Integral Transforms (2018)

Exercise 2/Week 44

1. Calculate the inverse Laplace transform $\mathcal{L}^{-1}\left(\frac{1}{s^{3}-a s^{2}} ; t\right)$ by applying
a) partial fractions, b) the convolution theorem.
2. Using the Laplace transform solve the differential equation

$$
y^{\prime}+4 y=6 \cos t ; \quad y(\pi)=2 .
$$

3. Using the Laplace transform solve the differential equation

$$
4 y^{\prime \prime}+8 y^{\prime}+y=t ; \quad y(0)=0, y^{\prime}(0)=1
$$

4. Using the Laplace transform solve the integro-differential equation

$$
y^{\prime}(t)+2 t+\int_{0}^{t} y(u) d u=0 ; \quad y(0)=1
$$

5. Using the Laplace transform solve the differential equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=x(t) ; \quad y(0)=y^{\prime}(0)=0
$$

where
a) $x(t)=u(t-1)-u(t-2)= \begin{cases}1, & 1 \leq t \leq 2 \\ 0, & \text { otherwise }\end{cases}$
b) $x(t)=\delta(t-1)$. (Here δ is the Dirac delta function, i.e., δ-distribution.)

