ON THE DUALS OF BINARY HYPER-KLOOSTERMAN CODES

MARKO MOISIO*

Abstract. Binary hyper-Kloosterman codes C(r, m) of length $(2^r - 1)^{m-1}$ are a quasi-cyclic generalization of the dual of the Melas code of length $2^r - 1$. In this note the duals $C^{\perp}(r, m)$ i.e. a generalization of the Melas code $C^{\perp}(r, 2)$ itself are studied. In particular, the minimum distance of $C^{\perp}(r, m)$ for all $r, m \geq 2$, the weight distribution of C(2, m) and $C^{\perp}(2, m)$ for all $m \geq 2$, and the weight distribution of C(r, 3) and $C^{\perp}(r, 3)$ for all $r \geq 2$ is obtained.

Key words. Exponential sum, Fermat curve, hyper-Kloosterman code, Kloosterman sum, Melas code, Pless power moments, Weight distribution

AMS subject classifications. 11T23, 11T71

1. Introduction. Let $r, m \ge 2$ be integers and let $q = 2^r$. Let $\mathbb{F} := \mathbb{F}_q$ denote the finite field of q elements and let $\mathbb{F}^* := \mathbb{F} \setminus \{0\}$. For $\mathbf{a} := (a_1, \ldots, a_m) \in \mathbb{F}^m$ we define a rational function in m - 1 variables:

$$f_{\mathbf{a}}(\mathbf{X}) := a_1 X_1 + \dots + a_{m-1} X_{m-1} + \frac{a_m}{X_1 \cdots X_{m-1}}.$$

Let $\mathbf{x}_1, \ldots, \mathbf{x}_n$ be a fixed ordering of the elements of $(\mathbb{F}^*)^{m-1}$.

In [3] the following linear code C(r, m) was introduced and it was called a *hyper-Kloosterman code*:

$$C(r,m) = \Big\{ c(\mathbf{a}) := \big(\operatorname{tr}(f_{\mathbf{a}}(\mathbf{x}_1)), \dots, \operatorname{tr}(f_{\mathbf{a}}(\mathbf{x}_n)) \big) \mid \mathbf{a} \in \mathbb{F}^m \Big\},\$$

here tr is the trace function from \mathbb{F} onto \mathbb{F}_2 . These codes are a quasi-cyclic generalization of the Kloosterman code, i.e. the dual of the Melas code, of length $2^r - 1$. For the proof of the quasi-cyclicity we refer to [4, Theorem 4.2].

In this note we are interested in the duals $C^{\perp}(r,m)$ which are a generalization of the Melas code $C^{\perp}(r,2)$ (r > 2). We shall show that the minimum distance of $C^{\perp}(r,m)$ is three if m > 2, and give the weight distribution of C(2,m) and $C^{\perp}(2,m)$ for all $m \ge 2$, and the weight distribution of C(r,3) and $C^{\perp}(r,3)$ for all $r \ge 2$. We remark that the weight distributions of C(r,2) and $C^{\perp}(r,2)$ (r > 2) were obtained in [5] and in [14], respectively.

The rest of this paper is organized as follows. In Section 2 we first consider some simple basic properties of hyper-Kloosterman codes. Next, the weight distribution of C(r, m) is given in terms of certain monomial exponential sums (Theorem 2.5), and then, a recursion formula for the weight distribution of $C^{\perp}(r, m)$ involving the moments M_j of those exponential sums is obtained by using the Pless power moment identity (Theorem 2.8).

In Section 3 we first connect the moments M_j to a Fermat curve \mathcal{X} , and then obtain the number of weight three codewords in $C^{\perp}(r,m)$ in terms of the number of rational points on \mathcal{X} (Theorem 3.2). Finally, we determine the minimum distance of $C^{\perp}(r,m)$ by either using our explicit knowledge of the number of rational points on \mathcal{X} or by estimating that number by either the Hasse-Weil bound or a bound which we shall derive by using Deligne's bound on hyper-Kloosterman sums (Theorem 3.7).

^{*}Department of Mathematics and Statistics, Faculty of Technology, University of Vaasa, PO. Box 700, FIN-65101, Finland(mamo@uwasa.fi).

In a few cases we are forced to calculate the number of rational points numerically since neither of those bounds is then strong enough.

In Sections 4 and 5 we determine the weight distribution of the codes C(r, m) and $C^{\perp}(r, m)$ in the special cases r = 2, m > 2, and r > 2, m = 3, respectively. In the latter case a relation between one and two dimensional Kloosterman sums from [1] is used, and then, the weight distribution of C(r, 3) is obtained by using results on the distribution of values of Kloosterman sums obtained in [5] (Theorem 5.3). Finally, the weight distribution of $C^{\perp}(r, 3)$ is obtained in terms of even moments of Kloosterman sums calculated in [10] by using result from [14]. Especially, explicit formulae for the number of codewords of weights from three to five is given (Theorem 5.5).

2. On the weight distribution of C(r,m) and $C^{\perp}(r,m)$. Let χ be the canonical additive character of \mathbb{F} . Let

$$k_{m-1}(\mathbf{a}) = \sum_{x_1, \dots, x_{m-1} \in \mathbb{F}^*} \chi(a_1 x_1 + \dots + a_{m-1} x_{m-1} + a_m (x_1 \cdots x_{m-1})^{-1}),$$

be an (m-1)-dimensional Kloosterman sum. If $\mathbf{a} = (1, 1, \dots, 1, a)$ with $a \neq 0$ we use the notation

$$k_{m-1}(a) := k_{m-1}(\mathbf{a}).$$

Let v be the number of zero-components of **a**. Assume v > 0. If $a_m = 0$ then, by the orthogonality of characters, we get

$$k_{m-1}(\mathbf{a}) = \sum_{x_1, \dots, x_{m-1} \in \mathbb{F}^*} \chi(a_1 x_1 + \dots + a_{m-1} x_{m-1}) = (-1)^{m-v} (q-1)^{v-1}.$$

If $a_m \neq 0$ and e.g. $a_1 = 0$ then, by the substitution $y = x_1^{-1}$, we obtain

$$k_{m-1}(\mathbf{a}) = \sum_{\substack{x_2, \dots, x_{m-1} \in \mathbb{F}^* \\ x_2, \dots, x_{m-1} \in \mathbb{F}^*}} \chi(a_2 x_2 + \dots + a_{m-1} x_{m-1}) \sum_{y \in \mathbb{F}^*} \chi(\frac{a_m}{x_2 \cdots x_{m-1}} y)$$
$$= -\sum_{\substack{x_2, \dots, x_{m-1} \in \mathbb{F}^* \\ x_2 - \dots - x_{m-1} \in \mathbb{F}^*}} \chi(a_2 x_2 + \dots + a_{m-1} x_{m-1})$$
$$= -(-1)^{m-2-(\nu-1)} (q-1)^{\nu-1}.$$

Hence we have

LEMMA 2.1. If exactly v > 0 of the components of $\mathbf{a} \in \mathbb{F}^m$ are zeros, then

$$k_{m-1}(\mathbf{a}) = (-1)^{m-\nu}(q-1)^{\nu-1}.$$

If v = 0, then we have the following well known bound by Deligne:

$$|k_{m-1}(\mathbf{a})| \le mq^{\frac{m-1}{2}}.$$

LEMMA 2.2. The dimension k of C(r,m) over \mathbb{F}_2 is rm if rm > 4. If r = m = 2, then k = 2.

Proof. Consider group homomorphism

(2.1)
$$\Psi: (\mathbb{F}^m, +) \longrightarrow C(r, m), \mathbf{a} \mapsto (\operatorname{tr}(f_{\mathbf{a}}(\mathbf{x}_1)), \dots, \operatorname{tr}(f_{\mathbf{a}}(\mathbf{x}_n)))).$$

If **a** belongs to $\operatorname{Ker}(\Psi)$ then $k_{m-1}(\mathbf{a}) = (q-1)^{m-1}$. If rm > 4, this can happen if and only if $\mathbf{a} = \mathbf{0}$, by Deligne's bound and by Lemma 2.1, and therefore ψ is an isomorphism.

If r = m = 2 and $a, b \in \mathbb{F}_4^*$, then $k_{m-1}((a, b)) = k_{m-1}(ab)$. If ab = 1, then $k_{m-1}(ab) = 3$ and otherwise $k_{m-1}(ab) = -1$. Hence, in this case, $|\operatorname{Ker}(\Psi)| = 4$ and consequently |C(r,m)| = 16/4 = 4. \Box

Remark. A different proof for this result is given in [4, Theorem 3.1]

The Hamming weight $w(c(\mathbf{a}))$ of codeword $c(\mathbf{a})$ is given by

(2.2)
$$w(c(\mathbf{a})) = \sum_{\mathbf{x} \in (\mathbb{F}^*)^{m-1}} \frac{1}{2} \Big(1 - (-1)^{\operatorname{tr}(f_{\mathbf{a}}(\mathbf{x}))} \Big) = \frac{1}{2} \Big((q-1)^{m-1} - k_{m-1}(\mathbf{a}) \Big).$$

Next we express $w(c(\mathbf{a}))$ by means of a monomial exponential sum over \mathbb{F}_{q^m} . Let e denote the canonical additive character of \mathbb{F}_{q^m} . Let $t = (q^m - 1)/(q - 1)$ and let $N(\alpha) := \alpha^t$ denote the norm of α from \mathbb{F}_{q^m} to \mathbb{F}_q . Let γ be a primitive element of \mathbb{F}_{q^m} , and let

$$s(\alpha) = \sum_{i=0}^{t-1} e(\alpha \gamma^{(q-1)i}).$$

We have the following result from [9, Theorem 3]:

THEOREM 2.3. Let $\alpha \in \mathbb{F}_{q^m}^*$ and let $a = N(\alpha)$. Then

$$\sum_{x \in \mathbb{F}_{qm}^*} e(\alpha x^{q-1}) = (-1)^{m-1} (q-1) k_{m-1}(a),$$

or, equivalently,

$$k_{m-1}(a) = (-1)^{m-1} s(\alpha).$$

LEMMA 2.4. Let $\mathbf{a} \in (\mathbb{F}^*)^m$ and let $b = a_1 \cdots a_m$. Let $g := N(\gamma)$ be a primitive element of \mathbb{F} , $i = \operatorname{ind}_g(b)$, and $\beta = \gamma^i$. Then

$$w(c(\mathbf{a})) = \frac{1}{2} ((q-1)^{m-1} - k_{m-1}(b))$$
$$= \frac{1}{2} ((q-1)^{m-1} + (-1)^m s(\beta))$$

Proof. The first equality follows easily by equation (2.2), and the second one then by Theorem 2.3. \Box

Let S denote the range of $s(\gamma^i)$ as i varies over the set $I := \{0, \ldots, q-2\}$, and, for $j \in S$, let N_j denote the number of elements i in I such that $s(\gamma^i) = j$, i.e.

$$S = \left\{ s(\gamma^i) \mid i \in I \right\},\$$

and

$$N_j = \left| \{ i \in I \mid s(\gamma^i) = j \} \right|.$$

THEOREM 2.5. Assume rm > 4. For $\mathbf{a} \in \mathbb{F}^m$ let v be the number of zero components of \mathbf{a} . If v > 0, there are

$$\binom{m}{v}(q-1)^{m-v} \text{ codewords } c(\mathbf{a}) \text{ of weight } ((q-1)^{m-1} - (-1)^{m-v}(q-1)^{v-1})/2,$$

and otherwise, for each $j \in S$, there are

$$N_j(q-1)^{m-1}$$
 codewords $c(\mathbf{a})$ of weight $((q-1)^{m-1} + (-1)^m j)/2$

in C(r, m). Moreover, these are the only weights in C(r, m).

Proof. First, for each $\mathbf{a} \in \mathbb{F}^m$, there exists exactly one codeword $c(\mathbf{a}) \in C(r, m)$, by isomorphism (2.1). If v > 0 the claim follows now by Lemmas 2.1 and 2.4.

Assume v = 0. For each $b \in \mathbb{F}^*$ there are exactly $(q-1)^{m-1}$ vectors $\mathbf{a} \in (\mathbb{F}^*)^m$ such that the product of the components of \mathbf{a} equals b. The second claim follows now by Lemma 2.4 since there is exactly one i in I such that $N(\gamma^i) = b$. The last claim is now obvious. \square

COROLLARY 2.6. The weights in C(r, m) are divisible by $2^{\ell-1}$, where $\ell = \min\{r, m\}$.

Proof. Let $\alpha \in \mathbb{F}_{q^m}$. By [12, Theorem 2], the exponential sum

$$\sum_{x \in \mathbb{F}_{q^m}} e(\alpha x^{q-1})$$

is divisible by $2^{\lceil rm/s \rceil}$ where s is the binary weight of q-1. Now s = r, and therefore $\sum_{x \in \mathbb{F}_{q^m}} e(\alpha x^{q-1}) = 2^m z$ for some $z \in \mathbb{Z}$.

Let $\mathbf{a} \in (\mathbb{F}^*)^m$, and let $\beta \in \mathbb{F}_{q^m}^*$ such that $N(\beta) = a_1 \cdots a_m$. Now

$$\begin{aligned} (q-1)w(c(\mathbf{a})) &= \frac{1}{2} \left((q-1)^m + (-1)^m (q-1)s(\beta) \right) \\ &= \frac{1}{2} \left((q-1)^m + (-1)^m \sum_{x \in \mathbb{F}_{q^m}} e(\alpha x^{q-1}) \right) \\ &= \frac{1}{2} \left((q-1)^m + (-1)^m \sum_{x \in \mathbb{F}_{q^m}} e(\alpha x^{q-1}) - (-1)^m \right) \\ &= \frac{1}{2} (q^m - mq^{m-1} + \dots + (-1)^{m-1}mq + (-1)^m 2^m z), \end{aligned}$$

and, as $q = 2^r$, the claim follows in this case. If some of the components of **a** is zero, then it is easily seen that 2^{r-1} is a factor of $w(c(\mathbf{a}))$. \square

Remark. A different proof for this result is given in [3, Corollary 4.3].

To obtain the weight distribution of $C^{\perp}(r, m)$ we use the Pless power moment identity proved in [13] (see also e.g. [6, p. 131]):

THEOREM 2.7 (Power moment identity). Let B be a binary linear [n, k] code, and let B_i (resp. B_i^{\perp}) denote the number of codewords of weight i in B (resp. in B^{\perp}). Then, for h = 0, 1, ..., we have:

$$\sum_{i=0}^{n} i^{h} B_{i} = \sum_{i=0}^{n} (-1)^{i} B_{i}^{\perp} \sum_{\substack{t=0\\4}}^{h} t! S(h,t) 2^{k-t} \binom{n-i}{n-t},$$

where

$$S(h,t) := \frac{1}{t!} \sum_{j=0}^{t} (-1)^{t-j} \binom{t}{j} j^h \qquad (a \text{ Stirling number of the second kind}),$$

and the binomial coefficient $\binom{u}{v}$ is defined to be zero whenever v > u or v < 0. For a non-negative integer j we denote by M_j the jth moment of the period $s(\gamma^l)$, or

$$M_j := \sum_{l=0}^{q-2} s(\gamma^l)^j.$$

THEOREM 2.8. Assume rm > 4, and let w = 1-q. The number C_h^{\perp} of codewords of weight h in $C^{\perp}(r,m)$ is given by

$$q^{m}h!C_{h}^{\perp} = f(C_{0}^{\perp}, \dots, C_{h-1}^{\perp}) + g(M_{0}, \dots, M_{h}) + (-1)^{(m+1)(h+1)}w^{-h} (w^{m}(1-w^{m})^{h} - \sum_{j=0}^{h} {\binom{h}{j}}(-1)^{j}(w^{j+1}-w^{h})^{m}),$$

where

$$f(C_0^{\perp}, \dots, C_{h-1}^{\perp}) = q^m \sum_{i=0}^{h-1} (-1)^{h+i+1} C_i^{\perp} \sum_{t=i}^h t! S(h, t) 2^{h-t} \binom{n-i}{n-t},$$

$$g(M_0, \dots, M_h) = \sum_{j=0}^h \binom{h}{j} (-1)^{mj+h} (q-1)^{(m-1)(h-j+1)} M_j.$$

Moreover, if m = 3, the formula simplifies to

$$q^{3}h!C_{h}^{\perp} = f(C_{0}^{\perp}, \dots, C_{h-1}^{\perp}) + g(M_{0}, \dots, M_{h})$$
$$+3(q-1)^{2}(-q)^{h}((q-2)^{h} + (q-1)^{h-1}).$$

Proof. We choose B = C(r, m) in the power moment identity. Then, by Theorem 2.5,

$$\sum_{i=0}^{n} i^{h} C_{i} = \sum_{v=1}^{m} {m \choose v} (q-1)^{m-v} 2^{-h} ((q-1)^{m-1} - (-1)^{m-v} (q-1)^{v-1})^{h} + \sum_{l=0}^{q-2} 2^{-h} (q-1)^{m-1} ((q-1)^{m-1} + (-1)^{m} s(\gamma^{l}))^{h} =: S_{1} + S_{2},$$

where

$$2^{h}S_{1} = \sum_{v=1}^{m} \binom{m}{v} (q-1)^{m-v} ((q-1)^{m-1} - (-1)^{m-v} (q-1)^{v-1})^{h}$$

and

$$2^{h}S_{2} = (q-1)^{m-1} \sum_{l=0}^{q-2} ((q-1)^{m-1} + (-1)^{m}s(\gamma^{l}))^{h}.$$
5

First, we manipulate S_2 somewhat:

$$2^{h}S_{2} = (q-1)^{m-1} \sum_{l=0}^{q-2} \sum_{j=0}^{h} {h \choose j} (-1)^{mj} s(\gamma^{l})^{j} (q-1)^{(m-1)(h-j)}$$
$$= \sum_{j=0}^{h} {h \choose j} (-1)^{mj} (q-1)^{(m-1)(h-j+1)} \sum_{l=0}^{q-2} s(\gamma^{l})^{j}$$
$$= \sum_{j=0}^{h} {h \choose j} (-1)^{mj} (q-1)^{(m-1)(h-j+1)} M_{j}.$$

Secondly we consider S_1 . If m = 3, then

$$2^{h}S_{1} = 3(q-1)^{2}q^{h}((q-2)^{h} + (q-1)^{h-1}).$$

Next we write S_1 in the form from which we can derive explicit formulae for the number of low-weight codewords in the duals $C^{\perp}(r,m)$ for an arbitrary integer $m \ge 2$:

$$\begin{aligned} 2^{h}S_{1} &= (q-1)^{m-1}\sum_{v=1}^{m} \binom{m}{v} (q-1)^{(v-1)(h-1)} ((q-1)^{m-v} + (-1)^{m-v-1})^{h} \\ &= (q-1)^{m-1}\sum_{v=1}^{m} \binom{m}{v} (q-1)^{(v-1)(h-1)} (-1)^{(m-v-1)h} (1-(1-q)^{m-v})^{h} \\ &= (-1)^{(m-1)h} (-w)^{m-1}\sum_{j=0}^{h} \binom{h}{j} (-1)^{j} \sum_{v=1}^{m} \binom{m}{v} (-1)^{vh} (-w)^{(v-1)(h-1)} w^{(m-v)j} \\ &= (-1)^{(m-1)h} (-w)^{-h} \sum_{j=0}^{h} \binom{h}{j} (-1)^{j} \sum_{v=1}^{m} \binom{m}{v} w^{vh} (-w)^{m-v} w^{(m-v)j} \\ &= (-1)^{(m-1)h+m} (-w)^{-h} \sum_{j=0}^{h} \binom{h}{j} (-1)^{j} \sum_{v=1}^{m} \binom{m}{v} (-1)^{v} w^{vh} w^{(m-v)(j+1)} \\ &= (-1)^{m(h+1)} w^{-h} \sum_{j=0}^{h} \binom{h}{j} (-1)^{j} \left((w^{j+1} - w^{h})^{m} - w^{m(j+1)} \right). \end{aligned}$$

Since

$$\sum_{j=0}^{h} \binom{h}{j} (-1)^{j} w^{m(j+1)} = (1-q)^{m} \sum_{j=0}^{h} \binom{h}{j} (-1)^{j} (1-q)^{mj}$$
$$= w^{m} (1-w^{m})^{h},$$

we have

$$2^{h}S_{1} = (-1)^{m(h+1)}w^{-h}\sum_{j=0}^{h} \binom{h}{j}(-1)^{j}(w^{j+1} - w^{h})^{m}$$
$$-(-1)^{m(h+1)}w^{m-h}(1 - w^{m})^{h}.$$

As the left hand side of the power moment identity equals $S_1 + S_2$, and the right hand side equals

$$\begin{split} &\sum_{i=0}^{n} (-1)^{i} C_{i}^{\perp} \sum_{t=0}^{h} t! S(h,t) 2^{rm-t} \binom{n-i}{n-t} \\ &= \sum_{i=0}^{h} (-1)^{i} C_{i}^{\perp} \sum_{t=i}^{h} t! S(h,t) 2^{rm-t} \binom{n-i}{n-t} \\ &= \frac{q^{m}}{2^{h}} \sum_{i=0}^{h} (-1)^{i} C_{i}^{\perp} \sum_{t=i}^{h} t! S(h,t) 2^{h-t} \binom{n-i}{n-t}. \end{split}$$

the claims follow now easily. \square

3. The minimum distance of $C^{\perp}(r,m)$. To determine the minimum distance of $C^{\perp}(r,m)$ we need some auxiliary results. We recall that $t = (q^m - 1)/(q - 1)$ and $\mathbb{F}_{q^m}^* = \langle \gamma \rangle.$ LEMMA 3.1. The first four moments M_j in Theorem 2.8 are given by

$$M_0 = q - 1, \ M_1 = -1, \ M_2 = q^m - t$$
$$M_3 = \frac{|\mathcal{X}(\mathbb{F}_{q^m})| - 3(q - 1)}{(q - 1)^2} q^m - t^2,$$

where $|\mathcal{X}(\mathbb{F}_{q^m})|$ is the number of rational points on the projective curve \mathcal{X} over \mathbb{F}_{q^m} defined by the equation

$$\mathcal{X}: x^{q-1} + y^{q-1} + z^{q-1} = 0.$$

Proof. Obviously $M_0 = q - 1$, and

$$M_1 = \sum_{l=0}^{q-2} s(\gamma^l) = \frac{q-1}{q^m - 1} \sum_{l=0}^{q^m - 2} s(\gamma^l) = \frac{1}{t} \sum_{i=0}^{t-1} \sum_{l=0}^{q^m - 2} e(\gamma^{(q-1)i} \gamma^l) = -\frac{t}{t},$$

where the last equality follows by the orthogonality of characters. To prove the formula for M_2 we count the number N of solutions of the equation x + y = 0 in the group H of (q-1)th powers in $\mathbb{F}_{q^m}^*$. On the one hand N = t, and on the other hand, by the orthogonality of characters

$$q^{m}t = \sum_{x,y \in H} \sum_{u \in \mathbb{F}_{q^{m}}} e(u(x+y)) = t^{2} + \sum_{u \in \mathbb{F}_{q^{m}}^{*}} \left(\sum_{x \in H} e(ux)\right)^{2} = t^{2} + t \sum_{l=0}^{q-2} s(\gamma^{l})^{2}$$
$$= t^{2} + tM_{2},$$

from which the formula for M_2 follows.

Let N denote the number of solutions of equation

(3.1)
$$x^{q-1} + y^{q-1} + z^{q-1} = 0$$

in $\mathbb{F}_{q^m}^3$. It is easy to see ([9, Section 3]) that $N = N'_m + N_m$, where

$$N'_m = 3(q-1)(q^m - 1) + 1$$
7

and

$$q^{m}N_{m} = \sum_{u \in \mathbb{F}_{q^{m}}^{*}} \left(\sum_{x \in \mathbb{F}_{q^{m}}^{*}} e(ux^{q-1})\right)^{3} + (q^{m}-1)^{3}$$
$$= (q-1)^{3} \sum_{u \in \mathbb{F}_{q^{m}}^{*}} s(u)^{3} + (q^{m}-1)^{3}$$
$$= (q-1)^{3} t M_{3} + (q^{m}-1)^{3},$$

and consequently,

$$q^m N = 3(q-1)(q^m-1)q^m + q^m + (q-1)^3 t M_3 + (q^m-1)^3.$$

Since $\left|\mathcal{X}(\mathbb{F}_{q^m})\right| = (N-1)/(q^m-1)$, we obtain

$$(q-1)^3 \frac{q^m - 1}{q - 1} M_3 = q^m (q^m - 1) \left| \mathcal{X}(\mathbb{F}_{q^m}) \right| - 3(q-1)(q^m - 1)q^m - (q^m - 1)^3,$$

which simplifies to

$$(q-1)^2 M_3 = q^m \left| \mathcal{X}(\mathbb{F}_{q^m}) \right| - 3(q-1)q^m - (q^m-1)^2.$$

Since $(q^m - 1)^2 = (q - 1)^2 t^2$, we see that the claim is true also for M_3 . THEOREM 3.2. The minimum distance of $C^{\perp}(r, m)$ is at least three. Moreover,

if rm > 4, the number C_3^{\perp} of weight three codewords in $C^{\perp}(r,m)$ is given by

$$C_3^{\perp} = \frac{(q-1)^{m-3} \left((q-2)^m + (-1)^m (q^m + 3q - |\mathcal{X}(\mathbb{F}_{q^m})| - 5) \right)}{6}$$

Proof. Let $n = (q-1)^{m-1}$, and let $\mathbf{c} \in C^{\perp}(r,m)$. If $w(\mathbf{c}) = 2$ then

$$\operatorname{tr}(f_{\mathbf{a}}(\mathbf{x}_i) + f_{\mathbf{a}}(\mathbf{x}_j)) = \operatorname{tr}(f_{\mathbf{a}}(\mathbf{x}_i)) + \operatorname{tr}(f_{\mathbf{a}}(\mathbf{x}_j)) = 0$$

for some $1 \leq i < j \leq n$, say i = 1, j = 2, and for all $\mathbf{a} \in \mathbb{F}_q^m$. Let $1 \leq l \leq m-1$ be the index of the coordinate place where \mathbf{x}_1 and \mathbf{x}_2 differ, say l = 1. By choosing $\mathbf{a} = (a, 0, \dots, 0)$ we have tr(a(x + y)) = 0 for all $a \in \mathbb{F}_q$, and for some $x, y \in \mathbb{F}_q^*$ with $x \neq y$. (Here x and y are the first components of \mathbf{x}_1 and \mathbf{x}_2 .) This contradicts the surjectivity of tr. A similar argument also proves that $w(\mathbf{c}) \neq 1$.

Next we use Theorem 2.8 and Lemma 3.1 to prove the claimed formula for C_3^{\perp} . First,

$$\begin{split} f(C_0^{\perp},C_1^{\perp},C_2^{\perp}) &= f(1,0,0) = q^m \sum_{t=0}^3 t! S(3,t) 2^{3-t} \binom{n}{n-t} \\ &= q^m (4n+6n(n-1)+(n-2)(n-1)n) \\ &= (q-1)^{2m-2} ((q-1)^{m-1}+3)q^m, \end{split}$$

and second,

$$g(M_0, M_1, M_2, M_3) = \sum_{j=0}^3 \binom{3}{j} (-1)^{mj+h} (q-1)^{(m-1)(h-j+1)} M_j$$

= $-(q-1)^{4m-3} + 3(-1)^m (q-1)^{3(m-1)} - 3(q-1)^{2(m-1)} \left(q^m - \frac{q^m - 1}{q-1}\right)$
 $-(-1)^m (q-1)^{m-1} \left(\frac{|\mathcal{X}(\mathbb{F}_{q^m})| - 3(q-1)}{(q-1)^2} q^m - \frac{(q^m - 1)^2}{(q-1)^2}\right),$
8

or, equivalently,

$$(q-1)^{3-m}g(M_0, M_1, M_2, M_3) = (-1)^m - 3(q-1)^m + 3(-1)^m (q-1)^{2m} - (q-1)^{3m} + ((-1)^m (q^m + 3q - |\mathcal{X}(\mathbb{F}_{q^m})| - 5) - 3(q-2)(q-1)^m)q^m.$$

Finally, since

$$(q-1)^{3-m}w^{-3}\left(w^m(1-w^m)^3-\sum_{j=0}^3\binom{3}{j}(w^{j+1}-w^3)^m\right) = -(-1)^m+3(q-1)^m-3(-1)^m(q-1)^{2m}+(q-1)^{3m} -((q-1)^m+3)(q-1)^mq^m+(q-2)^mq^m,$$

we obtain

$$6C_3^{\perp} = (q-1)^{m-3}((q-2)^m + (-1)^m(q^m + 3q - |\mathcal{X}(\mathbb{F}_{q^m})| - 5)),$$

by Theorem 2.8. □

Example 3.3. If r = m = 2 then n = 3, and therefore the minimum distance of $C^{\perp}(2,2)$ is three. Hence, $C^{\perp}(2,2)$ is a repetition code.

Example 3.4. Consider the Melas code $C^{\perp}(r, 2)$. By [9, Theorem 1]

$$\left|\mathcal{X}(\mathbb{F}_{q^2})\right| = (1 - (-1)^r)(q - 1)^2 + 3(q - 1),$$

and consequently

$$C_3^{\perp} = (1 + (-1)^r)(q - 1)/6,$$

which is in accordance with [14, Table 6.1].

Example 3.5. Consider code $C^{\perp}(r,3)$. By [9, Theorem 2]

$$|\mathcal{X}(\mathbb{F}_{q^3})| = (2q+1-(-1)^r)(q-1)^2 + 3(q-1),$$

and therefore

$$C_3^{\perp} = (2q - 5 - (-1)^r)(q - 1)^2/6.$$

Remark. By generalizing the argument used in the proof of Theorem 3.2 to prove the non-existence of weight two codewords, it is easy to see that a check matrix for $C^{\perp}(r,m)$ is $(\mathbf{y}_1^T \ \mathbf{y}_2^T \dots \mathbf{y}_n^T)$ where $\mathbf{y}_i = (\mathbf{x}_i \ z_i)$ and z_i is the product of the inverses of the components of \mathbf{x}_i .

We shall see soon that the minimum distance of $C^{\perp}(r, m)$ is always three if m > 2. It will turn out that Theorem 3.2 together with the Hasse-Weil bound prove most of the cases. On the other hand, in case m = 4 it is too weak, and we shall use the following upper bound:

Lemma 3.6.

$$\left|\mathcal{X}(\mathbb{F}_{q^m})\right| < q^m + 3q + (q-1)^3 m^3 q^{\frac{m-3}{2}} - 4.$$

Proof. As we pointed out in the proof of Lemma 3.1, the number of solutions N of (3.1) satisfies

$$q^{m}N = (q-1)^{3} \left(\sum_{u \in \mathbb{F}_{q^{m}}^{*}} e(ux^{q-1})\right) + (q^{m}-1)^{3} + 3(q-1)(q^{m}-1)q^{m} + q^{m}$$

and then it is easily seen (see [9, Section 3]) that

$$q^{m}N = (-1)^{m-1}t(q-1)^{3} \sum_{u \in \mathbb{F}_{q}^{*}} k_{m-1}(u)^{3} + (q^{m}-1)^{3} + 3(q-1)(q^{m}-1)q^{m} + q^{m}.$$

Since $|\mathcal{X}(\mathbb{F}_{q^m})| = (N-1)/(q^m-1)$ we obtain

(3.2)
$$q^m |\mathcal{X}(\mathbb{F}_{q^m})| = (-1)^{m-1} (q-1)^2 \sum_{u \in \mathbb{F}_q^*} k_{m-1}(u)^3 + (q^m-1)^2 + 3(q-1)q^m.$$

Now Deligne's bound gives the inequality

(3.3)
$$\left|\sum_{u\in\mathbb{F}_q^*}k_{m-1}(u)^3\right| \le (q-1)m^3q^{\frac{3(m-1)}{2}},$$

and therefore

$$|\mathcal{X}(\mathbb{F}_{q^m})| \le (q-1)^3 m^3 q^{\frac{m-3}{2}} + q^m - 2 + 3(q-1) + q^{-m}.$$

THEOREM 3.7. The minimum distance of $C^{\perp}(r,m)$ is three unless r is odd and m = 2, in which case it is at least five.

Proof. Assume m = 2. If r = 2 the minimum distance d = 3 by Example 3.3, and if r > 2, then it is well known that d = 3 or $d \ge 5$ according as r is even or odd (see e.g. [14]).

CLAIM. If m > 2 then d = 3.

If m = 3 the Claim is true by Example 3.5. Assume m > 3. To prove the Claim it is enough, by Theorem 3.2, to show that

$$\epsilon := (q-2)^m + (-1)^m (q^m + 3q - |\mathcal{X}(\mathbb{F}_{q^m})| - 5)$$

is positive. By separating the cases according to the parity of m, and by using the Hasse-Weil bounds

$$q^m + 1 - (q-2)(q-3)q^{\frac{m}{2}} \le \left|\mathcal{X}(\mathbb{F}_{q^m})\right| \le q^m + 1 + (q-2)(q-3)q^{\frac{m}{2}},$$

we obtain

$$\epsilon > (q-2)^m - (q-2)(q-3)q^{\frac{m}{2}} - 3q - 6,$$

which is obviously positive if $m \ge 5$ and $r \ge 3$ (i.e. $q \ge 8$).

Assume m = 4 and $\epsilon = 0$. Then, by Lemma 3.6, we must have

$$\begin{aligned} &(q-2)^4 < 64\sqrt{q}(q-1)^3 + 1 \Leftrightarrow \\ &(q-1)^4 < 64\sqrt{q}(q-1)^3 + 4(q-1)^3 - 6(q-1)^2 + 4(q-1) \Leftrightarrow \\ &q-1 < 64\sqrt{q} + 4 - \frac{6}{q-1} + \frac{4}{(q-1)^2} < 64\sqrt{q} + 5. \end{aligned}$$

The inequality $q - 6 < 64\sqrt{q}$ implies that we must have $q \le 2^{12}$ i.e. $r \le 12$. Hence, if m = 4 and r > 12 the minimum distance is three. In the cases m = 4, $3 \le r \le 12$, we have verified this by calculating $|\mathcal{X}(\mathbb{F}_{q^4})|$ numerically (see Table 3.1).

In the remaining cases $r = 2, m \ge 4$, the Claim follows by Theorem 4.3 below, by which $C_3^{\perp} = 3^{m-3}(2^{m-1} \pm 1)$.

We computed $|\mathcal{X}(\mathbb{F}_{q^4})|$ by using (3.2). In the calculation of the three dimensional Kloosterman sums $k_3(a)$ over \mathbb{F}_q , $q = 2^r$ with $3 \leq r \leq 12$, we took advantage of the following result by Carlitz from [1] which related two and one dimensional Kloosterman sums:

THEOREM 3.8. For any $a \in \mathbb{F}_q^*$, we have

$$k_2(a) = k(a)^2 - q,$$

where $k(a) := k_1(a)$.

By Theorem 3.8 we have

$$k_{3}(a) = \sum_{x,y,z \in \mathbb{F}_{q}^{*}} \chi(x+y+z+a(xyz)^{-1}) = \sum_{x \in \mathbb{F}_{q}^{*}} \chi(x)k_{2}(ax^{-1})$$
$$= \sum_{x \in \mathbb{F}_{q}^{*}} \chi(x)k(ax^{-1})^{2} - q \sum_{x \in \mathbb{F}_{q}^{*}} \chi(x)$$
$$= \sum_{x \in \mathbb{F}_{q}^{*}} \chi(x)k(ax^{-1})^{2} + q,$$

and now it is easy to see that

$$k_{3}(a) = 2 \sum_{\substack{x \in \mathbb{F}_{q}^{*} \\ \operatorname{tr}(x) = 0}} k(ax^{-1})^{2} - \sum_{x \in \mathbb{F}_{q}^{*}} k(ax^{-1})^{2} + q$$
$$= 2 \sum_{\substack{x \in \mathbb{F}_{q}^{*} \\ \operatorname{tr}(x) = 0}} k(ax^{-1})^{2} - (q^{2} - q - 1) + q.$$

By tabulating the traces of elements of \mathbb{F}_q^* , the indices of those elements of \mathbb{F}_q^* having the trace equal to zero, and then, the range of k(u) as u varies over \mathbb{F}_q^* , before using the formula above, the data of Table 3.1 can quickly be verified.

Remark. The traces were calculated by making use of [4, Theorem 5.1].

4. The weight distribution of C(2,m) and $C^{\perp}(2,m)$. In this section we assume that m > 2. Let γ be a primitive element of $\mathbb{F}_{2^{2m}}$. To determine the weight distribution of C(2,m) and $C^{\perp}(2,m)$ we need the following result which has been proved already in [2] (see e.g. [8] for a different proof).

LEMMA 4.1. Let $\alpha \in \mathbb{F}_{2^{2m}}^*$. Then

$$\sum_{x \in \mathbb{F}_{2^{2m}}^*} e(\alpha x^3) = \begin{cases} (-1)^m 2^m - 1 & \text{if } 3 \nmid \operatorname{ind}_{\gamma} \alpha, \\ (-1)^{m+1} 2^{m+1} - 1 & \text{if } 3 \mid \operatorname{ind}_{\gamma} \alpha. \end{cases}$$

Lemma 4.1 together with Theorem 2.5 give the weight distribution of C(2, m):

THEOREM 4.2. The weight distribution of C(2,m) is given in the following table, where v runs over the integers $1, \ldots, m$.

THEOREM 4.3. For every non-negative integer h the number C_h^{\perp} of codewords of weight h in the dual $C^{\perp}(2,m)$ of C(2,m) is given by the recursion of Theorem 2.8 with

$$M_j = 2\left(\frac{(-2)^m - 1}{3}\right)^j + \left(\frac{(-2)^{m+1} - 1}{3}\right)^j \quad \forall j = 0, 1, \dots$$

Especially,

$$\begin{split} C_0^{\perp} &= 1, \ C_1^{\perp} = C_2^{\perp} = 0, \ C_3^{\perp} = 3^{m-3} (2^{m-1} \pm 1), \\ C_4^{\perp} &= 3^{m-5} \left(\frac{7^m - 3^{m+3} + 66}{8} + 3 \cdot 2^{2m-2} \pm 2^m \right), \\ C_5^{\perp} &= 3^{m-6} \left((5^{m-1} \pm 6) 2^{2m-3} - 3^{m+2} 2^{m-2} + 2^{3m-2} + 7 \cdot 2^{m+1} \pm \frac{55 - 3^{m+1}}{2} \right), \end{split}$$

where $\pm = (-1)^{m}$.

Proof. By Lemma 4.1 the moments M_j in Theorem 2.8 are of the claimed form, the claimed formulae for the low-weight codewords can be verified e.g. by using *Mathematica*.

Remark. In a similar manner as was done above, the weight distribution of the codes C(r, m) and $C^{\perp}(r, m)$ with r = 3 and r = 4 can be calculated as well.

5. The weight distribution of C(r,3) and $C^{\perp}(r,3)$. In this section we assume that r > 2. Let γ be a primitive element of \mathbb{F}_{q^3} , and let $g = N(\gamma)$ be a primitive element of $\mathbb{F} = \mathbb{F}_q$.

Now, by Theorems 2.3 and 3.8, we have the following:

LEMMA 5.1. For each integer i satisfying $0 \le i \le q-2$, we have

$$s(\gamma^i) = k(g^i)^2 - q.$$

Hence, the question about the distribution of the values of $s(\gamma^i)$ is equivalent to the question about the distribution of the values of (one dimensional) Kloosterman sums over \mathbb{F}^* . This question has been answered by Lachaud and Wolfmann in [5, Theorem 3.4 and Proposition 9.1]:

THEOREM 5.2. The set of values S of k(a) as a runs over \mathbb{F}_{a}^{*} is

$$S = \{ j \in \mathbb{Z} \mid |j| < 2\sqrt{q} \text{ and } j \equiv -1 \pmod{4} \}.$$

Moreover, each value $j \in S$ is attained exactly $H(j^2 - 4q)$ times where H(d) is the Kronecker class number of d.

As a corollary we obtain, by using Theorem 2.5, the weight distribution of C(r, 3): THEOREM 5.3. The weight distribution of C(r, 3) is given in the following table where j runs over the set $\{|j| < 2^{(r+2)/2} \text{ and } j \equiv -1 \pmod{4}\}$:

w eight	frequency
0	1
$2^r(2^{r-1}-1)$	$3(2^r - 1)^2$
$2^{r-1}(2^r-1)$	$3(2^r - 1)$
$(2^r(2^r-1)-j^2+1)/2$	$H(j^2 - 2^{r+2})(2^r - 1)^2$

To give the weight distribution of $C^{\perp}(r,3)$ we denote by K_h the *h*th moment of the Kloosterman sum k(a) over the field \mathbb{F} , i.e.

$$K_h = \sum_{a \in \mathbb{F}^*} k(a)^h,$$

and use the following result from [10] which was proved by using results from [14]: THEOREM 5.4. Let $q = 2^r$. Then

$$\begin{split} K_0 &= q-1, \quad K_1 = 1, \quad K_2 = q^2 - q - 1, \quad K_3 = \pm q^2 + 2q + 1, \\ K_4 &= 2q^3 - 2q^2 - 3q - 1, \\ K_5 &= (t_7 \pm 4)q^3 + 5q^2 + 4q + 1, \\ K_6 &= 5q^4 - (5 + (-1)^r)q^3 - 9q^2 - 5q - 1, \\ K_7 &= (t_9 + 6t_7 \pm 14 + 1)q^4 + 14q^3 + 14q^2 + 6q + 1, \\ K_8 &= 14q^5 - (15 \pm 7)q^4 - 28q^3 - 20q^2 - 7q - 1, \\ K_9 &= (t_{11} + 8t_9 + 27t_7 + 8 \pm 48)q^5 + 42q^4 + 48q^3 + 27q^2 + 8q + 1, \\ K_{10} &= 42q^6 - (51 \pm 35)q^5 - 90q^4 - 75q^3 - 35q^2 - 9q - 1 + 2048\tau(q/4) - \tau(q), \end{split}$$

where \pm denotes $(-1)^r$, $t_7 = \alpha_7^r + \bar{\alpha}_7^r$ with $\alpha_7 = (1 + \sqrt{-15})/4$, $t_9 = \alpha_9^r + \bar{\alpha}_9^r$ with $\alpha_9 = (-5 + \sqrt{-39})/8$, $t_{11} = \beta_{11}^r + \bar{\beta}_{11}^r + \eta_{11}^r + \bar{\eta}_{11}^r$, with $\beta_{11} = (-3 + \sqrt{505} + \sqrt{-510 - 6\sqrt{505}})/32$, $\eta_{11} = (-3 - \sqrt{505} + \sqrt{-510 + 6\sqrt{505}})/32$, and τ is the Ramanujan's tau-function.

Remark. It is not hard to see that

$$\tau(q) - 2048\tau(q/4) = \mu_2^r + \bar{\mu}_2^r = D_r(-24, 2048),$$

where $\mu_2 = -12 + 4\sqrt{-119}$ and $D_r(x, 2048)$ is the Dickson polynomial of the first kind of degree r with parameter 2048 (see [11, Section 2]).

THEOREM 5.5. For every non-negative integer h the number C_h^{\perp} of codewords of weight h in the dual $C^{\perp}(r,3)$ of C(r,3) is given by

$$q^{3}h!C_{h}^{\perp} = f(C_{0}^{\perp}, \dots, C_{h-1}^{\perp}) + g(M_{0}, \dots, M_{h}) + 3(q-1)^{2}(-q)^{h}((q-2)^{h} + (q-1)^{h-1}),$$
13

where

$$f(C_0^{\perp}, \dots, C_{h-1}^{\perp}) = q^3 \sum_{i=0}^{h-1} (-1)^{h+i+1} C_i^{\perp} \sum_{t=i}^h t! S(h, t) 2^{h-t} \binom{n-i}{n-t},$$
$$g(M_0, \dots, M_h) = \sum_{j=0}^h \binom{h}{j} (-1)^{j+h} (q-1)^{2(h-j+1)} \sum_{i=0}^j \binom{j}{i} (-q)^{j-i} K_{2i}$$

Especially,

$$\begin{split} C_0^{\perp} &= 1, \ C_1^{\perp} = C_2^{\perp} = 0, \ C_3^{\perp} = (q-1)^2 (2q-5\mp 1)/3!, \\ C_4^{\perp} &= (q-1)^2 (q^3-6q^2+(17\mp 3)q-24)/4!, \\ C_5^{\perp} &= (q-1)^2 (q^5-8q^4+14q^3+24q^2-4(7\pm 5)q-109\mp 10) \\ &\quad + (2048\tau(q/4)-\tau(q))/q^3)/5!. \end{split}$$

Proof. The moments M_j in Theorem 2.8 are, by Lemma 5.1, of the form

$$M_{j} = \sum_{l=0}^{q-2} (k(g^{l})^{2} - q)^{j} = \sum_{l=0}^{q-2} \sum_{i=0}^{j} {j \choose i} k(g^{l})^{2i} (-q)^{j-i}$$
$$= \sum_{i=0}^{j} {j \choose i} (-q)^{j-i} \sum_{l=0}^{q-2} k(g^{l})^{2i}$$
$$= \sum_{i=0}^{j} {j \choose i} (-q)^{j-i} K_{2i},$$

and the first claim follows now by Theorem 2.8. The validity of the formulae for the number of low-weight codewords can be verified by using *Mathematica*. \Box

Remark. By Theorem 5.2, moments K_h can be calculated effectively for each non-negative integer h by

$$K_h = \sum_{\substack{|j| < 2\sqrt{q} \\ j \equiv -1 \ (4)}} H(j^2 - 4q)j^h,$$

provided that r is not too large (a "H(d)-calculator" can be found in [7]).

6. Acknowledgments. The author would like to thank the anonymous reviewers for their detailed comments.

REFERENCES

- [1] L. CARLITZ, A note on exponential sums, Pacific J. Math., 30 (1969), pp. 35–37.
- [2] L. CARLITZ, Explicit evaluation of certain exponential sums, Math. Scand., 44 (1979), pp. 5–16.
 [3] K. CHINEN AND T. HIRAMATSU, Hyper-Kloosterman sums and their applications to the coding
- theory, Appl. Algebra Eng. Commun. Comput., 12 (2001), pp. 381–390.
- [4] K. CHINEN, On some properties of the hyper-Kloosterman codes, Tokyo J. Math., 26 (2003), pp. 55–65.
- [5] G. LACHAUD AND J. WOLFMANN, The weights of orthogonals of the extended quadratic binary Goppa codes, IEEE Trans. Inform. Theory, 36 (1990), pp. 686–692.
- [6] F. J. MACWILLIAMS AND N. J.A. SLOANE, The Theory of Error Correcting Codes, Amsterdam: North-Holland, 1977.

- [7] K. MATTHEWS, Some BCMath/PHP number theory programs, Available: http://www.numbertheory.org/php
- [8] M. MOISIO, A note on evaluations of some exponential sums, Acta Arith., 93 (2000), pp. 117–119.
- M. MOISIO, On the number of rational points on some families of Fermat curves over finite fields, Finite Fields Appl., 13 (2007), pp. 546–562.
- [10] M. MOISIO, The moments of a Kloosterman sum and the weight distribution of a Zetterberg type binary cyclic code, IEEE Trans. Inform. Theory, 53 (2007), pp. 843–847.
- [11] M. MOISIO, On the moments of Kloosterman sums and fibre products of Kloosterman curves, Finite Fields Appl., to appear.
- [12] C.J. MORENO AND O. MORENO, The MacWilliams-Sloane conjecture on the tightness of the Carlitz-Uchiyama bound and the weights of duals of BCH codes, IEEE Trans. Inform. Theory, 40 (1994), pp. 1894–1907.
- [13] V. PLESS, Power moment identities on weight distributions in error correcting codes, Information and Control, 6 (1963), pp. 147–152.
- [14] R. SCHOOF AND M. VAN DER VLUGT, Hecke operators and the weight distributions of certain codes, J. Combin. Theory Ser., A 57 (1991), pp. 163–186.