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10. TESTS OF MEANS AND SOME NONPARAMETRIC TESTS

10.1. Some Tests for One Sample

Let’s study a quantitative variable whose distribution is normal distribution (or the distribution is a
symmetric one and the number of cases in the sample is at least 40). Now, we are interested in
making some conclusions of the population mean that are based on the sample mean. We are going
to perform a test called one sample t test (of mean).

Let’s imagine that you assume that the population mean of attend2 is 16 hours for male students.
So, you have a sample of male students and the attend2-variable is a quantitative one, and you have
checked the normality. You can obtain the one sample t test by selecting Tasks > ANOVA >t
Test. In the t Test type tab you can select the test you want to perform (e.g. One Sample).

t Test type

Choose t Test type:
Two Sample

Paired

@ One Sample

>SS

In the Data tab you must assign the quantitative variable to the role Analysis variables (e.g.
attend2). In the Analysis tab you can specify the alleged value of the population mean (e.g. 16) in
the Hp box. The test hypotheses are now in general form

Ho: The population mean p = py.
H;: The population mean p # .

In this case you then replace o with 16.
Analysis

Null hypathesis
Specify the test value for the null hypaothesis:

Ho = 16

Standard deviation corfidence intervals

| Equal tailed

UMPLU {Uniformby most powerful unbiased test)

Confidence level: 957 -



With the Plots tab you can select the different plots for instance to check the normality of the data if
you have not done it yet.

The results in the first table are just basic statistics of attend2, for instance the sample mean is 15.2
hours. From the second result table you can see that the 95% confidence interval for population
mean is (13.78, 16.62). The third table then shows the test’s results. The p-value of the test is
0.2628, and because it is greater than 0.05, we can now accept the null hypothesis.

ar

N Mean Std Dev Std Err| Minimum | Maximum
50 152000 4.9939 0.7062 2.0000  28.0000

Mean| 95% CL Mean Std Dev| 95% CL Std Dev
15.2000 13.7808 16.6192 49939 41716 62230

DF  tValue Pr= |t
49 113 02628

Let’s now study a quantitative variable whose distribution is non-normal. Now, we are interested in
making some inferences about the population location, but instead of the mean we now study the
sample median with the Wilcoxon signed rank test.

Let’s imagine that you assume that the population median of attend2 is 16 hours for all students.
The variable is a quantitative one, but the distribution is non-normal. Instead of the parametrical t
test you must use a nonparametric test. You can perform a suitable test by selecting Tasks >
Describe > Distribution analysis. In the Data tab must assign the quantitative variable to the role
Analysis variables (e.g. attend2). In the Tables tab click the Tests of location option and specify
the alleged value of population median (e.g. 16) in the Ho box. The test hypotheses are in general
form

Ho: The population median = Mdy
H;: The population median # Md.

In this case you then replace Md, with 16.
Now, we look through the test results of the (Wilcoxon) Signed Rank test in the Test for Location

table. The p-value of that test is 0.0055. Because the p-value is lower than 0.01, we can now reject
Ho at 1% significance level.

Tests for Location: Mul=16

Test Statistic p Value

Student'st |t 312878 Pr= [t | 0.0019
Sign M 13.5 Pr== M| 0.1181
Signed Rank 5 3674 Pr==|5] 0.0055



10.2. Some Tests for Two Independent Samples

Let’s study a quantitative variable whose distribution is normal distribution (or the distribution a
symmetric one and the number of cases in both samples is at least 40) for two different populations.
Now, we are interested in making some inferences whether or not the mean of the quantitative
variable is the same in the two populations. The test we are going to perform is called two
(independent) samples t test (of mean).

Let’s imagine that you assume that the population mean of attend2 is the same for students who
work during the semester (= population 1) and for students who don’t work during the semester (=
population 2). Now, you have two independent samples of students. And let’s assume that you have
checked the normality of attend2 in both samples. You can obtain the suitable t test by selecting
Tasks > ANOVA >t Test. In the t Test type tab you select then the Two Sample option.

t Test type
Choose t Test type:

AN

@ Two Sample

" Paired

1 One S5ample

>

In the Data tab you must assign the variable that classifies your sample into two groups to the role
Classification variable (e.g. work) and the quantitative variable to the role Analysis variables (e.g.
attend2).

Wariables to assign:

Mame

@ age
@ gender
@Wﬂﬂﬁ fir| (aroup anahysis b

iz work2 i#| Frequency count {Limit: 1)

@pmg i Relative weight (Limit: 1)
@ attend .

@ attend?
(i) exam

izl random
izl math




In the Analysis tab you can specify for the test of means the alleged difference between the
population means (e.g. 0) in the Hp box. The test hypotheses are now

Ho: u1 = 1o (the means of the two populations are equal)
Hi:p # po.

With the Plots tab you can select the different plots to for instance check the normality if you
haven’t done it yet.

The results in the first table are just basic statistics of attend2 for the two groups of work, for
instance the sample means are 16.2 and 17.1 hours, so it seems that those students who work during
semester tend to attend less to lectures than those who do not work. From the second result table
you can see that the 95% confidence intervals for the means of different populations.

work N Mean Std Dev| Std Err Minimum  Maximum

1 73| 16.2329 50594 05922 6.0000 32.0000

2 243 1712760 52755 0.3384 2.0000 33.0000

Diff (1-2) -0.8947 52267 0.6976
work Method Mean| 95% CL Mean Std Dev| 95% CL Std Dev
1 16.2329 15.0524 17.4133 50594 43510 6.0455
2 171276 16.4609 17.7942 52755 48444 57914
Diff (1-2) Pooled -0.8947 -2.2673 04779 52267 48480 56702

Diff (1-2)  Satterthwaite | -0.8947 -2.2448 04554

The third and fourth tables then include the results of some tests. The fourth table presents results
for the test of Equality of Variances. The hypotheses for this test are

Ho: o1 = o,” (the variances of the two populations are equal)
Hl: 612 * 622.

Because the p-value of the variance test is 0.6876, and it’s greater than 0.05, we can now accept the
Ho. And now, because the variances of the two populations are equal, you can look through the third
table and read the results of the Pooled test of means (where the variances are assumed equal). The
p-value of the test is 0.2006, and because it is greater than 0.05, we can now accept the null
hypothesis of the t test. If the variances would have been equal then you should look through the
result of the Satterthwaite test.

Method Variances DF | t Value Pr= |t
Pooled Equal 314 -1.28 0.2006
Satterthwaite Unequal 12282 -1.31 01920

Equality of Variances
Method | Num DF| Den DF F Value Pr=F
Folded F 242 72 1.09 0.6876

Now, let’s study a quantitative variable whose distribution is non-normal for two different
populations. Again, we are interested in making some inferences about the locations of the
populations. Now, we are going to perform the Wilcoxon two-sample test.



Let’s imagine that you assume that the population location of attend? is the same for both male and
female students. You have now two independent samples of students. The attend2 is a quantitative
variable, but the distribution of it isn’t normal for female students. Instead of the parametrical t test
you must choose a nonparametric test. You can perform a suitable test by selecting Tasks >
ANOVA > Nonparametric One-Way ANOVA. In the Data tab you then assign the quantitative
variable to the role Dependent variables (e.g. attend2) and the grouping variable to the role
Independent variable (e.g. gender). In the Analysis tab check the Wilcoxon option. The
Wilcoxon two-sample test is quite the same as a test called Mann-Whitney U -test. You can
calculate the exact p-value of your test, if you check the Wilcoxon option in the Exact p-values
tab, too. That latter option is useful only for small datasets. The test hypotheses are

Ho: The distributions of the two populations are the same.
Hi: The distributions of the two populations are not the same.

Warables to assign:

Mame i# Dependent variables

iz age

@ gender | K| i

2 work iy, Laroup ananysis o

% work2 i Frequency court (Limit: 1)
prog

@ attend 1

i) attend?

{2 exam

@ random

@ math

Analysis

Test scores
Wilcowon

[] Median

[] Savage

[] Yan der Waerden
[] Ansari-Bradley
(] Kotz

[ Mood

[ Siegel-Tukey

[T Raw data

In the first results table you can see that the mean scores for attend2 is almost 163 for female
students and 127 for male students, so it seems that female students tend to attend more to lectures
than male students.



Wilcoxon Scores (Rank Sums) for Variable attend2
Classified by Variable gender

Sum of Expected Std Dev Mean
gender ~N| Scores Under HO, Under HO Score

female 263 4279750 41291.0) 583.772832 162.728137
male 50 B6343.30 7830.0 583.772832 126.870000
Average scores were used for ties.

In the second results table you can see different approximation of the p-value. These results tend to
be the same: now the p-value for two-sided test is approximately 0.0099 and because it is less than
0.01, we can now reject the null hypothesis at 1% significance level.

Wilcoxon Two-Sample Test

Statistic 6343.5000
Normal Approximation

Z -2.5798
One-Sided Pr= Z 0.0049
Two-Sided Pr= |Z] 0.0099
t Approximation

One-Sided Pr=< £ 0.0052
Two-Sided Pr = |Z] 0.0103

Z includes a continuity correction of 0.5.

10.3. Some Tests for Paired Samples

Let’s now study two quantitative normally distributed variables of the same measurement that are
made under two different conditions. Now, we are interested in making some inferences whether or
not the means of the quantitative variables are the same. The test that we are going to perform is
based on the paired differences between the two variables. The paired samples t test is in fact an
application of the one sample t test.

You can obtain the suitable t test by selecting Tasks > ANOVA >t Test. In the t Test type tab you
select the Paired option.

t Test type

Choose t Test type:
) Two Sample

@) Paired

1 One Sample

=




In the Data tab you must assign both of the variables to the role Paired.

Variables to assign:

MName

il age
i2d) gender —
) work | Frequency court (Limit: 1)
% work2 | Relative weight (Limit: 1)
prog
@ attend
@ attend?
i) exam
{2 random
iz math

In the Analysis tab you can specify the alleged difference of the population mean (e.g. 0) in the Ho
box. The test hypotheses are now in general form

Ho: d = u, — ;= 0. (The mean value of difference is 0; the means of the two populations are equal.)
Hll d ;ﬁ 0.

Analysis

Mull hypothesis
Specify the test value for the null hypothesis:

Ho = 0
Standard deviation confidence intervals
Equal tailed

[ UMPU {Uniformty most powerful unbiased test)

Confidence level: Ly -

The results tables of the paired samples t test look quite the same as the results of one sample t test
and they can be interpreted in the same way.

Let’s now study two quantitative variables whose distributions are non-normal. Now, we are
interested in making some inferences whether or not the locations of the populations are the same.
You can apply the Wilcoxon Signed Rank test for one sample to this case too, but first you have to
just calculate the difference between the variable values for each case (by using Query Builder).



And then you perform the test for the difference the same way you would act with the case of one
sample by selecting Tasks > Describe > Distribution analysis. In the Data tab you must assign the
difference to the role Analysis variables. In the Tables tab click the Tests of location option and
specify the alleged value of the median of the difference in the Hy box. The general form of
hypotheses are

Ho: The median value of difference is 0.
H;: The median value of difference is not O.

Again, the results can be interpreted the same way than in the case of one sample signed rank test.

10.4. One-way Analysis of Variance (ANOVA) and Kruskal-Wallis -test

The one-way analysis of variance allows you to compare whether or not all the means of the same
quantitative variable are equal in three or more different populations. So, in a way, it generalizes
two-sample t test to more than two groups. Again, the distribution of the quantitative variable
should be normal distribution in every population and even the variances of the quantitative variable
should be equal in all the populations. In the case of one-way ANOVA you have one independent
variable that classifies you data into three or more groups.

Let’s imagine that you assume that the population mean of attend? is the same for every group of
prog. Now, you have five independent samples of students. And let’s assume that you have checked
the normality of attend2 in every sample. You can obtain the one-way ANOVA by selecting Tasks
> ANOVA > One-way ANOVA. In the Data tab you must assign the variable that classifies your
sample into three or more groups to the role Independent (e.g. prog) and the guantitative variable
to the role Dependent variables (e.g. attend?2).

Varables to assign: Task roles:

Mame 12| Dependert varables

é}zzjder 4 Independent variable (Limit: 1)
{izd work - m
@ work2
@ prog
@ attend
iz attend2
1230 exam

i) random

iz math

& @

In the Tests tab you can check the Levene’s test option if you want to perform an analysis to figure
out whether or not the variances are equal in each group (population). If the results of this test show
that the variances are equal, then you do not have to use any other option in this tab. If the results
show that the variances are not equal, then you should select also the Welch’s variance-weighted
ANOVA option in order to perform that analysis instead the ordinary ANOVA analysis.



Tests

[&elch’s varance-weighted ANOVA;

Tests for equal varance

[] Bartlett's test

[] Brown Foreythe test

Levene's test

In the Comparison tab the options enable you to obtain results of pair wise comparisons of the
means. These tests are called Post Hoc —tests (I quite often prefer the Tukey’s Studentized range
test (HSD)). And you perform these tests only if you have already obtained such results that the
population means are not equal.

Means > Comparison

The main effect is: prog.

Methods to use

[] Borfermonit test

Tukey's studentized range test (HSD)

[] Duncan's multiple-range test

[] Dunnett's t test

[ | Fisher's least significant-diference test

[ Gabriel's muttiple-comparnison procedurs
[ Studert-Mewman-Keuls muttiple range test
[T Waller-Duncan kratio t test

[] S5cheffe’s muttiple comparison procedurs
[ Fyan-Einct-5abriel-Welsch muttiplerange test

With the Breakdown tab you can select which statistics you want to be shown in the results tables.
In the Plots tab you can then select which plot to include in the results.

Types

@ é [] Box and whisker

I/I Means

When you look through the results, it’s a good idea to start the interpreting with the descriptive
statistics results table or the Means plot. The table (or the graph, too) shows that prog group
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“extremely well” has the highest mean of attend2 and the group “below average” the lowest mean,
so the sample means seem to be different.

Level of attend2
prog N Mean Std Dev
average 202 16.8465347V 4.96968030

below average | 52 16.3653845 6.13939544
extremely well 4 21.5000000 943398113
poorly 11| 17.2727273 5.04164475
very well 43 17.6976744 477859754

Means Plot of attend2 by prog

How many hours you did attend lectures etc. last week?
40 -

30 4

10 4

I I I I I
poorly  below average  average very well  extremely well

(o]
(=]

How are your studies progressing?

In the next stage, you should interpret the results of the Levene’s test for Homogeneity of Variance.
The hypotheses for this test are

Ho: The variances for all the populations are equal.
Hi: The variances for all the populations are not equal.

The p-value of the Levene’s test is now 0.1087, and because it’s greater than 0.05, we can now
accept the Ho.
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Levene's Test for Homogeneity of attend2 Variance
ANOVA of Squared Deviations from Group Means

Source | DF Sum of Squares Mean Square F Value Pr=F
prog 4 14567 .6 3641.9 1.91 0.1087
Error | 307 585560 1907 4

Because the variances are equal, you can now interpret the results in the ordinary ANOVA table.
The hypotheses for the ordinary ANOVA F test in the next table are

Ho: The means for all the populations are equal.
H;: The means for all the populations are not equal.

The p-value of the F test is now 0.3249, and because it is greater than 0.05, we can now accept the
Ho.

Source DF Sum of Squares Mean Square F Value Pr=F
Model 4 127.906481 31.976620 117 0.3249
Error 307 8404.551852 27.376390

Corrected Total | 311 8532 458333

If you have to reject the Hy of the Levene’s test for variances, then instead of interpreting the basic
ANOVA F test you should interpret the Welch’s test. The hypotheses for this test are the same as
for the ordinary ANOVA F test.

Welch's ANOVA for attend2
Source DF | F Value| Pr=F
prog 4.0000 0.58 06822
Error 17.5275

If you have to reject the Hy of the ordinary ANOVA F test, then you could do the pair wise
comparisons of the group means by looking through the results of the Tukey’s test (in the next table
just few of the pair wise comparisons are shown). If there is significant difference at the 0.05
significance level between two group means, it will be indicated by ***.

Comparisons significant at the 0.05 level are indicated by .

Difference
prog Between| Simultanecus 95% Confidence
Comparison Means Limits
extremely well - very well 3.8023 -3.7029 11.3076
extremely well - poorly 42273 -4.1558 12.6103
extremely well - average 4 6535 -2.5961 11.2030
extremely well - below average 5.1346 -2.3152 12.5844
very well - extremely well -3.8023 -11.3076 3.7029
very well - poorly 0.4249 -4 4262 5.2761

very well - average 0.8511 -1.5602 3.2625
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Now, let’s study a quantitative variable whose distribution is non-normal for three or more different
populations. Again, we are interested in making some inferences about the locations of the
populations. The test we are going to perform is called Kruskal-Wallis test.

Let’s imagine that you assume that the population location of exam the same for every group of
prog. Now, you have five independent samples of students. The exam is a quantitative variable, but
the distribution of it is not normal in the samples. Instead of the parametrical ANOVA you must use
a nonparametric test. You can perform a suitable test by selecting Tasks > ANOVA >
Nonparametric One-Way ANOVA. In the Data tab you then assign the quantitative variable to
the role Dependent variables (e.g. exam) and the grouping variable to the role Independent
variable (e.g. prog). In the Analysis tab check the Wilcoxon option. This option enables you to
obtain the results of the Kruskal-Wallis test. You can calculate the exact p-value of your test, if you
check the Wilcoxon option in the Exact p-values tab, too. That latter option is again useful only for
small datasets. The test hypotheses are

Ho: The distributions (especially the locations) of the populations are the same.
Hi: The distributions of the populations are not the same.

Varables to assign: Task roles:

Mame '143' Dependent varables

exam

%aged 45 Independent variable (Limit: 1)
gender

@wud-: T

gwm‘kz i Frequency count {Limit: 1)

prog

iz attend1

@ attend2
{2 exam

izl random
il math

Analysis

Test scores
Wilcooon

[] Median

[] Savage

[] Van der Waerden
[] Ansari-Bradley
("] Klotz

[] Mood

[7] Siegel-Tukey

[| Raw data
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In the first results table you can see that the mean scores of exam is just 92 in prog group “poorly”
and 219 in prog group “extremely well”, so the distributions seem to be quite different for these

extreme groups.

In the next table you can see the results of the Kruskal-Wallis test.

Wilcoxon Scores (Rank Sums) for Variable exam
Classified by Variable prog

Sum of Expected

prog N Scores| Under HO
below average | 50 7606.50  ¥775.00
average 202 31396.50  31411.00
very well 43 7308.00 6686.50
poorly 11 1017.000  1710.50
extremely well 4 877.00 622.00

Std Dev
Under HO

276.852210
747 274989
542104163
280.151501
177.004209

Average scores were used for ties.

0.0673, and because it is greater than 0.05, we can no accept the Ho.

Kruskal-Wallis Test
8.7624

Chi-Square
DF

4

Pr = Chi-Square | 0.0673

Mean
Score

132.130000
135.428218
169.953488

92.454345
219.250000

The p-value of that test is

You could illustrate the possible difference in locations by using a Box plot chart. With that chart
you can see for instance medians, lower quartiles and upper quartiles of the groups.
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11. LINEAR REGRESSION

Regression analysis includes techniques for modeling and analyzing several variables, when the
focus is on the relationship between a dependent variable (denoted usually y) and one or more
independent variables (also called explanatory variables, usually denoted by x;). The idea of linear
regression analysis is to illustrate the linear relationship between one (or more) usually quantitative
explanatory variable and a quantitative dependent (response) variable.

You obtain linear regression analysis by selecting Tasks > Regression > Linear Regression (or

HP Linear Regression). In the Data tab you assign just one Dependent variable (e.g. work2) and
at least one Explanatory variable(s) (e.g. age and attend?2).

Variables to gssign:

MName

@ 20= i@ Explanatory varables

@ gender @ age

if2d) work

@ workc2 ; 5

@ prog i#| Frequency count (Limit: 1)

% attend 1 | Relative weight (Limit: 1)
attend?

{2 exam

@ random

iz math

] aldp ¥l LIy

In the Model tab you can select the method of modeling. The Full model fitted option creates a
model with all the variables you have assigned in the Data tab. Other quite commonly used options
are the three next methods. The Forward selection option starts with no variables in the model and
adds variables one by one to the model by comparing the p-values. The Backward selection option
starts with all variables in the model and deletes variables by comparing the p-values. The Stepwise
selection method is similar to the forward selection method except that variables already in the
model do not necessarily stay there. Variables are added or deleted by comparing the p-values.

Model

Model selection method:
Full medel fitted (no selection) -

Full model fitted (no selection)
Forward selection

Backward elimination

Stepwise selection

Maximum R-sguared improvement
Minimum R-sguared improvement
R-sguared selection

Adjusted R-squared selection
Mallows" Cp selection
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In the Statistics tab you can select some statistics for example to detect whether or not the
explanatory variables are highly correlated (options Collinearity analysis, Tolerance values for

estimates and Variance inflation values).
Statistics

Detailz on estimates
[ Standardized regression coefficients

[] Sum of squares, Type 1

[] Sum of squares, Type 2

[7] Comelation matrix of estimates

[ Covarance matrix of estimates

[] Confidence limits for parameter estimates

(4]
en

Comelations
[ Partial comelations

[] Semi-partial comelations

Diagnostics

[ Callinearity analysis

[7] Collinearity anatysis without the intercept
[ Tolerance values for estimates

[7] Variance inflation values

[] Heteroscedasticity test

[7] Asymptotic covarance matrix

[ Durbin-Watson statistic

In the Plots tab the default option All appropriate plots for the current data selection creates a
vast amount of different plots to examine the properties of the model. With the Custom list of
plots option you can select those plots you want to include in the results.

Plots

Show plots for regression analysis

() All appropriate plots for the cument data selection

(@) Custom list of plots

Custom plots:

[] Residual-Fit plot

Diagnostic plots
[] DFFITS plots
[] DFBETAS plats
[ Residual plots

Wl Histogram plot of the residuals

[ Residuals by predicted values plot

[ Studertized residuals by predicted values plot
[] Observed by Predicted values plot

[ Plot Cook’s D statistic

[ Studentized residuals by leverage plot

[] Mormal quartile plot of the residuals

[] Box plot of the residuals

m

["] Select all
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With the Predictions tab you can save the predicted values and residuals in a new result data set.

Predictions

Data to predict Save output data

/| Qriginal sample ] Predictions

Additional data Diagnostic statistics
ik Local-WORK PREDLinRegPre |  Browse...

Addttional statistics /| Display output and plots

| Residuals sh g

i
Prediction limits oL PreciEtions

In the first results table the F test measures whether or not there is some sense in the regression
model. The hypotheses for this test are

Ho: The regression coefficients f; are all 0.
Hi: At least one of the regression coefficients is not 0.

The p-value of the F test is now less than 0.0001, so we can now reject the Hy at 0.1% significance
level.

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr=F
Model 2 202211778 1011.05889 1374 <.0001
Error 68 5005.06532 73.60390

Corrected Total | 70 702718310

The next table then shows that the coefficient of determination (often denoted R?) is 0.2878, so
almost 29% of the total variation in work2 can be explained by this regression model.

Root MSE 8.57927 R-Square | 0.2878
Dependent Mean | 15.69014 Adj R-Sq | 0.2668
Coeff Var 34.67938

The Parameter Estimates table shows the estimated regression coefficients, and thus the estimated
regression model is now

¥y =0.10192 +0.95302 - age —0.46827 - attend?2 .

So, as every one year increase in age, increases the value of work2 on average by 0.95 hours and
every on hour increase in attend2, decreases the value of work2 on average by 0.47 hours.
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The t tests test whether or not we can assume a single regression coefficient to be zero. So, the
hypotheses for those tests are

HoZ Bi =0.
Hi: Bi + 0.

Because the p-values for the explanatory variables are <0.0001 and 0.0294, and they both are less
than 0.05, we can now reject the H, for both of the explanatory variables.

Parameter Estimates
Parameter| Standard

Variable Label DF | Estimate Error| t Value | Pr = |t]
Intercept Intercept 1 010192 6.61416 0.02 0.9878
age Age in years 1 095302 021474 444 < 0001
attend2 How many hours you did attend lectures etc. last week? 1 046827 021046 -2.22 0.0294

In the plot Distribution of Residuals, the residuals are the differences between the observed values
of the dependent variable (y) and the predicted values (). If the model behaves well, the residuals

should be (roughly) normally distributed with a mean of 0 and some constant variance. Now, the
distribution of residuals seems to be a bit skewed.

Distribution of Residuals for work2

an Mormal
Kernel
/
20 \
5 !
(5]
T
o
1
10 \'-
|
0
-33 -27 -21 -15 -9 -3 3 9 15 21 27 33 a9

Residual
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In the scatter plot Residual by Predicted the data points are scattered randomly about 0, regardless
of the size of the predicted value. This means that the residuals have a constant variance and now
the residuals can be called homoscedastic .

Residual by Predicted for work2
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In ordinary linear regression the explanatory variables should be quantitative ones, but you can run
a linear regression with so called dummy variables which represent the classes of a qualitative
variable. Dummy variables have always just two levels: 0 and 1. The number of dummy variables
should be one less than the number of the classes of the qualitative variable. So let’s assume that in
our dataset we have a variable “relationship status” where the classes are: 1 = totally single, 2 =
dating, 3 = firm relationship and we want to add such a variable as an explanatory variable in a
regression model. First we need to create (with Query Builder) two dummy variables: dummysingle
and dummydating and the levels for these new dummies are

Dummysingle = 1, if relationship status is 1
0, if relationship status is 2 or 3
Dummydating = 1, if relationship status is 2

0, if relationship status is 1 or 3

And then instead of the original “ relationship status” the explanatory variables are these two new
dummies.



