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This paper proposes an adaptive fuzzy control application to support a vendor managed inventory (VMI).
The methodology applies fuzzy control to generate an adaptive smoothing constant in the forecast
method, production and delivery plan to eliminate, for example, the rationing and gaming or the Houlihan
effect and the order batching effect or the Burbidge effects and finally the Bullwhip effect. The results show
that the adaptive fuzzy VMI control surpasses fuzzy VMI control and traditional VMI in terms of mitigating
the Bullwhip effect and lower delivery overshoots and backorders. This paper also guides management in
allocating inventory by coordinating suppliers and buyers to ensure minimum inventory levels across a
supply chain. Adaptive fuzzy VMI control is the main contribution of this paper.
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1. Introduction on providing demand information through the forecast methods
The Bullwhip effect is an observed phenomenon whereby a
small change in the demand from end customer results in large
variations as it goes upstream. Kaipia et al. (2002) identify two
sources for the Bullwhip effect: (1) the supplier delivery lead time
(actual replenishment cycle) is far longer than the order fulfillment
cycle (the buyer production and delivery lead times); and (2) the
inventory level of the supplier is higher than the normal require-
ment of average inventory levels to cover short delivery lead times
and high service levels. These two problems cause a supply chain
to generate more capacity to the production system and to increase
the safety stock, which inevitably leads to unrealistic deliveries, an
effect known as the Houlihan effect (Kaipia et al., 2002). Higher
production capacity raises the level of production ordering and
inventory response (Holweg and Bicheno, 2002), which inevitably
requires higher order batching than the actual demand. This phe-
nomenon is also known as the Burbidge Effect (Burbidge, 1991).
Consequently, higher levels of production ordering and inventory
response causes the sales forces to issue incentives. The incentives
attract customers to order more than they actually require (Chen et
al., 1998, 2000; O’Donell et al., 2006). Thus, the Bullwhip effect
starts moving from downstream to upstream.

The importance of mitigating the Bullwhip effect in the supply
chains has been well recognized. Dejonckheere et al. (2003) focus
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as a necessary decision for managers (Zhang, 2004). Forrester
(1961) and Sterman (1989) show that the absence of demand vis-
ibility and the existence of information distortion are sources of
excess delays which require supplier and buyer coordination to
share the demand information (Holweg and Bicheno, 2002). This
coordination improves the quality of demand information and fur-
ther minimizes the variability of the lead time (Croson and
Donohue, 2003; Chatfield et al., 2004). The deficiencies in informa-
tion sharing and information quality lead to inefficiencies, such as
excessive inventories, quality problems, higher raw material costs,
overtime expenses, shipping costs, poor customer service and
missed production schedules (O’Donell et al., 2006). The mitigation
of the Bullwhip effect is also conducive to production and inven-
tory control in that it coordinates production systems and channel
reduction so as to reduce lead times (Van Ackere et al., 1993). The
key technical challenges of mitigating the Bullwhip effect can be
observed as follows.
1.1. Technical challenges

1.1.1. Quality of demand information
The Bullwhip effect can be mitigated by reducing the inventory

variance (Dejonckheere et al., 2002, 2003) which is achieved
through a non-smoothed demand pattern (Dejonckheere et al.,
2004) or a smoothed demand pattern (Yu et al., 2002; Disney
and Towill, 2003a) in the forecast method. Disney and Towill
(2003b) provide a resolution of these two contradictory ap-
proaches by introducing a lean and an agile supply chain as options
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Nomenclature

a smoothing constant used in forecast, inventory and
delivery adjustment

aa the fuzzy weight interval of ‘‘very low’’
ab the fuzzy weight interval of ‘‘low’’
ac the fuzzy weight interval of ‘‘medium’’
ad the fuzzy weight interval of ‘‘high’’
ae the fuzzy weight interval of ‘‘very high’’
af forecasting constant used in exponential smoothing

forecast af = 1/(1 + Tf)
ai smoothing constant used in inventory response

ai = 1/(1 + Ti)
aW smoothing constant used in WIP inventory response

aW = 1/(1 + TW)
aq smoothing constant used in order response

aq = 1/(1 + Tq)
a⁄ the final smoothing constant
B the magnitude of the Bullwhip effect
BO(t) backorders at time t
Ccrisp crisp numbers for comparison or ranking purposes
d demand change
D demand
D(t) demand at time t
D set of D e (e, d, X)
en(t) forecast error en(t) = D(t) � F(t)
F Fischer distribution
f(a) the fuzzy membership weight
f(aa) the fuzzy membership weight of ‘‘very low’’
f(ab) the fuzzy membership weight of ‘‘low’’
f(ac) the fuzzy membership weight of ‘‘medium’’
f(ad) the fuzzy membership weight of ‘‘high’’
f(ae) the fuzzy membership weight of ‘‘very high’’
f(a)LE the fuzzy membership weight of ‘‘Lower Expectation’’
f(a)MA the fuzzy membership weight of ‘‘Most Acceptable’’

f(a)HE the fuzzy membership weight of ‘‘Higher Expectation’’
F demand forecast
F(t) demand forecast at time t
UW the difference between WIPn(t) and demand D(t)
Ui the difference between In(t) and D(t)
Uq the difference between qn(t) and D(t), Uq

DIn(t) the required change of product inventory at stage n at
time t

In(t) product inventory at stage n and time t
K production capacity
Kn production capacity at stage n
k mean value of demand
L replenishment time
Ld delivery lead time
Lp production lead time
ln(t) production rate at time t at stage n
n stage or echelon of the supply chain
X offset that is a set of X e (UW, Ui, Uq)
OUT order-up-to
P-value The significance value of F distribution
r(t) demand volatility at time t
Tf average age of exponential smoothing forecast
Ti time to adjust for product inventory
Tw time to adjust for WIP inventory
Tq time to adjust for order
VMI vendor managed inventory
Vout order variability at stage n
Vin demand variability at stage n
WIP work-in-progress
WIPn(t + Ld(n)) work-in-progress at time t + Ld at stage n
DWIPn(t) the required change of work-in-progress at stage n at

time t
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to set the gain on exponential forecasting. However, either lean or
agile parameter setting always gives a considerable order up to
(OUT) response overshoot, which potentially generates the Bull-
whip effect at longer upstream lead times.

Carlsson and Fuller (2000) give the name ‘overshoot’ to the re-
sult of non-stationary demand which raises the non-stationary
ordering up to the required quantity of the product for meeting
the current demand, which is starting the Bullwhip effect at longer
delivery lead times, and furthermore, motivates the Houlihan ef-
fect. Fuzzy logic is then applied to find the accurate demand fore-
cast (Zarandi et al., 2008) and OUT level in the distribution supply
chains (Wang and Shu, 2005; Petrovic et al., 2008), by developing
adaptive fuzzy forecasts to learn about the demand changes
(Petrovic et al., 2006; Balan et al., 2009) and to replenish the inven-
tory appropriately by using an adaptive replenishment rule (Petro-
vic and Petrovic, 2001). In addition, fuzzy forecasts with a learning
mechanism is applied by combining the customer and expert fore-
casts to predict future demand and establish the confidence asso-
ciated with each of the forecasts (Petrovic et al., 2006). The
technical challenge here is to provide higher quality information
about the demand by analyzing multiple criteria (demand changes,
forecast error, inventory availability, etc.) so as to minimize the
overshoot of the OUT level response (Carlsson and Fuller, 2000,
2002; Balan et al., 2009).
1.1.2. Production and distribution coordination
Poor quality demand information leads to poor production and

distribution performance. Some contributions withstand this
deficiency by proposing a two-level coordinated inventory control
within an integrative supply chain to reduce the ambiguity in fuzzy
demands (Yu et al., 2002; Xie et al., 2004). Lin et al. (2010) apply
fuzzy arithmetic operations in a VMI supply chain with fuzzy de-
mands. The application pays attention to the ordering process and
controlling the buyer’s target inventory level. Some of the previous
contributions (i.e., Petrovic and Petrovic, 2001; Giannoccaro et al.,
2003; Zarandi et al., 2008); Aliev et al. (2007) have applied fuzzy
control in the distribution chain. Aliev et al. (2007) optimize the
fuzzy aggregate planning of production and distribution by holding
the inventory in the distribution units without allowing an inven-
tory allocation in the production units. The contributions pointed
out above mention that there are close links between production
and distribution which demands the co-ordination of production
and distribution operations in supply chain systems. Inventory allo-
cation covers not only the production and distribution planning,
but also production systems and paradigms, such as making to or-
der, assembling to order or making to stock (Wikner et al., 2007;
Sheu, 2005). It is possible to mitigate the Bullwhip effect by cutting
down the number of stockholding points and satisfying customer
demands through different production systems.
1.1.3. Supplier buyer coordination
Poor quality demand information motivates either the supplier

or the buyer to behave opportunistically. This situation resembles
a two-stage Stackelberg game in fuzzy demands (Xie et al., 2004).
The central demands forecast system (McCullen and Towill, 2000),
as first mover, issues information about the demands forecast to
the supply chain (Chen et al., 1998). The buyer and the supplier,
acting as the second movers, after analyzing the acts of the first
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mover can play according to either a cooperative or a non
-cooperative strategy. The technical challenge here is to provide
an optimal response to maximize the second mover benefits. In a
decentralized supply chain, information sharing promises an opti-
mal response to demand forecasts (Croson and Donohue, 2003).
Thus, information sharing should be available in each supply chain
facility to minimize the imprecision of the demand information
(Kumar et al., 2004; Chan and Kumar, 2007).
1.2. Strategy for a solution

While coordinating the production and distribution provides a
viable solution to reduce the imprecision of the demand signal
and to minimize inventory investment (Thonemann, 2002), auton-
omy among facilities must be maintained to attract the coordina-
tion of supplier and buyer. Maintaining autonomous coordination
assumes that the customer demand information which is imposed
on the end-product inventory is unknown to other facilities in the
supply chain. The suppliers have to have autonomy to decide how
much to deliver, based on their delivery capacity and how much to
produce, based on their production capacity. Thus, at each stage
within a supply chain, the facilities for processing work-in-process
(WIP) and raw materials receive a centralized demand forecast of
what the customer will want in order to properly plan the delivery
time and quantities, the inventory adjustment time, the OUT level,
and the demand response time (Towill and Disney, 2003; Wikner
et al., 2007).

In the context of non-stationary demand, the demand forecast
errors at all stages are modeled as a fuzzy set (Petrovic et al.,
2006). A fuzzy set is applied by considering that the supply chain
dynamics are nonlinear (i.e., the production response is based
not only on the offset values between the actual demand and a de-
mand forecast, but also the current production rate), in which fuz-
zy control seems to be an interesting alternative. Previous genetic
algorithm based on the fuzzy VMI control (Lin et al., 2010) look to
the optimum non-adaptive fuzzy VMI parameters for controlling
nonlinear supply chain dynamics at a certain desired service level.
However, it is often difficult in practice to assess service levels for
an external customer. Managers seem comfortable with the notion
of a 100% service level for some ranges of demand; if the demand
exceeds the production capacity and available stock, they will have
shortages, unless they can backorder the demand to the next per-
iod. Adaptive fuzzy VMI control can always provide 100% service
levels by adaptively responding to the demand changes according
to production capacity, available stock and shortages.

The rest of the paper proceeds as follows. Section 2 reviews the
literature on the fuzzy logic in VMI. Section 3 focuses on the fea-
tures of supply chain simulation, mainly aiming at mitigating the
Bullwhip effect and allocating safety stock and it concludes by
applying the VMI to mitigate the Bullwhip effect and the loss of
sales by minimizing the safety inventory. Section 4 simulates the
supply chain model in the previous section. Section 5 analyses
the results of the simulation and finally Sections 6 and 7 suggest
some managerial implications and draw a conclusion and future
research directions.
2. Related work

The application of fuzzy sets to coordinated supply chains is di-
vided into five areas, namely, inventory management, vendor
selecting, transport planning, the planning of production distribu-
tion and the planning of procurement, production and distribution
(Peidro et al., 2009). Mitigating the Bullwhip effect is the focus area
of inventory management (Carlsson and Fuller, 2000). Selecting
vendors optimally provides more demand-responsive supply chain
in terms of quality, service and cost (Kumar et al., 2004; Chan and
Kumar, 2007; Amid et al., 2006, 2009). Minimizing transportation
cost is an application of fuzzy sets in transportation problems
(Chanas and Kuchta, 1998; Jimenez and Verdegay, 1999). Further-
more, Sakawa et al. (2001) extend the previous application of fuzzy
set to a transportation problem to a fuzzy transportation and pro-
duction problem. Liang (2008) optimizes the production-distribu-
tion planning decisions by finding the production, inventory and
distribution levels at minimum total cost and total delivery times.
Torabi and Hassini (2009) exclude the procurement and
distribution lead times from procurement, production and distri-
bution planning. The contributions pointed out above assume that
supply chains are non-autonomous and fully integrated with a
single decision-maker (Peidro et al., 2009; Chanas and Kuchta,
1998; Jimenez and Verdegay, 1999).

Applying fuzzy sets to the coordinated and autonomous supply
chains are challenging since the facilities in a supply chains (i.e.,
downstream, intermediate and upstream) do not need to share
their operations data (production capacity, delivery capacity,
material order and maximum allowable inventory level). Indeed,
the facilities are required to satisfy the demands of the end cus-
tomer. In most contexts, this option seems realistic, since each
facility can optimize its own goal. VMI is then widely applied,
not only to provide more accurate forecasting, but also to provide
better logistics control by implementing high integrity demand
information throughout a supply chains (McCullen and Towill,
2000). Moreover, fuzzy sets are introduced to avoid imprecise
deliveries, orders and demands within supply chains and they out-
perform traditional VMI in terms of Bullwhip effect and inventory
reductions (Lin et al., 2010).

The Bullwhip effect can be modeled as a nonlinear dynamic sys-
tem which receives inputs from offset values between actual de-
mands and demand forecasts, available stocks and OUT level,
where the relationships between inputs are not linear. Previous
non-fuzzy VMI control models use linear dynamic control systems
to mitigate the Bullwhip effect by assuming that the supply chain
dynamic depends solely on a step input of non-stationary demand
changes (Disney and Towill, 2003b; Dejonckheere et al., 2002,
2003). Previous fuzzy VMI controls use a linear relationship be-
tween the fuzzy service level and fuzzy responsiveness that does
not depend on demand changes and forecast errors (Lin et al.,
2010). The proposed adaptive fuzzy VMI control increases the
coordination of supplier and buyer in terms of the complexity
and reliability of the VMI control.
3. Adaptive fuzzy VMI control

We observe a supply chain with a number of the stockholding
points typical of a single-item inventory system, namely, the retai-
ler, downstream, intermediate stream and upstream (see Fig. 1).
For stage n, the replenishment time, Ln, which comprises produc-
tion lead times Lp(n) and delivery lead times Ld(n) is given by:

Ln ¼ LpðnÞ þ LdðnÞ : ð1Þ

We assume that the demand process is non-stationary and stochas-
tic, that the OUT level, production and inventory control policy is
adaptive and fuzzy and that any demand not satisfied by the inven-
tory is backordered. Adaptive fuzzy control is used because the de-
mand can differ across periods and the delivery rate will need to
change or adapt over time along with demand. In all periods, it
must be enough to cover the demand over the upcoming Ln. Below,
we describe in more detail the forecast model, production and dis-
tribution planning to control inventories and present an analysis of
the model. We introduce additional assumptions as needed.
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Fig. 1. Overview of VMI scenario (Adapted from Disney and Towill, 2003a).
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In presenting the adaptive fuzzy VMI control, the basic concept
of VMI can be summarized as in Fig. 1.

In Section 3.1, the downstream forecasts daily the demands for
the next day on a daily basis by smoothing the pattern of previous
demand. The reason for taking daily forecasts is that it is possible
in the middle of the running week for an order to come from the
retailers; thus, if the manufacturer does not revise the production
plan, then the it will lead to lost sales. With this strategy, the back-
orders are minimized.

3.1. Forecasting

We use exponential smoothing to estimate future demand. The
reason has its roots in the ARIMA-based demand process model
(Box et al., 1994; Graves, 1999), in which the forecast demand
F(t) at time t and its mean value k are defined as follows (Graves,
1999):

Fð1Þ ¼ kþ eðtÞ; ð2Þ

Fðt þ 1Þ ¼ ð1� af ÞFðtÞ þ af :DðtÞ þ eðtÞ; ð3Þ

eðtÞ ¼ DðtÞ � FðtÞ:

Eq. (2) shows that the demand forecast, F(1), at time t = 1 depends
on the mean value of customer demands, k;and random noise term
e(t)of the time series random variable which represents the forecast
error (Graves, 1999). Eq. (3) shows that at the smoothing constant
of the forecast method af = 0, the future demand forecast, F(t + 1),
depends on the current demand forecast, F(t) and e(t). As a result,
the demand represents only the stationary process, i.i.d., and nor-
mally distributed with the mean value kand variance r2.Thus the
condition which represents the demand process is not serially cor-
related. When 0 < af < 1, the demand process is a non-stationary
process (Graves, 1999) by considering that F(t + 1) depends more
and more on the most recent realization of demand D(t), as the va-
lue of af grows (Graves, 1999). When af = 1, Eq. (3) shows that
F(t + 1)depends on the most recent demand D(t) plus e(t).In this
case, if the demand process starts at k; then the demand forecast
evolves with each additional successive period, whereby each suc-
cessive change in the e(t)is drawn independently from a probability
distribution with mean zero and the demand process resembles a
random walk (Nelson, 1973). The covariances for the time series
of demand and order require the optimum inventory response
which is elaborated in Section 3.2.

3.2. Inventory control policy

We assume that in each period t, the observed demand D(t)
from period t is used by the adaptive fuzzy VMI control to issue
the demand forecast from period t to t + 1 or F(t + 1), determine
ln(t) for filling the product inventory in each period t + Lp(n) and
to fill the demand from the product inventory according to qn(t)in
each period t + Ld(n). Any demand that cannot be met from the
inventory is backordered. We can formulate the inventory balance
equations as shown by the following relations:

Inðt þ LpðnÞÞ ¼ Inðt þ LpðnÞ � 1Þ þ DInðt þ LpðnÞÞ; ð4Þ

WIPnðt þ LdðnÞÞ ¼WIPnðt þ LdðnÞ � 1Þ þ DWIPnðt þ LdðnÞÞ; ð5Þ

where In(t + Lp(n) � 1) denotes the stage n on-hand product inventory
(or backorders) at the end of period t + Lp(n) � 1 and WIPn(t + Ld(n) � 1)
denotes the stage n WIP inventory at the end of period t + Ld(n) � 1.
The second components are used to adjust the stock level of the prod-
uct and WIP inventories to accommodate the demand changes,
which changes the mean lead time demand so that the adjustment
will cover the demand rate at stage n at time t. The WIP inventory
comprises the WIP and pipeline (raw material) inventories.

We assume that it is possible to set an initial inventory level
In(0) and that FðtÞ ¼ k for t 6 0 and furthermore FðtÞP 0. We also
assume that the lead time to replenish the inventory is known and
that any unmet demand is backordered (i.e., there are capacity
constraints, K). Each stage is expected to provide 100% service for
all demands.

We propose the following rule to perform VMI control:

lnðtÞ ¼min½Kn; Fðt þ 1Þ þ DInðtÞ þ DWIPnðtÞ�; ð6Þ

qnðtÞ ¼min IðnÞðtÞ; Fðt þ 1Þ þ
ðDðtÞ � qnðt � LdðnÞÞÞLdðnÞ

Tq

� �
; ð7Þ

DInðtÞ ¼
ðlnðtÞ

�LpðnÞÞ � ðqnðtÞ
�LdðnÞÞ

Ti
; ð8Þ

DWIPnðtÞ ¼
WIPnðtÞ � lnðtÞ

�LpðnÞ

� �
Tw

: ð9Þ

Eq. (6) represents the production decision in stage n at time t for
meeting the forecast demand F(t + 1) at time t + 1 and is limited
by the capacity constraint Kn at stage n (the first and second compo-
nents). The third and fourth components are adjustments to recover
the product and component inventories due to the error expressed
as en(t) = D(t) � Fn(t). However, we need to adjust product inventory
DIn(t) and WIP inventory DWIPn(t) at time t + 1 whenever
D(t + 1) – D(t) to control the whole inventory by considering the
demand changes from t to t + 1. Inserting Eqs. (7)–(9) into Eq. (6),
we have

lnðtÞ ¼min K;
Fðt þ 1Þ � ðqnðtÞ�LdðnÞÞ

Ti
þ IWIPðnÞðtÞ

TW

1� LpðnÞ
TW�Ti
TW Ti

� �
2
4

3
5: ð10Þ



Table 1
Membership function.
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In the case of D(t + 1) – D(t), Eq. (7) is used to make the qn(t) deci-
sion to replenish the demand for the period t and to mitigate the
Houlihan effect by dispatching the product according to actual de-
mand D(t) at time t. The OUT decision is also constrained by stock
availability as the first component of Eq. (7). The third component
of Eq. (7) is used to adjust the delivery rate by minimizing the effect
of the previous period over– qn(t) level (D(t � 1) � qn(t � 1))� or un-
der– qn(t) level (D(t � 1) � qn(t � 1))+. Time to adjust the qn(t) level
Tq (Disney and Towill, 2003a,b, 2004; Towill and Disney, 2003;
Dejonckheere et al., 2002, 2003, 2004; Wikner et al., 2007) is used
to guarantee market product availability by considering the nature
of the demand, where Tq �1 for the stationary demand and the
delivery rate depends solely on the demand rate variation. Finally,
since Eqs. (6) and (7) are independent, they can mitigate the Bur-
bidge effect by decoupling the production and delivery batch size.

In addition to Eqs. (6) and (7), the product inventory adjustment
rate Ti (Eq. (8)) and the WIP inventory adjustment rate TW (Eq. (9))
are given to fill up the product inventory at time t. The second
component represents the delivery rates to stage n + 1 at time t.
In Eq. (9), WIPn (t) denotes the work-in-process inventory at the
end of period t. The first component represents additional material
from the material inventory at time t and the last component rep-
resents the withdrawal rates for producing the product at stage-n
at time t. Eq. (9) suggests that the WIP production facilities will
process immediately any available raw materials. However, the
application of VMI makes it possible to dispatch raw materials
from upstream to downstream by sharing demand information.
Thus, excess delivery can be avoided.

In posing the delivery policy in Eq. (7), we allow DI(n)(t) and
DWIP(n)(t) in Eqs. (8) and (9) to be negative. This change is realistic
in most contexts. Rather, Eqs. (7) and (8) seem reasonable for the
case of non-stationary demand in providing the best response to
demand without creating excessive stock. The quality of the re-
sponse depends on the time needed to adjust demand forecasts
Tf, Ti, TW and Tq, which are directly related to the transient behav-
iour of the stockholding points and deliveries (Towill, 1996) to
minimize backorder BO(t) and inventory variance at time t as a
VMI performance measure. To explore this relationship further,
we employ the commonly used relationship between the smooth-
ing constant a e (af, ai, aW, aq) and Ti, TW and Tq (Dejonckheere et
al., 2003):

af ¼
1

1þ Tf
; ai ¼

1
1þ Ti

; aW ¼
1

1þ TW
; aq ¼

1
1þ Tq

: ð11Þ
Linguistic
scale

Inputs
D e (e, d, X)

Triangular fuzzy number of smoothing
constant (a)

Very high 75% 6 D 61 0.5;1;1
High 74% P D P 51% 0.25;0.75;1
Medium 50% P D P 26% 0.25;0.5;0.75
Low 25% P D P 5% 0;0.25;0.75
Very low D 6 4% 0;0;0.5

D: forecast error, demand change, the difference between demand and order rate,
the difference between WIP inventory and demand and the difference between
product inventory and demand (adapted from Mamdani, 1977).
BOðtÞ ¼ maxðDðtÞ � qnðtÞ; 0Þ ð12Þ

The smoothing constant in Eq. (11), however, has a drawback. For
instance, Dejonckheere et al. (2003) assume that a depends solely
on demand changes, d. However, a supply chains should consider
the forecast error e, as well as UW, the difference between WIPn(t)
and demand D(t), the difference Ui between In(t) and D(t), and the
difference Uq between qn(t) and D(t), as offsets X e (UW, Ui, Uq)
for adjusting the value of a. This paper proposes fuzzy control to
Table 2
Rules for membership function. Source: Adapted from Mamdani (1977).

Demand forecast error e an

Very high H

Demand changes d Very low Very low V
Low Very low Lo
Medium Low Lo
High Low M
Very high Medium H
deal with those inputs, D e (e, d, X), due to its appropriateness for
handling nonlinear dynamic systems.
3.3. Fuzzy controller to counteract non-stationary demand

A fuzzy control uses the fuzzy number A, which is a fuzzy set of
the real line with a normal, fuzzy (convex) and continuous mem-
bership function of bounded support (Carlsson and Fuller, 2000).
A fuzzy set represents an uncertainty in the human cognitive pro-
cesses which accepts noisy, imprecise input if it increases in com-
plexity (Zadeh, 1975). Thus, we recognize the most commonly
used fuzzy membership functions such as straight lines, trape-
zoids, haversine, exponential and finally triangular as representa-
tions of weighting factors to determine their influence on the
fuzzy output sets of the final output conclusion. We define the lin-
guistic scale in the matrix in Column 1, Table 1, to represent the le-
vel categories of demand change, d, in Column 2, Table 1.
3.3.1. Fuzzy inference systems
The Mamdani (1977) and Sugeno (1985) fuzzy inference sys-

tems are the two best known in developing a fuzzy model. The out-
put of the system is generally defuzzified, resulting in fuzzy sets.
These fuzzy sets are combined using an aggregation operator, from
the consequent on each rule of the output. A single if-then rule is
written as IF ‘‘X’’ is A AND ‘‘Y’’ is B, THEN ‘‘Z’’ is C, where A and B
are the linguistic scales of D and C is the linguistic scale of a which
is represented as the fuzzy set on the ranges in Table 1.

The fuzzy control rules are based on the experience of supply
chain managers. The relationship between D and a is summarized
in Table 2. For instance, the actual meaning of Table 2 should be
that if e in period t � 1 is very low and d is very low, then a for
the forecast method is medium, and so on.

Fig. 2 exhibits the fuzzy inference systems in Table 2, as follows:
Fig. 2 shows the inference systems for the forecast error and de-

mand change where the vertical axis represents the membership
weight, f(a), and the horizontal line represents the value of the
D e (e, d, X) in the linguistic scale.
d offsets X

igh Medium Low Very low

ery low Low Low Medium
w Low Medium High
w Medium High High
edium High High Very high
igh High Very high Very high
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α

   0         0.25          0.5        0.75        1.0 
Δ

α: the smoothing constant ( )qWia ααααα ,,,∈
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demand 

Fig. 2. Fuzzy inference systems of smoothing constant a for inputs D.
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3.3.2. Defuzzification
Defuzzification is applied to quantify the result of the fuzzy lo-

gic. The most popular defuzzification is the centroid calculation,
known as the centre of gravity of area defuzzification. The others
are the bisector, the mean of maximum, the largest of maximum
and the smallest of maximum (Liu, 2008). In Column 3, Table 1,
the leftmost number is called the Lower Expectation (i.e., ‘‘LE’’),
the middle number the Most Acceptable (i.e., ‘‘MA’’) and rightmost
number the Higher Expectation (i.e., ‘‘HE’’). As a general defuzzifi-
cation procedure, we need to change these weights into crisp num-
bers Ccrisp for comparison or ranking purposes, as follows:

a ¼ Ccrisp ¼ 1� f ðaÞLE þ 2f ðaÞMA þ f ðaÞHE

4
: ð13Þ

In order to accommodate the fuzziness of the response against fore-
casting error, we need to map Eq. (13) into Fig. 2 so as to give sev-
eral membership function degrees, as follows:

Very low : f ðaaÞ ¼
0:5� aa

0:5
; 0 6 aa 6 0:5; ð14Þ

Low : f ðabÞ ¼
ab

0:25
;0 6 ab 6 0:25;

f ðabÞ ¼
0:75� ab

0:5
; 0:25 6 ab 6 0:75; ð15Þ

Medium :f ðacÞ ¼
ac � 0:25

0:25
; 0:25 6 ac 6 0:5;

f ðacÞ ¼
0:75� ac

0:25
; 0:5 6 ac 6 0:75; ð16Þ

High :f ðadÞ ¼
ad � 0:25

0:5
; 0:25 6 ad 6 0:75;

f ðadÞ ¼
1� ad

0:25
;0:75 6 ad 6 1; ð17Þ

Very high : f ðaeÞ ¼
ae � 0:5

0:5
; 0:5 6 ae 6 1:0: ð18Þ

The following step is the identification of the final smoothing con-
stant, a⁄, by finding the membership function of afrom Eqs. (14)–
(18), we can find the final smoothing constant, a⁄. Fig. 2 shows that
almost all the values on axis (a⁄) have more than one membership
function, fc(a⁄) e (A, B). Thus, we use a common rule for the mem-
bership function fC(a) problem, which is formulated as

fCða�Þ ¼minflAða�Þ;lBða�Þg; forA \ B: ð19Þ

The reason for using Eq. (19) is that we want to accommodate
the largest fuzzy set contained in two D intersection areas of fuzzy
membership weight (see Fig. 2). We do not allow any trade-off be-
tween lA(a⁄) and lB(a⁄), so long as lA(a⁄) > lB(a⁄),

a�fuzzy ¼ fCða�Þ � a� ð20Þ

for faa;ai;aW ;aqg 2 a�fuzzy. Thus, we can use the results of Eqs. (19)
and (20) to get the supply chain responsiveness in terms of Ti, TW

and Tq as
Ti ¼
1� ai

ai
; TW ¼

1� aW

aW
; Tq ¼

1� aq

aq
: ð21Þ

The response time for demand forecast Tf is not calculated, since af

is used directly in Eq. (3) for forecasting the next end customer
demand.
4. Model validation

Adaptive fuzzy VMI control modelling is validated by observing
rationing and gaming or the Houlihan effect, order batching or the
Burbidge effect and the Bullwhip effect. In order to consider the
space limitation and the similarity of downstream, intermediate
stream and upstream, we give only an overview of one stage stock-
holding unit based on Section 3, as in Fig. 3. The block diagram in
Fig. 3 exhibits the demand signal processing by the adaptive fuzzy
controller to decide on ln(t) and qn(t) by changing smoothing con-
stants a e (af, ai, aW, aq) and finally Ti, TW and Tq.

4.1. Case example

This section shows the way in which the proposed model is ap-
plied. A hypothesis can be designed as follows: ‘‘If the demand
forecast and inventory adjustments are accurate, then economies
of scale in transportation costs can be achieved without generating
backorders or over-capacity in delivery and production’’. The
Houlihan effect is used to indicate the existence of poor quality de-
mand information and the Burbidge effect to indicate the lack of
production and distribution coordination. To this end, a simple
two-stage supply chain is considered. The demand process is
non-stationary, and it is assumed that the demand at time zero
is known as 40 items/day as the base of a random walk calculation.
We use a target value of 40 items/day as the sales target even if the
actual demand fluctuates according to the sales programme (i.e.,
quantity discounts or seasonal events). Thus, the successive de-
mand values are generated as follows:

DðtÞ ¼ Dðt � 1Þ þ e:rðtÞ; ð22Þ

where D(t) is the new demand value, D(t � 1) is the previous value
(in our case D(t � 1) for t = 1 is 40 items/day), e is a random stan-
dard normal value (sampled from a distribution with mean 0 and
standard deviation 1) and r is the volatility of 10 items/day.

4.2. System implementation

In order to illustrate the numerical example, the GoldSim sim-
ulation software developed by the GoldSim Technology Group is
used. This general-purpose simulator combines system dynamics
with some aspects of discrete-event simulation and embeds a dy-
namic simulation engine within a Monte Carlo simulation frame-
work, which is well-suited for modelling time-dependent
conditions or processes. GoldSim also provides an equation editor
to apply analytical models to the software.
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Fig. 3. Block diagram of adaptive fuzzy VMI control.
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4.3. Simulation setup

The simulation is run for 1000 days at different Lp(n) and Ld(n). An
ANOVA test is used to test the hypothesis and to detect the exis-
tence of the Houlihan and the Burbidge effects. After that, the Bull-
whip effect is calculated. With regard to the traditional and the
Genetic algorithm (GA)-based fuzzy VMI control policy, which
are used as benchmarks, the qn (t)overshoot and inventory-level
standard deviation are used to measure supplier and buyer coordi-
nation. Finally, the number of backorders is also benchmarked be-
tween the fuzzy VMI control and the traditional and GA-based
fuzzy VMI control policy, from the fact that the other VMI advan-
tage is to eliminate backorders (Disney and Towill, 2003a).
5. Simulation results and analysis

Qualitative and quantitative analyses are made to observe the
Houlihan effect and the Burbidge effect by detecting qn(t) and ln

(t) magnifications and the possibility of applying economies of
scale to transportation costs. The Bullwhip effect is calculated to
measure the quality of the demand information. At the end of this
Table 3
qn(t) at different Ld.

System parameter F

qn(t) versus demands Downstream Intermediate U

Ld(n) = 2 0.96 1.03 1
Ld(n) = 4 0.72 0.924 1

Table 4
ln(t) at different Lp.

System parameter F

l(t) versus demands Downstream Intermediate U

Lp(n) = 2 0.97 0.967 0.
Lp(n) = 4 0.71 0.891 1.
section, the inventory allocation is analysed to exploit its benefit
for managing the coordination between the supplier and buyer.

5.1. The Houlihan effect and the Burbidge effect

Qualitatively, this study adopts ANOVA for detecting the Houli-
han and the Burbidge effects during a 1000-day simulation run
with different delivery lead times. In Tables 3 and 4, qn(t) and
ln(t) are not statistically different from D(t) at the 5% significant le-
vel, with average P-values of 0.43 (Ld(n) = 2/Lp(n) = 2) and 0.42
(Ld(n) = 4/Lp(n) = 2) for qn(t) and the P-values are 0.44 for ln(t)
(Ld(n) = 2/Lp(n) = 2) and 0.41 (Ld(n) = 4/Lp(n) = 2) in all stages, with
adaptive fuzzy VMI control. The results show that qn(t) of the adap-
tive fuzzy VMI control is close to the demands and the Ld does not
change significantly due to the magnification of qn(t).

Fig. 4 supports Tables 3 and 4 by exhibiting the comparison of
backorders between an adaptive fuzzy VMI control, GA based fuzzy
VMI (Lin et al., 2010) and traditional VMI downstream of them. This
implies that Ld does not affect the customer service level. Thus the
adaptive fuzzy VMI control gives better production and distribution
coordination, in decoupling the production and the delivery batch
sizes to meet economies of scale on transportation costs.
P-value

pstream Downstream Intermediate Upstream

.01 0.431 0.431 0.431

.93 0.059 0.279 0.948

P-value

pstream Downstream Intermediate Upstream

981 0.449 0.439 0.431
146 0.057 0.321 0.835



Fig. 4. Step response for GA based fuzzy VMI control and adaptive fuzzy VMI
control for Lp = 2 and Ld = 2 during 1000 days with non-stationary demand process
rate average of 40 units per day, with 10 items annual volatility.

Fig. 5. Maximum backorders during 1000 days with non-stationary demand
process rate average of 40 units per day, with 10 items annual volatility.
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Quantitatively, Fig. 5 shows the qn(t) overshoot comparison be-
tween the adaptive fuzzy VMI control and the GA based fuzzy VMI
downstream. The overshoot is used to measure the Houlihan effect
which inevitably leads to unrealistic deliveries. Indeed, Fig. 5
shows that adaptive fuzzy VMI control surpasses other GA-based
fuzzy VMI control (Lin et al., 2010) in terms of lower qn(t) over-
shoot and shorter qn(t) settling time, at a step response. Minimum
qn(t) overshoot indicates that the adaptive fuzzy VMI control is
capable of mitigating the Houlihan effect. Shorter settling time
indicates that the production and the delivery batch sizes are not
linearly correlated. A nonlinear relationship between the produc-
tion batch size and delivery batch size gives an advantage to the
mitigation of the Burbidge effect by allowing economies of scale
in transportation costs. Thus, the Houlihan and the Burbidge ef-
fects are simultaneously mitigated by adaptive fuzzy VMI control
and the research hypothesis is accepted.

5.2. Quantification of the Bullwhip effect

BullwhipðBÞ ¼
rqn ðtÞðt;tþLdðnÞÞ
qnðtÞðt;tþLdðnÞÞ
rDðtÞðt;tþLdðnÞÞ
DðtÞðt;tþLdðnÞÞ

¼ Vout

Vin
: ð23Þ
Table 5
Bullwhip effect at different Ld and Lp.

Downstream Intermediate Upstream

Ld = 1
Lp = 2 0.98 1.02 1
Lp = 3 0.98 1.02 1
Lp = 4 0.97 1.04 0.99

Ld = 2
Lp = 2 1 1 1
Lp = 3 0.98 1.03 1
Lp = 4 0.97 1.03 0.99
There are some contributions that quantify the Bullwhip effect in
different ways. Warburton (2004) calculates the relationship be-
tween order rate and demand rate without considering the method
of estimating the mean and standard deviation of the output de-
mand. Other quantifications, such as Lee et al. (1997) and Chen
et al. (1998), calculate the variance ratio (VR) of order quantity
and demand in a way which does not take the lead time variance
into account. Similarly, Chatfield et al. (2004) also consider VR as
the Bullwhip effect metric, which does take into account the effect
of stochastic lead times. However, if for instance the supplier would
like to optimize the order batching then the variance of the order
quantity would always be less than the demand. As a result, the
Bullwhip effect is never detected. In addition, it generates a higher
level of inventory in the buyer warehouse. Since one of the VMI
benefits is to reduce the inventory level of the supply chain, then
VR creates a conflict between minimizing the inventory and miti-
gating the Bullwhip effect.

The Bullwhip effect quantification in Eq. (23) which is calcu-
lated in Table 5 Section 5.2 employs the quotient of the demand
coefficient of variation (CV) generated in a given supply chain level
and the demand CV received by the same level (Fransoo and
Wouters, 2000). The CV is appropriate for implementation in the
echelon level of the demand. The reason is that most of the de-
mand data in many supply chains are incomplete and not available
in the echelon level (Fransoo and Wouters, 2000). Furthermore, the
demand data at each echelon is not necessarily equal to the de-
mand data at the product level. As a result, the magnitude of order
rate is not necessarily equal to the demand rate. Thus, the ratio be-
tween the variability of the order rate and demand rate reflects the
capability of the supply chain to respond to the demand. If this
principle is applied to the VR then the Bullwhip effect is greatly
magnified.

Whereas the Houlihan and the Burbidge effects are mitigated,
Table 5 shows that adaptive fuzzy VMI control supports are appro-
priate for mitigating the Bullwhip effect by sharing the demand
information to avoid multiple forecasting at all stages in the supply
chain. Table 5 shows that the imprecision of the demand signal is
eliminated to such an extent that variation in the delivery lead
times has no significant impact on creating demand magnification.
This is one more reason to support the mitigation of the Houlihan
and the Burbidge effects.
5.3. Inventory allocation across the supply chain

Bullwhip effect mitigation cannot ignore the role of coordina-
tion between supplier and buyer. Fig. 6 shows this coordination
in terms of the inventory allocation across the supply chain. The
Figure shows that the downstream causes higher In(t) for the inter-
mediate and the upstream echelons. The reason is that the down-
stream hedges directly against the demand variability without
having the opportunity for dampening the shock. The adaptive fuz-
zy VMI control helps to decouple the inventories into In(t) and
WIPn(t).Thus, In(t) covers only the demand variability during the
delivery lead times (In(t) standard deviation), while the WIPn(t)
Downstream Intermediate Upstream

Ld = 3
Lp = 2 0.98 1.02 1
Lp = 3 0.98 1.02 1
Lp = 4 0.96 1.04 1

Ld = 4
Lp = 2 0.99 1.01 1
Lp = 3 0.97 1.03 1
Lp = 4 0.97 1.03 1



Fig. 6. WIP and product inventory standard deviation in all stages at various Lp and
Ld.
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covers the remaining demand variability during production lead
times (WIPn(t) standard deviation).

Fig. 6 provides some insight into where we might allocate the
WIPn(t). For example, at a longer Lp(n), implementing the adaptive
fuzzy VMI control is not advisable, since it creates a Bullwhip effect
in the WIPn(t)allocation. The reason is that ln(t) depends on F(t)
and DIn(t)/DWIPn(t). Conversely, a shorter Lp(n) may also reduce
the total inventories in both stage n and stage n + 1. Since DIn(t)/
DWIPn(t) depends on the production lead time, finding an opti-
mum Lp(n) is critical for mitigating the Bullwhip effect. However,
adaptive fuzzy VMI control allows longer Ld(n) to meet the eco-
nomic order quantities without creating the Bullwhip effect.
6. Management level decision making

This section focuses on adaptive VMI control against other VMI
models in terms of their applicability to a supply chain. We bench-
marked two VMIs in detail, as explained below:

� We showed that an adaptive fuzzy smoothing constant sur-
passes that of a fixed smoothing constant by providing a 100%
service level to eliminate backorders in a non-stationary
demand process (Fig. 4).
� The adaptive fuzzy VMI control gives a lower inventory stan-

dard deviation (Fig. 6) and therefore, requires lower product
inventory levels in all stages within the supply chain (Fig. 6)
to signify that the magnitude of the backorders depends on
the appropriateness of the assigned Tf, Ti, TWand Tq and does
not depend on In(t) and the WIPn(t) of the supply chain. Mitigat-
ing the Houlihan effect and the Burbidge effect are two addi-
tional benefits, ensuring that the magnification of qn(t) and ln

(t) across the supply chain is avoided (Tables 3 and 4) and the
Bullwhip effect is mitigated (Table 5). Thus, it is not beneficial
to each stage to increase the OUT level, because the down-
stream does not generate orders to compare against deliveries.
Indeed, the upstream cares only about stock availability from
the downstream.

Fig. 6 also provides a description of the adaptive fuzzy VMI con-
trol capable of eliminating the Burbidge effect by transporting
every time period only so as to satisfy the demands of that time
period plus backorders (if any). The supply chain often resolves
the conflict between reducing the Bullwhip effect and obtaining
economies of scale in transportation costs by order batching. How-
ever, Fig. 6 shows that the Bullwhip effect is not sensitive to Ld(n).
Therefore, the supply chain has enough flexibility to dispatch the
order as long as there is stock available upstream and the qn (t)
may be different from ln(t). In other words, a longer Ld(n) due to
economies of scale would not generate a Bullwhip effect.
Adaptive fuzzy VMI control, however, has a drawback: it in-
creases the WIPn(t) exponentially with a longer Lp(n). This signifies
that adaptive fuzzy VMI control is more appropriate in flexible pro-
cess design, rather than in a dedicated production line. It is shown
that at stage n, shorter and longer Lp(n) and Ld(n) perform almost
equally well downstream by requiring a roughly equal safety stock.
However, this is not the case upstream.

Fig. 6 suggests sharing the risk due to demand uncertainty, by
decoupling inventories into WIPn(t) and In(t). The inventory decou-
pling supports production and distribution coordination since
WIPn(t) can absorb the demand shocks. However, a shorter Lp(n) is
required to avoid the growth of WIPn(t) along the supply chain. Thus
adaptive fuzzy VMI control is advisable for cheaper production
costs, since it requires higher production capacity to shorten Lp(n).
7. Concluding remarks

This paper has extended the functionality of the VMI model by
developing an adaptive fuzzy smoothing constant. The proposed
adaptive fuzzy VMI control has been successfully applied, with
bullwhip effect reduction and OUT level information obtained.
Moreover, the adaptive smoothing constant is used for searching
for optimal parameters in terms of Tf, Tq, TW, TI. This study uses a
quotient of the order and demand coefficients of variation, which
belong to Bullwhip measures and stock and delivery performance
to compare the performance of the traditional VMI and GA-based
fuzzy VMI (Lin et al., 2010) with adaptive fuzzy VMI control models
in different production and delivery lead times. From observing the
results, the quality of demand information is improved signifi-
cantly by eliminating backorders at a lower qn(t) overshoot and
reducing the settling time against the previous GA-based fuzzy
VMI (Lin et al., 2010). Thus the performance of the adaptive fuzzy
VMI control model is apparently better than that of the previous
VMI models (Figs. 4 and 5).

The simulation results show that adaptive fuzzy VMI control
model reduces the Bullwhip effect by eliminating the Houlihan ef-
fect and the Burbidge effect (Tables 3 and 4). It provides more
accurate production and distribution plans in a supply chain by
lowering standard deviation from the product inventory level at
a proportional inventory allocations (Graves and Willems, 2008;
Neale and Willems, 2009).

Further research may investigate a number of remaining issues.
The adaptive fuzzy VMI control should optimize production lead
time to mitigate the Bullwhip effect in the WIP inventory. The
application of the GA in adaptive smoothing may be useful for
improving the current results.
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