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1. Introduction

1.1 Econometrics

Econometrics is a discipline of statistics, spe-

cialized for using and developing mathemati-

cal and statistical tools for empirical estima-

tion of economic relationships, testing eco-

nomic theories, making economic predictions,

and evaluating government and business pol-

icy.

Data: Nonexperimental (observational)

Major tool: Regression analysis (in wide sense)
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1.2 Types of Economic Data

(a) Cross-sectional

Data collected at given point of time. E.g. a

sample of households or firms, from each of

which are a number of variables like turnover,

operating margin, market value of shares, etc.,

are measured.

From econometric point of view it is impor-

tant that the observations consist a random

sample from the underlying population.
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(b) Time Series Data

A time series consist of observations on a

variable(s) over time. Typical examples are

daily share prices, interest rates, CPI values.

An important additional feature over cross-

sectional data is the ordering of the observa-

tions, which may convey important informa-

tion.

An additional feature is data frequency which

may require special attention.
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(c) Pooled Cross-sections

Both time series and cross-section features.

For example a number of firms are randomly
selected, say in 1990, and another sample is
selected in 2000.

If in both samples the same features are mea-
sured, combining both years form a pooled
cross-section data set.

Pooled cross-section data is analyzed much
the same way as usual cross-section data.

However, it may be important to pay special
attention to the fact that there are 10 years
in between.

Usually the interest is whether there are some
important changes between the time points.
Statistical tools are usually the same as those
used for analysis of differences between two
independently sampled populations.
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(d) Panel Data

Panel data (longitudinal data) consists of (time
series) data for the same cross section units
over time.

Allows to analyze much richer dependencies
than pure cross section data.

Example 1.1: Job training data from Holzer et al.

(1993) Are training subsidies effective? The Michigan

experience, Industrial and Labor Relations Review 19,

625–636.

Excerpt from the data:

year fcode employ sales avgsal
1987 410032 100 4.70E+07 35000
1988 410032 131 4.30E+07 37000
1989 410032 123 4.90E+07 39000
1987 410440 12 1560000 10500
1988 410440 13 1970000 11000
1989 410440 14 2350000 11500
1987 410495 20 750000 17680
1988 410495 25 110000 18720
1989 410495 24 950000 19760
1987 410500 200 2.37E+07 13729
1988 410500 155 1.97E+07 14287
1989 410500 80 2.60E+07 15758
1987 410501 . 6000000 .
1988 410501 . 8000000 .
1989 410501 . 1.00E+07 .
etc
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1.3 The linear regression model

The linear regression model is the single most

useful tool in econometrics.

Assumption: each observation i, i = 1, . . . , n

is generated by the underlying process de-

scribed by

(1) yi = β0 + β1xi1 + · · ·+ βkxik + ui,

where yi is the dependent or explained vari-

able and xi1, xi2, . . . , xik are independent or

explanatory variables, u is the error term,

and β0, β1, . . . , βk are regression coefficients

(slope coefficients) (β0 is called the intercept

term or constant term).
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A notational convenience:

(2) yi = x′iβ + ui,

where xi = (1, x1i, . . . , xik)′ and

β = (β0, β1, . . . , βk)′ are k + 1 column vectors.

Stacking the x-observation vectors to an

n× (k + 1) matrix

(3) X =


x′1
x′2...
x′i...
x′n

 =


1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
... ... ... ...
1 xi1 xi2 . . . xik
... ... ... ...
1 xn1 xn2 . . . xnk



we can write

(4) y = Xβ + u,

where y = (y1, . . . , yn)′, and u = (u1, . . . , un)′.
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Example 1.2: In Example 1.1 the interest is whether
grant for employee education decreases product fail-
ures. The estimated model is assumed to be

(5) log(scrap) = β0 + β1grant + β2grant−1 + u,

where scrap is scarp rate (per 100 items), grant = 1 if

firm received grant in year t grant = 0 otherwise, and

grant−1 = 1 if firm received grant in the previous year

grant−1 = 0 otherwise.

The above model does not take into account that the

data consist of three consecutive year measurements

from the same firms (i.e., panel data).
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Ordinary Least Squares (OLS) Estimation yields (Stata):

regress lscrap grant grant_1

Source | SS df MS Number of obs = 162
----------+------------------------------ F( 2, 159) = 0.30

Model | 1.34805124 2 .67402562 Prob > F = 0.7395
Residual | 354.397022 159 2.22891209 R-squared = 0.0038

----------+------------------------------ Adj R-squared = -0.0087
Total | 355.745073 161 2.20959673 Root MSE = 1.493

---------------------------------------------------
lscrap | Coef. Std. Err. t P>|t|

--+------------------------------------------------
grant | .0543534 .310501 0.18 0.861

grant_1 | -.2652102 .36995 -0.72 0.474
_cons | .4150563 .139828 2.97 0.003

---------------------------------------------------

Neither of the coefficients are statistically significant

and grant has even positive sign, although close to

zero.

Dealing later with the panel estimation we will see

that the situation can be improved.
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The problem with the above estimation is

that the OLS assumptions are usually not

met in panel data. This will be discussed in

the next chapter.

The OLS assumptions are:

(i) E[ui|X] = 0 for all i

(ii) Var[ui|X] = σ2
u for all i

(iii) Cov[ui, uj|X] = 0 for all i 6= j,

(iv) X is a n× (k + 1) matrix with rank k + 1

Remark 1.1: Assumption (1) implies

(6) Cov[ui,X] = 0,

which is crucial in OLS-estimation.
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Under assumptions (i)–(iv) the OLS estima-

tor

(7) β̂ = (X′X)−1X′y

is the Best Linear Unbiased Estimator (BLUE)

of the regression coefficients β of the linear

model in equation (4).

This is known as the Gauss-Markov theorem.
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The variance covariance matrix of β̂ is

(8) Var[β̂] = (X′X)−1σ2
u,

which depends upon the unknown variance

σ2
u of the error terms ui.

In order to obtain an estimator for Var[β̂],

use the residuals

(9) û = y −Xβ̂

in order to calculate

(10) s2
u = û′û/(n−k−1),

which is an unbiased estimator of the error

variance σ2
u.

Then replace σ2
u in (8) with s2

u in order to

obtain

(11) V̂ar[β̂] = (X′X)−1s2
u

as an unbiased estimator of Var[β̂].
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1.4 Regression statistics

Sum of Squares (SS) identity:

(12) SST = SSR + SSE,

where

(13) Total: SST =
n∑
i=1

(yi − ȳ)2

(14) Model: SSR =
n∑
i=1

(ŷi − ȳ)2,

(15) Residual: SSE =
n∑
i=1

(yi − ŷi)2

with ŷi = x′iβ̂, and ȳ = 1
n

∑n
i=1 yi, the sample

mean.
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Goodness of fit:

R-square, R2

(16) R2 =
SSR

SST
= 1−

SSE

SST
,

Adjusted R-square (Adj R-square), R̄2

(17) R̄2 = 1−
SSE/(n− k − 1)

SST/(n− 1)
= 1−

s2
u

s2
y
,

where

(18) s2
u =

1

n− k − 1

n∑
i=1

û2
i =

SSE

n− k − 1

is an estimator of the variance σ2
u = Var[ui]

of the error term (su =
√
s2
u, ”Root MSE” in

the Stata output), and

(19) s2
y =

1

n− 1

n∑
i=1

(yi − ȳ)2

is the sample variance of y.
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1.5 Inference

Assumption

(v) u ∼ N(0, σ2
uI),

where I is an n× n identity matrix.

Individual coefficient restrictions:

Hypotheses are of the form

(20) H0 : βj = β∗j ,

where β∗j is a given constant.

t-statistics:

(21) t =
β̂j − β∗j
s.e(β̂j)

,

where

(22) s.e(β̂j−1) = su

√
(X′X)jj,

and (X′X)jj is the jth diagonal element of
(X′X)−1. (First diagonal element for β̂0, sec-
ond diagonal element for β̂1, etc.)

15



Confidence intervals:

A 100(1− α)% confidence interval for a sin-

gle parameter is of the form

(23) β̂j ± tα/2s.e(β̂j),

where tα/2 is the 1− α/2 percentile of the

t-distribution with df = n− k − 1 degrees of

freedom, which may be obtained from excel

with the command TINV(α, df).
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F -test:

The overall hypothesis that none of the ex-

planatory variables influence the y-variable,

i.e.,

(24) H0 : β1 = β2 = · · · = βk = 0

is tested by an F -test of the form

(25) F =
SSR/k

SSE/(n− k − 1)
,

which is F -distributed with degrees of free-

dom f1 = k and f2 = n− k − 1 if the null hy-

pothesis is true.
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General (linear) restrictions:

(26) H0 : Rβ = q,

where R is a fixed m× (k + 1) matrix and q

is a fixed m-vector.

m indicates the number of independent linear

restrictions imposed to the coefficients.

The alternative hypothesis is

(27) H1 : Rβ 6= q.

The null hypothesis in (26) can be tested

with an F -statistic of the form

(28) F =
(SSER − SSEU)/m

SSEU/(n− k − 1)
,

which under the null hypothesis has the F -

distribution with degrees of freedom f1 = m

and f2 = n− k − 1. SSER and SSEU denote

the residual sum of squares obtained in the

restricted and unrestricted models, respec-

tively.
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Examle 1.3: Consider model

(29) y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + u.

In terms of the general linear hypothesis (26) testing
for single coefficients, e.g.,

(30) H0 : β1 = 0

is obtained by selecting

(31) R = (0 1 0 0 0) and q = 0.

The null hypothesis in (24), i.e.,

(32) H0 : β1 = β2 = β3 = β4 = 0

is obtained by selecting

(33) R =

 0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 and q =

 0
0
0
0


(34) H0 : β1 + β2 = 1, β3 = β4

corresponds to

(35) R =

(
0 1 1 0 0
0 0 0 1 −1

)
and q =

(
1
0

)
.
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Example 1.4. Consider the following consumption func-
tion (C =consumption, Y = disposable income):

(36) Ct = β0 + β1Yt + β2Ct−1 + ut.

Then β1 = dCt/dYt is called the short-run MPC (marginal
propensity to consume).

The long-run MPC βlrmpc = dE(C)/dE(Y ) is

(37) βlrmpc =
β1

1− β2
.

Test the hypothesis whether the long run MPC = 1,
i.e.,

(38) H0 :
β1

1− β2
= 1.

This is equivalent to β1 + β2 = 1.

Thus, the non-linear hypothesis (38) reduces in this
case to the linear hypothesis

(39) H0 : β1 + β2 = 1,

and we can use the general linear hypothesis of the
form (26) with

(40) R = (0 1 1) and q = 1.
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Remark 1.2: Hypotheses of the form (39) can be eas-
ily tested with the standard t-test by re-parameterizing
the model.

Defining Zt = Ct−1 − Yt, equation (36) is (statistically)
equivalent to

(41) Ct = β0 + γYt + β2Zt + ut,

where γ = β1 + β2.

Thus, in terms of (41) testing hypothesis (38) reduces
to testing

(42) H0 : γ = 1,

which can be worked out with the usual t-statistic.

(43) t =
γ̂ − 1

s.e(γ̂)
.
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Example 1.5: Generalized Cobb-Douglas production
function in transportation industry∗ Yi = value added
(output), L = labor, K = capital, and N = the num-
ber of establishments in the transportation industry.

(44) log(Y/N) = β0 + β1 log(K/N) + β2 log(L/N) + u.

Estimation results:

Dependent Variable: LOG(VALUEADD/NFIRM)
Method: Least Squares
Sample: 1 25
Included observations: 25
==============================================================
Variable Coefficient Std. Error t-Statistic Prob.
--------------------------------------------------------------
C 2.293263 0.107183 21.39582 0.0000
LOG(CAPITAL/NFIRM) 0.278982 0.080686 3.457639 0.0022
LOG(LABOR/NFIRM) 0.927312 0.098322 9.431359 0.0000
==============================================================
R-squared 0.959742 Mean dependent var 0.771734
Adjusted R-squared 0.956082 S.D. dependent var 0.899306
S.E. of regression 0.188463 Akaike info criter. -0.387663
Sum squared resid 0.781403 Schwarz criterion -0.241398
Log likelihood 7.845786 Hannan-Quinn criter. -0.347095
F-statistic 262.2396 Durbin-Watson stat 1.937830
Prob(F-statistic) 0.000000

∗Zellner, A and N. Revankar (1970). General-
ized production functions, Review of Economic
Studies 37, 241–250. Data Source: http://

people.stern.nyu.edu/wgreene/Text/econometricanalysis.htm

Table F7.2
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According to the results the capital elasticity is 0.279
and the labor elasticity is 0.927, thus labor intensive.

Remark 1.3: Estimation of the regression parameters
under the restrictions of the form Rβ = q are obtained
by using restricted Least Squares, provided by modern
statistical packages.

Let us test for the constant return to scale, i.e.,

(45) H0 : β1 + β2 = 1.

The general restricted hypothesis method (26) yields

===========================================
Test statistics df p-value
-------------------------------------------
F-statistic 14.82203 (1, 22) 0.0009
===========================================

which rejects the null hypothesis.

In order to demonstrate the re-parametrization ap-
proach, define the regression model

(46) log(Y/N) = β0 + γ log(K/N) + β2 log(L/K) + u

Estimation of the specification yields
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Dependent Variable: LOG(VALUEADD/NFIRM)
Method: Least Squares
Sample: 1 25
Included observations: 25
==============================================================
Variable Coefficient Std. Error t-Statistic Prob.
--------------------------------------------------------------
C 2.293263 0.107183 21.39582 0.0000
LOG(CAPITAL/NFIRM) 1.206294 0.053584 22.51232 0.0000
LOG(LABOR/CAPITAL) 0.927312 0.098322 9.431359 0.0000
==============================================================
R-squared 0.959742 Mean dependent var 0.771734
Adjusted R-squared 0.956082 S.D. dependent var 0.899306
S.E. of regression 0.188463 Akaike info criter. -0.387663
Sum squared resid 0.781403 Schwarz criterion -0.241398
Log likelihood 7.845786 Hannan-Quinn criter. -0.347095
F-statistic 262.2396 Durbin-Watson stat 1.937830
Prob(F-statistic) 0.000000

All the goodness-of-fit of these models are exactly
the same, indicating the equivalence of the models in
a statistical sense.

The null hypothesis of the constant returns to scale
in terms of this model is

(47) H0 : γ = 1.

The t-value is

(48) t =
γ̂ − 1

s.e(γ̂)
=

1.206294− 1

0.053584
≈ 3.85

with p− value = 0.0009, exactly the same as above,

again rejecting the null hypothesis.
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1.6 Nonlinear hypotheses

Economic theory implies sometimes nonlin-
ear hypotheses.

In fact, the long-run MPC example is an ex-
ample of non-linear hypothesis, which we could
transform to a linear hypothesis.

This is not always possible.

For example a hypothesis of the form

(49) H0 : β1β2 = 1

is nonlinear.

Non-linear hypotheses can be tested using
Wald-test, Lagrange multiplier test, or Like-
lihood Ratio (LR) test.

All of these are under the null hypothesis
asymptotically χ2-distributed with degrees of
freedom equal to the number of imposed re-
strictions on the parameters. These tests will
be considered more closely later, after a brief
discussion of maximum likelihood estimation.
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1.7 Maximum Likelihood Estimation

Likelihood Function

Generally, suppose that the probability dis-
tribution of a random variable Y depends
on a set of parameters, θ = (θ1, . . . , θq), then
the probability density for the random vari-
able is denoted as fY (y; θ). If for example
Y ∼ N(µ, σ2), then θ = (µ, σ2) and

(50) fY (y;µ, σ2) =
1√

2πσ2
e
−(y−µ)2

2σ2 .

In probability calculus we consider θ as given
and use the density fY in order to calculate
the probability that Y attains a value near y
as

P (y−∆y ≤ Y ≤ y+∆y) =
∫ y+∆y

y−∆y
fY (u; θ)du.

In maximum likelihood estimation we con-
sider the data point y as given and ask which
parameter set θ most likely produced it. In
that context fY (y; θ) is called the likelihood
of observation y on the random variable Y .
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In statistical analysis we may regard a sample

of observations y1, . . . , yn as realisations (ob-

served values) of independent random vari-

ables Y1, . . . , Yn. If all random variables are

identically distributed, that is, they all share

the same density f(yi; θ), then the likelihood

function of (y1, . . . , yn) is the product of the

likelihoods of each point, that is,

(51) L(θ) ≡ L(θ; y1, . . . , yn) =
n∏
i=1

f(yi; θ).

Taking (natural) logarithms on both sides,

we get the log likelihood function

(52) `(θ) ≡ logL(θ) =
n∑
i=1

log f(yi; θ).

Denoting the log-likelihoods of individual ob-

servations as `i(θ) = log f(yi; θ), we can write

(52) as

(53) `(θ) =
n∑
i=1

`i(θ).
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Example 1.6: Under the normality assumption of the
error term ui in the regression

(54) yi = x′iβ + ui

(55) ui ∼ N(0, σ2
u).

It follows that given xi

(56) yi|xi ∼ N(x′iβ, σ
2
u).

Thus, with θ = (β′, σ2
u)′, the (conditional) density func-

tion is

(57) f(yi|xi; θ) =
1√

2πσ2
u

e
−

(yi−x′i
β)2

2σ2
u ,

(58) `i(θ) = −
1

2
log(2π)−

1

2
logσ2

u −
1

2

(yi − x′iβ)2

σ2
u

,

and

`(θ) = −
n

2
log(2π)−

n

2
logσ2

u −
1

2

n∑
i=1

(yi − x′iβ)2

σ2
u

.

(59)

In matrix form (59) becomes
(60)

`(θ) = −
n

2
log(2π)−

n

2
logσ2

u −
1

2σ2
u

(y −Xβ)′(y −Xβ).
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Maximum Likelihood Estimate

We say that the parameter vector θ is iden-
tified or estimable if for any other param-
eter vector θ∗ 6= θ, for some data data y,
L(θ∗;y) 6= L(θ;y).

Given data y the maximum likelihood esti-
mate (MLE) of θ is the value θ̂ of the pa-
rameter for which

(61) L(θ̂) = max
θ

L(θ),

i.e., the parameter value that maximizes the
likelihood function.

The MLE of a parameter vector θ solves

(62) L(θ;y)/∂θi = 0 (i = 1, . . . , q),

provided the matrix of second derivatives is
negative definite.

In practice it is usually more convenient to
maximize the log-likelihood, such that the
MLE of θ is the value θ̂ which satisfies

(63) l(θ̂) = max
θ

`(θ).
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Example 1.7.

Consider the simple regression model

(64) yi = β0 + β1xi + ui,

with ui ∼ N(0, σ2
u).

Given a sample of observations (y1, x1),
(y2, x2), . . . , (yn, xn), the log likelihood is
(65)

`(θ) = −
n

2
log(2π)−

n

2
logσ2

u −
1

2

n∑
i=1

(yi − β0 − β1xi)
2/σ2

u,

where θ = (β0, β1, σ
2
u).

The maximum of (65) can be found by set-

ting the partial derivatives to zero, that is,

(66)
∂`
∂β0

=
∑n
i=1(yi − β0 − β1xi)/σ

2
u = 0,

∂`
∂β1

=
∑n
i=1 xi(yi − β0 − β1xi)/σ

2
u = 0,

∂`
∂σ2

u
= − n

2σ2
u

+ 1
2(σ2

u)2

∑n
i=1(yi − β0 − β1xi)

2 = 0.
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Solving these gives

(67) β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

(68) β̂0 = ȳ − β̂1x̄

and

(69) σ̂2
u =

1

n

n∑
i=1

û2
i ,

where

(70) ûi = yi − β̂0 − β̂1xi

is the regression residual and ȳ and x̄ are the

sample means of yi and xi.

In this particular case the ML estimators of

the regression parameters, β0 and β1 coincide

with the OLS estimators.

In OLS the error variance σ2
u estimator is

(71) s2 =
1

n− 2

n∑
i=1

û2
i =

n

n− 2
σ̂2
u.
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Properties of Maximum Likelihood Estima-

tors

Let θ0 be the population value of the pa-

rameter (vector) θ and let θ̂ be the MLE of

θ0.

Then

(a) Consistency: plim θ̂ = θ0, i.e., θ̂ is a con-

sistent estimator of θ0

(b) Asymptotic normality: θ̂ ∼ N
(
θ0, I(θ0)−1

)
asymptotically, where

(72) I(θ0) = −E
[
∂2`(θ)

∂θ∂θ′

]
θ=θ0

.

That is, θ̂ is asymptotically normally distributed.

I(θ0) is called the Fisher information matrix

and

(73) H =
∂2`(θ)

∂θ∂θ′

is called the Hessian of the log-likelihood.
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(c) Asymptotic efficiency: θ̂ is asymptotically

efficient. That is, in the limit as the sample

size grows, MLE is unbiased and its (limiting)

variance is smallest among estimators that

are asymptotically unbiased.

(d) Invariance: The MLE of γ0 = g(θ0) is

g(θ̂), where g is a (continuously differentiable)

function.

Example 1.8: In Example 1.7 the MLE of the error

variance σ2
u is given by σ̂2

u defined in equation (69).

Using property (d), the MLE of the standard deviation

σu =
√
σ2
u is σ̂u =

√
σ̂2
u.
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Remark 1.5: The inverse of the Fisher information

matrix defined in (72), I(θ0)−1, plays a similiar role in

MLE as does σ2(X′X)−1 in OLS. I.e. it may be used

to find the standard errors of the ML estimators.

Example 1.9: Consider MLE from n observations on
a normally distributed random variable with unknown
parameter vector θ = (µ, σ2). The log likelihood func-
tion is in analogy to (65)
(74)

`(θ) = −
n

2
log(2π)−

n

2
logσ2 −

1

2

n∑
i=1

(yi − µ)2/σ2.

The first partial derivatives are
(75)
∂`

∂µ
=

∑
(yi − µ)

σ2
,

∂`

∂σ2
= −

n

2σ2
+

1

2(σ2)2

n∑
i=1

(yi − µ)2.

Setting these equal to zero yields the ML estimators

(76) µ̂ =
1

n

n∑
i=1

yi = ȳ and σ̂2 =
1

n

n∑
i=1

(yi − ȳ)2.

The second derivatives are

(77)
∂2`

∂µ2
= −

n

σ2
,

∂2`

(∂σ2)2
=

n

2(σ2)2
−
∑

(yi − µ)2

(σ2)3
,

and
∂2`

∂µ∂σ2
=

∂2`

∂σ2∂µ
= −

∑
(yi − µ)

(σ2)2
,
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such that the Hessian matrix becomes

(78) H =

 − n
σ2 −

∑
(yi−µ)
(σ2)2

−
∑

(yi−µ)
(σ2)2

n
2(σ2)2 −

∑
(yi−µ)2

(σ2)3

.
Taking expectations and multiplying with -1
yields the information matrix

(79) I(θ0) =

(
n/σ2 0

0 n/2σ4

)
with inverse

(80) I(θ0)−1 =

(
σ2/n 0

0 2σ4/n

)
.

The standard errors of the ML estimators are
found by taking the square roots of the di-
agonal elements of I(θ̂0)−1, that is

σ̂
√
n

is the standard error of µ̂, and

σ̂2√
2/n

is the standard error of σ̂2.

These may be used to construct confidence
intervals in the usual way.
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1.8 Likelihood Ratio, Wald, and Lagrange

Multiplier tests

For testing general restrictions of the form

(81) H0 : c(θ) = 0,

where c(·) is some (vector valued) function,

there are three general purpose test methods

to be discussed on the following slides.

Remark 1.6: We could specify the above hypothesis
alternatively as

(82) H0 : r(θ) = q,

where r(·) is some function and q is some constant.

Defining c(θ) = r(θ)− q reduces then to hypothesis

(81) stated above.
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1. Likelihood ratio test (LR-test)

(83) LR = −2 log

(
LR
LU

)
= −2(`R − `U),

where

LR = max
θ,c(θ)=0

L(θ)

is the maximum of the likelihood under the

restriction of hypothesis (81),

LU = max
θ

L(θ)

is the unrestricted maximum of the likelihood

function (`U = logLU and `R = logLR).

Remark 1.7: Use of the LR test requires computing

both the restricted MLE of θ (to compute `R) and the

unrestricted MLE (to compute `U).
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Example 1.10.
The LR test for the linear regression model
is

(84) LR = n(logSSER − logSSEU),

where SSER and SSEU are the residual sum
of squares for the restricted and unrestricted
model respectively, where this time arbitrary
(not only linear) restrictions are allowed.

To see that (84) holds, insert the residual

sum of squares SSE =
n∑
i=1

(yi − x′iβ)2 and the

ML estimate σ̂2
u = SSE/n into (60):

(85)

`(θ0) = −
n

2
log(2π)−

n

2
log

(
SSE

n

)
−

1

2

n

SSE
·SSE

= −
n

2

(
1 + log(2π) + log

(
SSE

n

))
.

Hence

LR = −2(`R − `U)

= n[log(SSER/n)− log(SSEU/n)]

= n(logSSER − logSSEU).
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2. Wald test

(86) W = c(θ̂)′V−1c(θ̂),

where V is the asymptotic variance covari-

ance matrix of c(θ̂).

Remark 1.8: Use of the Wald test requires only to

find the unrestricted MLE.

The Wald test for linear regression with nor-

mally distributed errors is

(87) W =
SSER − SSEU

SSEU/(n− k − 1)
,

where k is the number of regressors (without

the constant).
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3. Lagrange multiplier test (LM)

(88) LM =

(
∂`(θ̂R)

∂θ

)′ [
I(θ̂R)

]−1
(
∂`(θ̂R)

∂θ

)
,

where θ̂R is the restricted MLE satisfying the

restriction c(θ̂R) = 0 of the general hypoth-

esis (81).

Remark 1.9: Use of the LM test requires only the

restricted MLE.

The Lagrange multiplier test for linear re-

gression with normally distributed errors is

(89) LM =
SSER − SSEU

SSER/(n− k + q − 1)
,

where k is the number of regressors (without

constant) and q is the number of restrictions.
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Under the null hypothesis (81) each of these

test statistics is asymptotically χ2-distributed

with degrees of freedom equal to the number

of restrictions q.

Thus, they are asymptotically equivalent. In

small samples numerical values may differ,

however. Usually the LR test is preferred,

because it can be shown under fairly general

conditions to be the most powerful test.

Bear in mind that while the tests can be de-

veloped for arbitrary distributions of the er-

ror term, their exact form depends upon that

distribution. I.e. the test statistics (84), (87)

and (89) apply only for regressions with nor-

mally distributed error terms.

Also bear in mind that the tests apply only

in large samples.
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