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Abstract. Binary hyper-Kloosterman codes C(r, m) of length (2r − 1)m−1 are a quasi-cyclic
generalization of the dual of the Melas code of length 2r − 1. In this note the duals C⊥(r, m) i.e. a
generalization of the Melas code C⊥(r, 2) itself are studied. In particular, the minimum distance of
C⊥(r, m) for all r, m ≥ 2, the weight distribution of C(2, m) and C⊥(2, m) for all m ≥ 2, and the
weight distribution of C(r, 3) and C⊥(r, 3) for all r ≥ 2 is obtained.
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1. Introduction. Let r,m ≥ 2 be integers and let q = 2r. Let F := Fq denote
the finite field of q elements and let F∗ := F \ {0}. For a := (a1, . . . , am) ∈ Fm we
define a rational function in m− 1 variables:

fa(X) := a1X1 + · · · + am−1Xm−1 +
am

X1 · · ·Xm−1
.

Let x1, . . . ,xn be a fixed ordering of the elements of (F∗)m−1.
In [3] the following linear code C(r,m) was introduced and it was called a hyper-

Kloosterman code:

C(r,m) =
{

c(a) :=
(

tr(fa(x1)), . . . , tr(fa(xn))
)

| a ∈ Fm
}

,

here tr is the trace function from F onto F2. These codes are a quasi-cyclic general-
ization of the Kloosterman code, i.e. the dual of the Melas code, of length 2r −1. For
the proof of the quasi-cyclicity we refer to [4, Theorem 4.2].

In this note we are interested in the duals C⊥(r,m) which are a generalization
of the Melas code C⊥(r, 2) (r > 2). We shall show that the minimum distance of
C⊥(r,m) is three if m > 2, and give the weight distribution of C(2,m) and C⊥(2,m)
for all m ≥ 2, and the weight distribution of C(r, 3) and C⊥(r, 3) for all r ≥ 2. We
remark that the weight distributions of C(r, 2) and C⊥(r, 2) (r > 2) were obtained in
[5] and in [14], respectively.

The rest of this paper is organized as follows. In Section 2 we first consider some
simple basic properties of hyper-Kloosterman codes. Next, the weight distribution
of C(r,m) is given in terms of certain monomial exponential sums (Theorem 2.5),
and then, a recursion formula for the weight distribution of C⊥(r,m) involving the
moments Mj of those exponential sums is obtained by using the Pless power moment
identity (Theorem 2.8).

In Section 3 we first connect the moments Mj to a Fermat curve X , and then
obtain the number of weight three codewords in C⊥(r,m) in terms of the number of
rational points on X (Theorem 3.2). Finally, we determine the minimum distance of
C⊥(r,m) by either using our explicit knowledge of the number of rational points on
X or by estimating that number by either the Hasse-Weil bound or a bound which
we shall derive by using Deligne’s bound on hyper-Kloosterman sums (Theorem 3.7).
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In a few cases we are forced to calculate the number of rational points numerically
since neither of those bounds is then strong enough.

In Sections 4 and 5 we determine the weight distribution of the codes C(r,m) and
C⊥(r,m) in the special cases r = 2, m > 2, and r > 2, m = 3, respectively. In the
latter case a relation between one and two dimensional Kloosterman sums from [1] is
used, and then, the weight distribution of C(r, 3) is obtained by using results on the
distribution of values of Kloosterman sums obtained in [5] (Theorem 5.3). Finally, the
weight distribution of C⊥(r, 3) is obtained in terms of even moments of Kloosterman
sums calculated in [10] by using result from [14]. Especially, explicit formulae for the
number of codewords of weights from three to five is given (Theorem 5.5).

2. On the weight distribution of C(r,m) and C⊥(r,m). Let χ be the canon-
ical additive character of F. Let

km−1(a) =
∑

x1,...,xm−1∈F∗

χ(a1x1 + . . .+ am−1xm−1 + am(x1 · · ·xm−1)
−1),

be an (m− 1)-dimensional Kloosterman sum. If a = (1, 1, . . . , 1, a) with a 6= 0 we use
the notation

km−1(a) := km−1(a).

Let v be the number of zero-components of a. Assume v > 0. If am = 0 then, by
the orthogonality of characters, we get

km−1(a) =
∑

x1,...,xm−1∈F∗

χ(a1x1 + · · · + am−1xm−1) = (−1)m−v(q − 1)v−1.

If am 6= 0 and e.g. a1 = 0 then, by the substitution y = x−1
1 , we obtain

km−1(a) =
∑

x2,...,xm−1∈F∗

χ(a2x2 + · · · + am−1xm−1)
∑

y∈F∗

χ
( am

x2 · · ·xm−1
y
)

= −
∑

x2,...,xm−1∈F∗

χ(a2x2 + · · · + am−1xm−1)

= −(−1)m−2−(v−1)(q − 1)v−1.

Hence we have
Lemma 2.1. If exactly v > 0 of the components of a ∈ Fm are zeros, then

km−1(a) = (−1)m−v(q − 1)v−1.

If v = 0, then we have the following well known bound by Deligne:

|km−1(a)| ≤ mq
m−1

2 .

Lemma 2.2. The dimension k of C(r,m) over F2 is rm if rm > 4. If r = m = 2,
then k = 2.

Proof. Consider group homomorphism

Ψ : (Fm,+) −→ C(r,m),a 7→
(

tr(fa(x1)), . . . , tr(fa(xn))
)

.(2.1)
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If a belongs to Ker(Ψ) then km−1(a) = (q − 1)m−1. If rm > 4, this can happen
if and only if a = 0, by Deligne’s bound and by Lemma 2.1, and therefore ψ is an
isomorphism.

If r = m = 2 and a, b ∈ F∗
4, then km−1((a, b)) = km−1(ab). If ab = 1, then

km−1(ab) = 3 and otherwise km−1(ab) = −1. Hence, in this case, |Ker(Ψ)| = 4 and
consequently |C(r,m)| = 16/4 = 4.

Remark. A different proof for this result is given in [4, Theorem 3.1]

The Hamming weight w(c(a)) of codeword c(a) is given by

w(c(a)) =
∑

x∈(F∗)m−1

1

2

(

1 − (−1)tr(fa(x))
)

=
1

2

(

(q − 1)m−1 − km−1(a)
)

.(2.2)

Next we express w(c(a)) by means of a monomial exponential sum over Fqm . Let
e denote the canonical additive character of Fqm . Let t = (qm − 1)/(q − 1) and let
N(α) := αt denote the norm of α from Fqm to Fq. Let γ be a primitive element of
Fqm , and let

s(α) =

t−1
∑

i=0

e
(

αγ(q−1)i
)

.

We have the following result from [9, Theorem 3]:
Theorem 2.3. Let α ∈ F∗

qm and let a = N(α). Then

∑

x∈F
∗
qm

e(αxq−1) = (−1)m−1(q − 1)km−1(a),

or, equivalently,

km−1(a) = (−1)m−1s(α).

Lemma 2.4. Let a ∈ (F∗)m and let b = a1 · · ·am. Let g := N(γ) be a primitive
element of F, i = indg(b), and β = γi. Then

w(c(a)) =
1

2

(

(q − 1)m−1 − km−1(b)
)

=
1

2

(

(q − 1)m−1 + (−1)ms(β)
)

.

Proof. The first equality follows easily by equation (2.2), and the second one then
by Theorem 2.3.

Let S denote the range of s(γi) as i varies over the set I := {0, . . . , q − 2}, and,
for j ∈ S, let Nj denote the number of elements i in I such that s(γi) = j, i.e.

S =
{

s(γi) | i ∈ I
}

,

and

Nj =
∣

∣{i ∈ I | s(γi) = j}
∣

∣.
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Theorem 2.5. Assume rm > 4. For a ∈ Fm let v be the number of zero
components of a. If v > 0, there are

(

m

v

)

(q − 1)m−v codewords c(a) of weight ((q − 1)m−1 − (−1)m−v(q − 1)v−1)/2,

and otherwise, for each j ∈ S, there are

Nj(q − 1)m−1 codewords c(a) of weight ((q − 1)m−1 + (−1)mj)/2

in C(r,m). Moreover, these are the only weights in C(r,m).

Proof. First, for each a ∈ Fm, there exists exactly one codeword c(a) ∈ C(r,m),
by isomorphism (2.1). If v > 0 the claim follows now by Lemmas 2.1 and 2.4.

Assume v = 0. For each b ∈ F∗ there are exactly (q − 1)m−1 vectors a ∈ (F∗)m

such that the product of the components of a equals b. The second claim follows now
by Lemma 2.4 since there is exactly one i in I such that N(γi) = b. The last claim is
now obvious.

Corollary 2.6. The weights in C(r,m) are divisible by 2ℓ−1, where ℓ = min{r,m}.

Proof. Let α ∈ Fqm . By [12, Theorem 2], the exponential sum

∑

x∈Fqm

e(αxq−1)

is divisible by 2⌈rm/s⌉ where s is the binary weight of q− 1. Now s = r, and therefore
∑

x∈Fqm
e(αxq−1) = 2mz for some z ∈ Z.

Let a ∈ (F∗)m, and let β ∈ F∗
qm such that N(β) = a1 · · · am. Now

(q − 1)w(c(a)) =
1

2

(

(q − 1)m + (−1)m(q − 1)s(β)
)

=
1

2

(

(q − 1)m + (−1)m
∑

x∈F
∗
qm

e(αxq−1)
)

=
1

2

(

(q − 1)m + (−1)m
∑

x∈Fqm

e(αxq−1) − (−1)m
)

=
1

2
(qm −mqm−1 + · · · + (−1)m−1mq + (−1)m2mz),

and, as q = 2r, the claim follows in this case. If some of the components of a is zero,
then it is easily seen that 2r−1 is a factor of w(c(a)).

Remark. A different proof for this result is given in [3, Corollary 4.3].

To obtain the weight distribution of C⊥(r,m) we use the Pless power moment
identity proved in [13] (see also e.g. [6, p. 131]):

Theorem 2.7 (Power moment identity). Let B be a binary linear [n, k] code,
and let Bi (resp. B⊥

i ) denote the number of codewords of weight i in B (resp. in
B⊥). Then, for h = 0, 1, . . ., we have:

n
∑

i=0

ihBi =

n
∑

i=0

(−1)iB⊥
i

h
∑

t=0

t!S(h, t)2k−t

(

n− i

n− t

)

,
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where

S(h, t) :=
1

t!

t
∑

j=0

(−1)t−j

(

t

j

)

jh (a Stirling number of the second kind),

and the binomial coefficient
(

u
v

)

is defined to be zero whenever v > u or v < 0.
For a non-negative integer j we denote by Mj the jth moment of the period s(γl),

or

Mj :=

q−2
∑

l=0

s(γl)j .

Theorem 2.8. Assume rm > 4, and let w = 1−q. The number C⊥
h of codewords

of weight h in C⊥(r,m) is given by

qmh!C⊥
h = f(C⊥

0 , . . . , C
⊥
h−1) + g(M0, . . . ,Mh)

+(−1)(m+1)(h+1)w−h
(

wm(1 − wm)h −
h
∑

j=0

(

h

j

)

(−1)j(wj+1 − wh)m
)

,

where

f(C⊥
0 , . . . , C

⊥
h−1)= qm

h−1
∑

i=0

(−1)h+i+1C⊥
i

h
∑

t=i

t!S(h, t)2h−t

(

n− i

n− t

)

,

g(M0, . . . ,Mh) =
h
∑

j=0

(

h

j

)

(−1)mj+h(q − 1)(m−1)(h−j+1)Mj .

Moreover, if m = 3, the formula simplifies to

q3h!C⊥
h = f(C⊥

0 , . . . , C
⊥
h−1) + g(M0, . . . ,Mh)

+3(q − 1)2(−q)h((q − 2)h + (q − 1)h−1).

Proof. We choose B = C(r,m) in the power moment identity. Then, by Theo-
rem 2.5,

n
∑

i=0

ihCi =

m
∑

v=1

(

m

v

)

(q − 1)m−v2−h((q − 1)m−1 − (−1)m−v(q − 1)v−1)h

+

q−2
∑

l=0

2−h(q − 1)m−1((q − 1)m−1 + (−1)ms(γl))h =: S1 + S2,

where

2hS1 =
m
∑

v=1

(

m

v

)

(q − 1)m−v((q − 1)m−1 − (−1)m−v(q − 1)v−1)h

and

2hS2 = (q − 1)m−1

q−2
∑

l=0

((q − 1)m−1 + (−1)ms(γl))h.
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First, we manipulate S2 somewhat:

2hS2 = (q − 1)m−1

q−2
∑

l=0

h
∑

j=0

(

h

j

)

(−1)mjs(γl)j(q − 1)(m−1)(h−j)

=
h
∑

j=0

(

h

j

)

(−1)mj(q − 1)(m−1)(h−j+1)

q−2
∑

l=0

s(γl)j

=

h
∑

j=0

(

h

j

)

(−1)mj(q − 1)(m−1)(h−j+1)Mj.

Secondly we consider S1. If m = 3, then

2hS1 = 3(q − 1)2qh((q − 2)h + (q − 1)h−1).

Next we write S1 in the form from which we can derive explicit formulae for the number
of low-weight codewords in the duals C⊥(r,m) for an arbitrary integer m ≥ 2:

2hS1 = (q − 1)m−1
m
∑

v=1

(

m

v

)

(q − 1)(v−1)(h−1)((q − 1)m−v + (−1)m−v−1)h

= (q − 1)m−1
m
∑

v=1

(

m

v

)

(q − 1)(v−1)(h−1)(−1)(m−v−1)h(1 − (1 − q)m−v)h

= (−1)(m−1)h(−w)m−1
h
∑

j=0

(

h

j

)

(−1)j
m
∑

v=1

(

m

v

)

(−1)vh(−w)(v−1)(h−1)w(m−v)j

= (−1)(m−1)h(−w)−h
h
∑

j=0

(

h

j

)

(−1)j
m
∑

v=1

(

m

v

)

wvh(−w)m−vw(m−v)j

= (−1)(m−1)h+m(−w)−h
h
∑

j=0

(

h

j

)

(−1)j
m
∑

v=1

(

m

v

)

(−1)vwvhw(m−v)(j+1)

= (−1)m(h+1)w−h
h
∑

j=0

(

h

j

)

(−1)j
(

(

wj+1 − wh
)m − wm(j+1)

)

.

Since

h
∑

j=0

(

h

j

)

(−1)jwm(j+1) = (1 − q)m
h
∑

j=0

(

h

j

)

(−1)j(1 − q)mj

= wm(1 − wm)h,

we have

2hS1 = (−1)m(h+1)w−h
h
∑

j=0

(

h

j

)

(−1)j
(

wj+1 − wh
)m

−(−1)m(h+1)wm−h(1 − wm)h.
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As the left hand side of the power moment identity equals S1 + S2, and the right
hand side equals

n
∑

i=0

(−1)iC⊥
i

h
∑

t=0

t!S(h, t)2rm−t

(

n− i

n− t

)

=

h
∑

i=0

(−1)iC⊥
i

h
∑

t=i

t!S(h, t)2rm−t

(

n− i

n− t

)

=
qm

2h

h
∑

i=0

(−1)iC⊥
i

h
∑

t=i

t!S(h, t)2h−t

(

n− i

n− t

)

,

the claims follow now easily.

3. The minimum distance of C⊥(r,m). To determine the minimum distance
of C⊥(r,m) we need some auxiliary results. We recall that t = (qm − 1)/(q − 1) and
F∗

qm = 〈γ〉.
Lemma 3.1. The first four moments Mj in Theorem 2.8 are given by

M0= q − 1, M1 = −1, M2 = qm − t,

M3=
|X (Fqm)| − 3(q − 1)

(q − 1)2
qm − t2,

where |X (Fqm)| is the number of rational points on the projective curve X over Fqm

defined by the equation

X : xq−1 + yq−1 + zq−1 = 0.

Proof. Obviously M0 = q − 1, and

M1 =

q−2
∑

l=0

s(γl) =
q − 1

qm − 1

qm−2
∑

l=0

s(γl) =
1

t

t−1
∑

i=0

qm−2
∑

l=0

e(γ(q−1)iγl) = − t
t
,

where the last equality follows by the orthogonality of characters. To prove the formula
for M2 we count the number N of solutions of the equation x+ y = 0 in the group H
of (q − 1)th powers in F∗

qm . On the one hand N = t, and on the other hand, by the
orthogonality of characters

qmt =
∑

x,y∈H

∑

u∈Fqm

e(u(x+ y)) = t2 +
∑

u∈F
∗
qm

(

∑

x∈H

e(ux)

)2

= t2 + t

q−2
∑

l=0

s(γl)2

= t2 + tM2,

from which the formula for M2 follows.
Let N denote the number of solutions of equation

xq−1 + yq−1 + zq−1 = 0(3.1)

in F3
qm . It is easy to see ([9, Section 3]) that N = N ′

m +Nm, where

N ′
m = 3(q − 1)(qm − 1) + 1
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and

qmNm =
∑

u∈F
∗
qm

(

∑

x∈F
∗
qm

e(uxq−1)
)3

+ (qm − 1)3

= (q − 1)3
∑

u∈F
∗
qm

s(u)3 + (qm − 1)3

= (q − 1)3tM3 + (qm − 1)3,

and consequently,

qmN = 3(q − 1)(qm − 1)qm + qm + (q − 1)3tM3 + (qm − 1)3.

Since
∣

∣X (Fqm )
∣

∣ = (N − 1)/(qm − 1), we obtain

(q − 1)3
qm − 1

q − 1
M3 = qm(qm − 1)

∣

∣X (Fqm )
∣

∣− 3(q − 1)(qm − 1)qm − (qm − 1)3,

which simplifies to

(q − 1)2M3 = qm
∣

∣X (Fqm )
∣

∣− 3(q − 1)qm − (qm − 1)2.

Since (qm − 1)2 = (q − 1)2t2, we see that the claim is true also for M3.
Theorem 3.2. The minimum distance of C⊥(r,m) is at least three. Moreover,

if rm > 4, the number C⊥
3 of weight three codewords in C⊥(r,m) is given by

C⊥
3 =

(q − 1)m−3
(

(q − 2)m + (−1)m(qm + 3q − |X (Fqm )| − 5)
)

6

Proof. Let n = (q − 1)m−1, and let c ∈ C⊥(r,m). If w(c) = 2 then

tr(fa(xi) + fa(xj)) = tr(fa(xi)) + tr(fa(xj)) = 0

for some 1 ≤ i < j ≤ n, say i = 1, j = 2, and for all a ∈ Fm
q . Let 1 ≤ l ≤ m − 1

be the index of the coordinate place where x1 and x2 differ, say l = 1. By choosing
a = (a, 0, . . . , 0) we have tr(a(x + y)) = 0 for all a ∈ Fq, and for some x, y ∈ F∗

q with
x 6= y. (Here x and y are the first components of x1 and x2.) This contradicts the
surjectivity of tr. A similar argument also proves that w(c) 6= 1.

Next we use Theorem 2.8 and Lemma 3.1 to prove the claimed formula for C⊥
3 .

First,

f(C⊥
0 , C

⊥
1 , C

⊥
2 ) = f(1, 0, 0) = qm

3
∑

t=0

t!S(3, t)23−t

(

n

n− t

)

= qm(4n+ 6n(n− 1) + (n− 2)(n− 1)n)

= (q − 1)2m−2((q − 1)m−1 + 3)qm,

and second,

g(M0,M1,M2,M3) =

3
∑

j=0

(

3

j

)

(−1)mj+h(q − 1)(m−1)(h−j+1)Mj

= −(q − 1)4m−3 + 3(−1)m(q − 1)3(m−1) − 3(q − 1)2(m−1)

(

qm − qm − 1

q − 1

)

−(−1)m(q − 1)m−1

( |X (Fqm)| − 3(q − 1)

(q − 1)2
qm − (qm − 1)2

(q − 1)2

)

,
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or, equivalently,

(q − 1)3−mg(M0,M1,M2,M3) = (−1)m − 3(q − 1)m + 3(−1)m(q − 1)2m

− (q − 1)3m +
(

(−1)m(qm + 3q − |X (Fqm)| − 5) − 3(q − 2)(q − 1)m
)

qm.

Finally, since

(q − 1)3−mw−3
(

wm(1 − wm)3 −
3
∑

j=0

(

3

j

)

(wj+1 − w3)m
)

=

− (−1)m + 3(q − 1)m − 3(−1)m(q − 1)2m + (q − 1)3m

− ((q − 1)m + 3)(q − 1)mqm + (q − 2)mqm,

we obtain

6C⊥
3 = (q − 1)m−3((q − 2)m + (−1)m(qm + 3q − |X (Fqm )| − 5)),

by Theorem 2.8.
Example 3.3. If r = m = 2 then n = 3, and therefore the minimum distance of

C⊥(2, 2) is three. Hence, C⊥(2, 2) is a repetition code.
Example 3.4. Consider the Melas code C⊥(r, 2). By [9, Theorem 1]

∣

∣X (Fq2)
∣

∣ = (1 − (−1)r)(q − 1)2 + 3(q − 1),

and consequently

C⊥
3 = (1 + (−1)r)(q − 1)/6,

which is in accordance with [14, Table 6.1].
Example 3.5. Consider code C⊥(r, 3). By [9, Theorem 2]

∣

∣X (Fq3 )
∣

∣ = (2q + 1 − (−1)r)(q − 1)2 + 3(q − 1),

and therefore

C⊥
3 = (2q − 5 − (−1)r)(q − 1)2/6.

Remark. By generalizing the argument used in the proof of Theorem 3.2 to prove
the non-existence of weight two codewords, it is easy to see that a check matrix for
C⊥(r,m) is (yT

1 yT
2 . . .y

T
n ) where yi = (xi zi) and zi is the product of the inverses of

the components of xi.
We shall see soon that the minimum distance of C⊥(r,m) is always three if m > 2.

It will turn out that Theorem 3.2 together with the Hasse-Weil bound prove most of
the cases. On the other hand, in case m = 4 it is too weak, and we shall use the
following upper bound:

Lemma 3.6.

∣

∣X (Fqm )
∣

∣ < qm + 3q + (q − 1)3m3q
m−3

2 − 4.

9



Proof. As we pointed out in the proof of Lemma 3.1, the number of solutions N
of (3.1) satisfies

qmN = (q − 1)3
(

∑

u∈F
∗
qm

e(uxq−1)
)

+ (qm − 1)3 + 3(q − 1)(qm − 1)qm + qm,

and then it is easily seen (see [9, Section 3]) that

qmN = (−1)m−1t(q − 1)3
∑

u∈F∗
q

km−1(u)
3 + (qm − 1)3 + 3(q − 1)(qm − 1)qm + qm.

Since |X (Fqm)| = (N − 1)/(qm − 1) we obtain

qm|X (Fqm )| = (−1)m−1(q − 1)2
∑

u∈F∗
q

km−1(u)
3 + (qm − 1)2 + 3(q − 1)qm.(3.2)

Now Deligne’s bound gives the inequality
∣

∣

∣

∑

u∈F∗
q

km−1(u)
3
∣

∣

∣
≤ (q − 1)m3q

3(m−1)
2 ,(3.3)

and therefore

|X (Fqm )| ≤ (q − 1)3m3q
m−3

2 + qm − 2 + 3(q − 1) + q−m.

Theorem 3.7. The minimum distance of C⊥(r,m) is three unless r is odd and
m = 2, in which case it is at least five.

Proof. Assume m = 2. If r = 2 the minimum distance d = 3 by Example 3.3, and
if r > 2, then it is well known that d = 3 or d ≥ 5 according as r is even or odd (see
e.g. [14]).

Claim. If m > 2 then d = 3.
If m = 3 the Claim is true by Example 3.5. Assume m > 3. To prove the Claim it is
enough, by Theorem 3.2, to show that

ǫ := (q − 2)m + (−1)m(qm + 3q − |X (Fqm)| − 5)

is positive. By separating the cases according to the parity of m, and by using the
Hasse-Weil bounds

qm + 1 − (q − 2)(q − 3)q
m
2 ≤

∣

∣X (Fqm)
∣

∣ ≤ qm + 1 + (q − 2)(q − 3)q
m
2 ,

we obtain

ǫ > (q − 2)m − (q − 2)(q − 3)q
m
2 − 3q − 6,

which is obviously positive if m ≥ 5 and r ≥ 3 (i.e. q ≥ 8).
Assume m = 4 and ǫ = 0. Then, by Lemma 3.6, we must have

(q − 2)4< 64
√
q(q − 1)3 + 1 ⇔

(q − 1)4< 64
√
q(q − 1)3 + 4(q − 1)3 − 6(q − 1)2 + 4(q − 1) ⇔

q − 1 < 64
√
q + 4 − 6

q − 1
+

4

(q − 1)2
< 64

√
q + 5.

10



Table 3.1

r ǫ

3 23 · 3 · 72

4 2 · 33 · 52 · 37
5 24 · 32 · 5 · 312

6 2 · 35 · 72 · 641
7 23 · 32 · 7 · 31 · 1272

8 2 · 33 · 52 · 7 · 172 · 1531
9 28 · 3 · 5 · 72 · 67 · 732

10 2 · 33 · 115 · 312 · 131
11 23 · 33 · 11 · 232 · 892 · 1759
12 2 · 35 · 52 · 72 · 132 · 113 · 24709

The inequality q − 6 < 64
√
q implies that we must have q ≤ 212 i.e. r ≤ 12. Hence,

if m = 4 and r > 12 the minimum distance is three. In the cases m = 4, 3 ≤ r ≤ 12,
we have verified this by calculating

∣

∣X (Fq4 )
∣

∣ numerically (see Table 3.1).

In the remaining cases r = 2, m ≥ 4, the Claim follows by Theorem 4.3 below,
by which C⊥

3 = 3m−3(2m−1 ± 1).

We computed
∣

∣X (Fq4)
∣

∣ by using (3.2). In the calculation of the three dimensional
Kloosterman sums k3(a) over Fq, q = 2r with 3 ≤ r ≤ 12, we took advantage
of the following result by Carlitz from [1] which related two and one dimensional
Kloosterman sums:

Theorem 3.8. For any a ∈ F∗
q, we have

k2(a) = k(a)2 − q,

where k(a) := k1(a).

By Theorem 3.8 we have

k3(a) =
∑

x,y,z∈F∗
q

χ(x+ y + z + a(xyz)−1) =
∑

x∈F∗
q

χ(x)k2(ax
−1)

=
∑

x∈F∗
q

χ(x)k(ax−1)2 − q
∑

x∈F∗
q

χ(x)

=
∑

x∈F∗
q

χ(x)k(ax−1)2 + q,

and now it is easy to see that

k3(a) = 2
∑

x∈F∗q
tr(x)=0

k(ax−1)2 −
∑

x∈F∗
q

k(ax−1)2 + q

= 2
∑

x∈F∗q
tr(x)=0

k(ax−1)2 − (q2 − q − 1) + q.

By tabulating the traces of elements of F∗
q, the indices of those elements of F∗

q

having the trace equal to zero, and then, the range of k(u) as u varies over F∗
q , before

using the formula above, the data of Table 3.1 can quickly be verified.

Remark. The traces were calculated by making use of [4, Theorem 5.1].
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4. The weight distribution of C(2,m) and C⊥(2,m). In this section we
assume that m > 2. Let γ be a primitive element of F22m . To determine the weight
distribution of C(2,m) and C⊥(2,m) we need the following result which has been
proved already in [2] (see e.g. [8] for a different proof).

Lemma 4.1. Let α ∈ F∗
22m . Then

∑

x∈F
∗
22m

e(αx3) =

{

(−1)m2m − 1 if 3 ∤ indγα,
(−1)m+12m+1 − 1 if 3 | indγα.

Lemma 4.1 together with Theorem 2.5 give the weight distribution of C(2,m):
Theorem 4.2. The weight distribution of C(2,m) is given in the following table,

where v runs over the integers 1, . . . ,m.
weight frequency

3m−1−(−1)m−v3v−1

2

(

m
v

)

3m−v

1
2

(

3m−1 + 2m−(−1)m

3

)

2 · 3m−1

1
2

(

3m−1 − 2m+1+(−1)m

3

)

3m−1

Theorem 4.3. For every non-negative integer h the number C⊥
h of codewords of

weight h in the dual C⊥(2,m) of C(2,m) is given by the recursion of Theorem 2.8
with

Mj = 2

(

(−2)m − 1

3

)j

+

(

(−2)m+1 − 1

3

)j

∀ j = 0, 1, . . .

Especially,

C⊥
0 = 1, C⊥

1 = C⊥
2 = 0, C⊥

3 = 3m−3(2m−1 ± 1),

C⊥
4 = 3m−5

(

7m − 3m+3 + 66

8
+ 3 · 22m−2 ± 2m

)

,

C⊥
5 = 3m−6

(

(5m−1 ± 6)22m−3 − 3m+22m−2 + 23m−2 + 7 · 2m+1 ± 55 − 3m+1

2

)

,

where ± = (−1)m.
Proof. By Lemma 4.1 the moments Mj in Theorem 2.8 are of the claimed form,

the claimed formulae for the low-weight codewords can be verified e.g. by using
Mathematica.

Remark. In a similar manner as was done above, the weight distribution of the
codes C(r,m) and C⊥(r,m) with r = 3 and r = 4 can be calculated as well.

5. The weight distribution of C(r, 3) and C⊥(r, 3). In this section we assume
that r > 2. Let γ be a primitive element of Fq3 , and let g = N(γ) be a primitive
element of F = Fq.

Now, by Theorems 2.3 and 3.8, we have the following:
Lemma 5.1. For each integer i satisfying 0 ≤ i ≤ q − 2, we have

s(γi) = k(gi)2 − q.

Hence, the question about the distribution of the values of s(γi) is equivalent to
the question about the distribution of the values of (one dimensional) Kloosterman
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sums over F∗. This question has been answered by Lachaud and Wolfmann in [5,
Theorem 3.4 and Proposition 9.1]:

Theorem 5.2. The set of values S of k(a) as a runs over F∗
q is

S =
{

j ∈ Z
∣

∣ |j| < 2
√
q and j ≡ −1 (mod 4)

}

.

Moreover, each value j ∈ S is attained exactly H(j2 − 4q) times where H(d) is the
Kronecker class number of d.

As a corollary we obtain, by using Theorem 2.5, the weight distribution of C(r, 3):
Theorem 5.3. The weight distribution of C(r, 3) is given in the following table

where j runs over the set {|j| < 2(r+2)/2 and j ≡ −1 (mod 4)}:
weight frequency

0 1
2r(2r−1 − 1) 3(2r − 1)2

2r−1(2r − 1) 3(2r − 1)
(2r(2r − 1) − j2 + 1)/2 H(j2 − 2r+2)(2r − 1)2

To give the weight distribution of C⊥(r, 3) we denote by Kh the hth moment of
the Kloosterman sum k(a) over the field F, i.e.

Kh =
∑

a∈F∗

k(a)h,

and use the following result from [10] which was proved by using results from [14]:
Theorem 5.4. Let q = 2r. Then

K0 = q − 1, K1 = 1, K2 = q2 − q − 1, K3 = ±q2 + 2q + 1,

K4 = 2q3 − 2q2 − 3q − 1,

K5 = (t7 ± 4)q3 + 5q2 + 4q + 1,

K6 = 5q4 − (5 + (−1)r)q3 − 9q2 − 5q − 1,

K7 = (t9 + 6t7 ± 14 + 1)q4 + 14q3 + 14q2 + 6q + 1,

K8 = 14q5 − (15 ± 7)q4 − 28q3 − 20q2 − 7q − 1,

K9 = (t11 + 8t9 + 27t7 + 8 ± 48)q5 + 42q4 + 48q3 + 27q2 + 8q + 1,

K10= 42q6 − (51 ± 35)q5 − 90q4 − 75q3 − 35q2 − 9q − 1 + 2048τ(q/4)− τ(q),

where ± denotes (−1)r, t7 = αr
7 + ᾱr

7 with α7 = (1 +
√
−15)/4, t9 = αr

9 + ᾱr
9

with α9 = (−5 +
√
−39)/8, t11 = βr

11 + β̄r
11 + ηr

11 + η̄r
11, with β11 =

(

−3 +
√

505 +
√

−510 − 6
√

505
)

/32, η11 =
(

−3 −
√

505 +
√

−510 + 6
√

505
)

/32, and τ is the Ra-
manujan’s tau-function.

Remark. It is not hard to see that

τ(q) − 2048τ(q/4) = µr
2 + µ̄r

2 = Dr(−24, 2048),

where µ2 = −12 + 4
√
−119 and Dr(x, 2048) is the Dickson polynomial of the first

kind of degree r with parameter 2048 (see [11, Section 2]).
Theorem 5.5. For every non-negative integer h the number C⊥

h of codewords of
weight h in the dual C⊥(r, 3) of C(r, 3) is given by

q3h!C⊥
h = f(C⊥

0 , . . . , C
⊥
h−1) + g(M0, . . . ,Mh) +

3(q − 1)2(−q)h((q − 2)h + (q − 1)h−1),
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where

f(C⊥
0 , . . . , C

⊥
h−1) = q3

h−1
∑

i=0

(−1)h+i+1C⊥
i

h
∑

t=i

t!S(h, t)2h−t

(

n− i

n− t

)

,

g(M0, . . . ,Mh) =

h
∑

j=0

(

h

j

)

(−1)j+h(q − 1)2(h−j+1)

j
∑

i=0

(

j

i

)

(−q)j−iK2i.

Especially,

C⊥
0 = 1, C⊥

1 = C⊥
2 = 0, C⊥

3 = (q − 1)2(2q − 5 ∓ 1)/3!,

C⊥
4 = (q − 1)2(q3 − 6q2 + (17 ∓ 3)q − 24)/4!,

C⊥
5 = (q − 1)2(q5 − 8q4 + 14q3 + 24q2 − 4(7 ± 5)q − 109 ∓ 10

+(2048τ(q/4)− τ(q))/q3)/5!.

Proof. The moments Mj in Theorem 2.8 are, by Lemma 5.1, of the form

Mj =

q−2
∑

l=0

(k(gl)2 − q)j =

q−2
∑

l=0

j
∑

i=0

(

j

i

)

k(gl)2i(−q)j−i

=

j
∑

i=0

(

j

i

)

(−q)j−i

q−2
∑

l=0

k(gl)2i

=

j
∑

i=0

(

j

i

)

(−q)j−iK2i,

and the first claim follows now by Theorem 2.8. The validity of the formulae for the
number of low-weight codewords can be verified by using Mathematica.

Remark. By Theorem 5.2, moments Kh can be calculated effectively for each
non-negative integer h by

Kh =
∑

|j|<2
√

q

j≡−1 (4)

H(j2 − 4q)jh,

provided that r is not too large (a “H(d)-calculator” can be found in [7]).
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