) H0 : ρ1 = ρ2 = · · · = ρk = 0

is true Q has the asymptotic χ2
k distribution.
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Serial Correlation-Robust Inference with OLS

The idea is to find robust standard errors for

the OLS estimates.

Again using matrix notations simplifies con-

siderably exposure. Let

(28) y = Xβ + u,

where

(29) Cov[u] = Σu,

Again, write

(30) β̂ = β + (X′X)−1X′u.

Then

(31) Cov[β̂] = (X′X)−1Ω(X′X)−1.

The problem is how to estimate Ω = X′ΣuX.
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Newey and West (1987)suggest and estima-
tor
(32)

Ω̂ = T
T−k

[∑T

t=1
û2
t xtx′t

+
∑q

v=1

((
1− v

q+1

)∑T

t=v+1
(xtûtût−vx′t−v + xt−vût−vûtx′t)

)]
which is supposed to be robust both against

heteroscedasticity and autocorrelation. The

q-variable is determined as a function of the

number of observations.
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Example 9.5: Puerto Rican Wage:

Correlogram of Residuals

Sample: 1950 1987
Included observations: 38

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.443 0.443 8.0658 0.005
2 0.153 -0.054 9.0537 0.011
3 0.085 0.047 9.3684 0.025
4 0.065 0.020 9.5595 0.049
5 -0.143 -0.228 10.500 0.062
6 -0.167 -0.020 11.821 0.066
7 -0.243 -0.189 14.707 0.040
8 -0.270 -0.115 18.397 0.018
9 -0.288 -0.120 22.740 0.007

10 -0.081 0.112 23.098 0.010
11 -0.117 -0.153 23.865 0.013
12 -0.063 0.019 24.099 0.020
13 -0.008 -0.035 24.104 0.030
14 -0.035 -0.188 24.179 0.044
15 -0.070 -0.050 24.503 0.057
16 0.068 0.027 24.819 0.073

The residuals are obviously autocorrelated. Using the

the above autocorrelation robust standard errors yields

the following results.
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Dependent Variable: LOG(PREPOP)
Method: Least Squares
Sample: 1950 1987
Included observations: 38
Newey-West HAC Standard Errors & Covariance (lag truncation=3)
==========================================================
Variable Coefficient Std. Error t-Statistic Prob.
----------------------------------------------------------
C -8.728657 1.589053 -5.492994 0.0000
LOG(MINCOV) -0.168695 0.038469 -4.385230 0.0001
LOG(USGNP) 1.057351 0.219516 4.816736 0.0000
@TREND -0.032354 0.006605 -4.898514 0.0000
==========================================================
R-squared 0.847089 Mean dep. var -0.944074
Adjusted R-squared 0.833597 S.D. dep. var 0.092978
S.E. of regression 0.037928 Akaike info crit. -3.606957
Sum squared resid 0.048910 Schwarz criterion -3.434580
Log likelihood 72.53218 F-statistic 62.78374
Durbin-Watson stat 0.907538 Prob(F-statistic) 0.000000
==========================================================

We observe that particularly the standard error of

log(usgnb) increases compared to Example 9.4.
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Estimating the residual autocorrelation as an

AR-process

An alternative to the robustifying of the stan-

dard errors with the Newy-White procedure

(32), is to explicitly model the error term as

an autoregressive process as is done in equa-

tion (23) and estimate it.
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Example 9.6: Estimation the Puerto Rican example

with AR(1) errors yields:

=================================================================
Dependent Variable: LOG(PREPOP)
Method: Least Squares
Sample (adjusted): 1951 1987
Included observations: 37 after adjustments
Convergence achieved after 14 iterations
=================================================================
Variable Coefficient Std. Error t-Statistic Prob.
-----------------------------------------------------------------
C -5.256865 1.492220 -3.522850 0.0013
LOG(MINCOV) -0.090233 0.048103 -1.875824 0.0698
LOG(USGNP) 0.588807 0.207160 2.842278 0.0077
@TREND -0.019385 0.006549 -2.959877 0.0058
AR(1) 0.701498 0.123959 5.659112 0.0000
=================================================================
R-squared 0.907075 Mean dependent var -0.949183
Adjusted R-squared 0.895459 S.D. dependent var 0.088687
S.E. of regression 0.028675 Akaike info criterion -4.140503
Sum squared resid 0.026312 Schwarz criterion -3.922811
Log likelihood 81.59930 F-statistic 78.09082
Durbin-Watson stat 1.468632 Prob(F-statistic) 0.000000
=================================================================
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Residual autocorrelations:

Correlogram of Residuals

Sample: 1951 1987
Included observations: 37
Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.187 0.187 1.4071
2 0.078 0.044 1.6551 0.198
3 0.097 0.078 2.0557 0.358
4 0.085 0.053 2.3723 0.499
5 -0.273 -0.320 5.7274 0.220
6 -0.016 0.088 5.7395 0.332
7 -0.013 -0.005 5.7475 0.452
8 -0.122 -0.096 6.4908 0.484
9 -0.226 -0.156 9.1276 0.332

10 0.061 0.064 9.3267 0.408

The results indicate no additional autocorrelation in

the residuals.
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Residual Autocorrelation and Common Fac-

tor

The lag operator L is defined as Lyt = yt−1

(generally Lpyt = yt−p).

Thus, equation (23) can be written as

(33) (1 − ρL)ut = et

or

(34) ut =
et

1 − ρL

Using this in (22), we can write (for the sim-

plicity, assume k = 1 and denote xt = xt1)

(35) yt = β0 + β1xt +
et

1 − ρL

or

(36)

(1 − ρL)yt = (1 − ρL)β0 + β1(1 − ρL)xt + et
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This implies that the dynamics of yt and xt
share 1− ρL in common, called common fac-

tor.

Thus, the autocorrelation in ut is equivalent

that there is a common factor in the regres-

sion in (23).

This can be tested by estimating the unre-

stricted regression

(37) yt = α0 + α1yt−1 + α2xt + α3xt−1 + et

and testing whether it satisfies restrictions

implied by (36), which can be written as

(38)

yt = (1− ρ)β0 + ρyt−1 + β1xt − β1ρxt−1 + et
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That is, whether

(39) α3 = −α1α2

If this hypothesis is not accepted, the ques-

tion is of wrong dynamic specification of the

model, not autocorrelation in the residuals.
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Example 9.7: Puerto Rican example. The unrestricted

model estimates are:

Dependent Variable: LOG(PREPOP)
Method: Least Squares
Sample (adjusted): 1951 1987
Included observations: 37 after adjustments
===========================================================
Variable Coefficient Std. Error t-Statistic Prob.
-----------------------------------------------------------
C -5.612596 1.547354 -3.627223 0.0011
LOG(PREPOP(-1)) 0.535366 0.124932 4.285246 0.0002
LOG(MINCOV) -0.142230 0.047224 -3.011794 0.0052
LOG(MINCOV(-1)) 0.033409 0.046831 0.713386 0.4811
LOG(USGNP) 0.561893 0.188654 2.978437 0.0057
LOG(USGNP(-1)) 0.137353 0.226785 0.605651 0.5493
@TREND -0.019768 0.005975 -3.308752 0.0024
===========================================================
R-squared 0.928815 Mean dependent var -0.949183
Adj R-squared 0.914578 S.D. dependent var 0.088687
S.E. of reg 0.025921 Akaike info criterion -4.298904
Sum squared resid 0.020156 Schwarz criterion -3.994136
Log likelihood 86.52972 Hannan-Quinn criter. -4.191459
F-statistic 65.23934 Durbin-Watson stat 1.634219
Prob(F-statistic) 0.000000
===========================================================
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Testing for the implied restriction by AR(1)-residuals
by imposing restrictions in EViews (View > Coefficient
Tests > Wald-Coefficient Restrictions. . .)

gives:

Wald Test:
Equation: EX97
=================================================
Test Statistic Value df Probability
-------------------------------------------------
F-statistic 4.436898 (2, 30) 0.0205
Chi-square 8.873795 2 0.0118
=================================================

Null Hypothesis Summary:
=================================================
Normalized Restriction (= 0) Value Std. Err.
-------------------------------------------------
C(2)*C(3) + C(4) -0.042736 0.033279
C(2)*C(5) + C(6) 0.438171 0.150355
=================================================
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The null hypothesis is rejected, which implies that
rather than the error term is autocorrelated the model
should be specified as

yt = β0 + α1yt−1 + β1xt1 + β11xt−1,1 + β2xt,2 + β21xt−1,2 + et,

where y = log(prepop), x1 = log(mincov), x2 = log(usgnp),

and x3 = trend.

Finally, because the coefficient estimates of log(mincovt−1)

and log(usgnpt−1) are not statistically significant, they

can be dropped from the model, such that the final

model becomes:

Dependent Variable: LOG(PREPOP)
Method: Least Squares
Included observations: 37 after adjustments
==========================================================
Variable Coefficient Std. Error t-Statistic Prob.
----------------------------------------------------------
C -5.104888 1.188371 -4.295701 0.0002
LOG(PREPOP(-1)) 0.558090 0.103817 5.375713 0.0000
LOG(MINCOV) -0.106787 0.031282 -3.413647 0.0018
LOG(USGNP) 0.630332 0.154822 4.071322 0.0003
@TREND -0.017463 0.004849 -3.601696 0.0011
==========================================================
R-squared 0.926226 Mean dependent var -0.949183
Adj R-squared 0.917004 S.D. dependent var 0.088687
S.E. of reg 0.025550 Akaike info criter. -4.371286
Sum sqerd resid 0.020889 Schwarz criterion -4.153594
Log likelihood 85.86878 Hannan-Quinn criter. -4.294539
F-statistic 100.4388 Durbin-Watson stat 1.468436
Prob(F-statistic) 0.000000
==========================================================
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Autocorrelation has also disappeared from the residu-

als:

Sample: 1951 1987
Included observations: 37
==============================================================
Autocorr Partial Corr AC PAC Q-Stat Prob
--------------------------------------------------------------
. |*. | . |*. | 1 0.203 0.203 1.6465 0.199
. |*. | . | . | 2 0.079 0.039 1.9008 0.387
. |*. | . | . | 3 0.092 0.072 2.2586 0.521
. | . | . | . | 4 0.018 -0.017 2.2724 0.686

***| . | ***| . | 5 -0.346 -0.372 7.6823 0.175
.*| . | . | . | 6 -0.111 0.020 8.2560 0.220
.*| . | . | . | 7 -0.067 -0.010 8.4747 0.293
.*| . | . | . | 8 -0.124 -0.052 9.2354 0.323
.*| . | .*| . | 9 -0.143 -0.091 10.2920 0.327
. |*. | . |*. | 10 0.156 0.110 11.5860 0.314

==============================================================
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Autoregressive Conditional Heteroscedastic-

ity ARCH

Temporal volatility clustering is typical for

speculative series like stock returns, interest

rates, currencies, etc.
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Example 9.7: The following time series plot shows Mi-

crosoft’s weekly (log) returns (rt = 100 log(Pt/Pt−1))

for the sample period from January 1990 through Oc-

tober 2006.
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Figure 9.1: Microsoft weekly returns for the sample

period January 1990 through November 2006.
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Figure 9.1: SP500 weekly returns for the sample pe-

riod January 1990 through November 2006.

There is probably some volatility clustering present in

both return series.
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Engle (1982) suggested modeling the clus-

tering volatility with the ARCH models.

A time series ut follows an ARCH(1)-process

(AutoRegressive Conditional Heteroscedastic-

ity) if

(40) E[ut] = 0,

(41) Cov[ut, us] = 0, for all t 6= s,

and

(42) ht = Var[ut|ut−1] = α0 + α1u
2
t−1,

where α0 > 0 and 0 ≤ α1 < 1.

We say that ut follows and ARCH(1)-process

and denote ut ∼ ARCH(1).
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An important property of an ARCH process

is that if ut ∼ ARCH, then

(43) zt =
ut√
ht
∼WN(0,1).

That is the standardized variable zt is white

noise (E[zt] = 0, Var[zt] = 1, and Cov[zt, zt+k] = 0

for all k 6= 0).

Furthermore

(44)
Var[zt|ut−1] = Var

[
ut√
ht−1
|ut−1

]
= 1

ht
Var[ut|ut−1] = 1.

That is, zt has constant conditional variance.

This implies that there should not remain any

volatility clustering in zt.

This can be checked by investigating the au-

tocorrelations of the squared zt-series, z2
t , for

example with the Ljung-Box Q-statistic, de-

fined in (26).
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It may be noted further that if zt ∼ N(0,1),

then

(45) ut|ut−1 ∼ N(0, ht).

Remark 9.4: If (43) holds, using (43) we can always
write

(46) ut =
√
ht zt,

where zt are independent N(0,1) random variables.

The parameters of the ARCH-process are es-

timated by the method of maximum likeli-

hood (ML).
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Example 9.8: Consider the SP500 returns. With EViews

we can estimate by selecting Quick > Estimate Equation

. . ., specifying rm c in the model box, selecting Esti-

mation Method:

ARCH-Autoregressive Conditional Heteroscedasticity,

selecting ARCH option equal to 1 and GARCH option

equal to 0.

Note that specifying in the model box rm c implies

that we estimate ut = rm,t − E[rmt].

These specifications yield the following results:
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=================================================================
Dependent Variable: RM
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 1/08/1990 10/30/2006
Included observations: 877 after adjustments
Convergence achieved after 9 iterations
Variance backcast: ON
GARCH = C(2) + C(3)*RESID(-1)^2
=================================================================

Coefficient Std. Error z-Statistic Prob.
-----------------------------------------------------------------
C 0.189986 0.062065 3.061069 0.0022
=================================================================

Variance Equation
=================================================================
C 3.237585 0.135488 23.89579 0.0000
RESID(-1)^2 0.247032 0.039617 6.235534 0.0000
=================================================================
R-squared -0.000294 Mean dependent var 0.154412
Adjusted R-squared -0.002583 S.D. dependent var 2.077382
S.E. of regression 2.080063 Akaike info criterion 4.240795
Sum squared resid 3781.503 Schwarz criterion 4.257134
Log likelihood -1856.588 Durbin-Watson stat 2.149700
=================================================================

Thus the estimated ARCH(1) model is

(47)
ĥt = 3.238 + 0.247u2

t−1,
(0.135) (0.0396)

where ut = rm,t − µ with µ = E[rm,t], estimated from

the sample period as µ̂ = 0.18986 (i.e., the average

weekly return has been approximately 0.19%, or ≈
9.9% per year).
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Check next the autocorrelation of the squared stan-

dardized residuals ẑt = ût/
√
ĥt.

Correlogram of Standardized Residuals Squared

Sample: 1/02/1990 10/24/2006
Included observations: 877

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.006 -0.006 0.0274 0.869
2 0.028 0.028 0.7023 0.704
3 0.098 0.098 9.1175 0.028
4 0.083 0.084 15.178 0.004
5 0.044 0.041 16.884 0.005
6 0.104 0.093 26.502 0.000
7 0.096 0.084 34.603 0.000
8 0.037 0.023 35.787 0.000
9 0.036 0.010 36.945 0.000

10 0.065 0.033 40.685 0.000

It seems that there is still left some volatility clustering

especially due to the longer lags. The p-value from the

third order forwards is statistically significant. Thus

the simple ARCH(1) does not seem to fully capture

the volatility clustering in the series. We can try to

improve the model.
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GARCH

An important extension to the ARCH model

is due to Bollerslev (1986), which is called

GARCH, Generalized ARCH. GARCH(1,1) is

of the form

(48) ht = α0 + α1u
2
t−1 + βht−1,

where it is assumed that α0 > 0 and

0 < α+ β < 1.

Remark 9.5: If β > 0 then α must also be > 0.

The GARCH-term ht−1 essentially accumu-

lates the historical volatility and β indicates

the persistence of the volatility.
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Example 9.9: GARCH(1,1) model for the SP500 re-

turns

Dependent Variable: RM
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 1/02/1990 10/24/2006
Included observations: 877 after adjustments
Convergence achieved after 17 iterations
Variance backcast: ON
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)
==============================================================

Coefficient Std. Error z-Statistic Prob.
--------------------------------------------------------------
C 0.197385 0.058686 3.363410 0.0008
==============================================================

Variance Equation
==============================================================
C 0.023269 0.013163 1.767719 0.0771
RESID(-1)^2 0.057345 0.012168 4.712861 0.0000
GARCH(-1) 0.937023 0.012920 72.52709 0.0000
==============================================================
R-squared -0.000428 Mean dependent var 0.154412
Adjusted R-squared -0.003866 S.D. dependent var 2.077382
S.E. of regression 2.081394 Akaike info criterion 4.119464
Sum squared resid 3782.013 Schwarz criterion 4.141250
Log likelihood -1802.385 Durbin-Watson stat 2.149410
==============================================================

51



The autocorrelations of the squared standardized resid-

uals indicate still some possible first order autocorrela-

tion remained in the series. Nevertheless the estimate

of the first order autocorrelation, though statistically

significant (p-value 0.022) at the 5% level, is small by

magnitude (0.078). Thus, we can conclude that the

GARCH(1,1) fits pretty well to the data.

Correlogram of Standardized Residuals Squared

Sample: 1/02/1990 10/24/2006
Included observations: 877

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.078 0.078 5.3952 0.020
2 -0.007 -0.014 5.4446 0.066
3 0.041 0.043 6.9264 0.074
4 -0.007 -0.014 6.9687 0.138
5 -0.017 -0.015 7.2345 0.204
6 -0.011 -0.011 7.3509 0.290
7 -0.026 -0.024 7.9459 0.337
8 -0.040 -0.035 9.3347 0.315
9 -0.017 -0.011 9.5916 0.385

10 -0.009 -0.006 9.6665 0.470
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There are several other extensions of the ba-

sic ARCH-model (see EViews manual or help,

or for a comprehensive presentation Taylor,

Stephen J. (2005). Asset Price Dynamics,

Volatility, and Prediction. Princeton Univer-

sity Press).
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ARCH in regression

Consider the simple regression

(49) yt = β0 + β1xt + ut.

If the error term ut follows a GARCH-process

then accounting for it and estimating the re-

gression parameters with the method of max-

imum likelihood rather than the OLS yield

more accurate estimates.

Particularly, if the ARCH-effect is strong, OLS

may lead highly unstable estimates to β0 and

β1 (usually, however, OLS works pretty well).
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Example 9.11: Consider next the market model of
Microsoft weekly returns on SP500.

Estimating the market model

(50) rt = β0 + β1rm + ut,

with OLS yields

Estimation results:

===================================================================
Dependent Variable: R
Method: Least Squares
Sample (adjusted): 1/08/1990 10/30/2006
Included observations: 877 after adjustments
===================================================================
Variable Coefficient Std. Error t-Statistic Prob.
-------------------------------------------------------------------
C 0.272492 0.128328 2.123402 0.0340
RM 1.169974 0.061639 18.98110 0.0000
===================================================================
R-squared 0.291660 Mean dependent var 0.453150
Adjusted R-squared 0.290850 S.D. dependent var 4.500432
S.E. of regression 3.789860 Akaike info criterion 5.504813
Sum squared resid 12567.66 Schwarz criterion 5.515706
Log likelihood -2411.861 F-statistic 360.2821
Durbin-Watson stat 2.013695 Prob(F-statistic) 0.000000
===================================================================
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ML with GARCH(1,1) error specification yields the

following results:

================================================================
Dependent Variable: R
Method: ML - ARCH (Marquardt) - Normal distribution
Sample (adjusted): 1/02/1990 10/24/2006
Included observations: 877 after adjustments
Convergence achieved after 20 iterations
Variance backcast: ON
GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)
================================================================

Coefficient Std. Error z-Statistic Prob.
----------------------------------------------------------------
C 0.262170 0.117688 2.227670 0.0259
RM 1.138309 0.068997 16.49795 0.0000
================================================================

Variance Equation
================================================================
C 0.153567 0.058060 2.644976 0.0082
RESID(-1)^2 0.038894 0.009150 4.250488 0.0000
GARCH(-1) 0.949674 0.012409 76.52862 0.0000
================================================================
R-squared 0.291435 Mean dependent var 0.453150
Adjusted R-squared 0.288184 S.D. dependent var 4.500432
S.E. of regression 3.796977 Akaike info criterion 5.415744
Sum squared resid 12571.65 Schwarz criterion 5.442976
Log likelihood -2369.804 F-statistic 89.66397
Durbin-Watson stat 2.010866 Prob(F-statistic) 0.000000
================================================================

The results show that in terms of standard errors there

are no material differences.
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End of the notes:
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