Integral Transforms (2018)

Exercise 3/Week 45

1. a) Calculate the Fourier series of the function

$$f(x) = x^2 \quad (x \in \mathbb{R})$$

on the interval $[-\pi, \pi]$.

- b) Find the sum of this Fourier series and sketch its graph on the interval $[-3\pi, 3\pi]$.
- c) Sketch the graphs of the first three partial sums of this Fourier series together with the graph of the function $f(x) = x^2$ on the interval $[-\pi, \pi]$.
- 2. Using the Fourier series calculated in the previous exercise show that

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
, b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$.

3. Calculate the Fourier series of the functions

a)
$$f(x) = |\sin x|$$
, b) $g(x) = \frac{\sin x + |\sin x|}{2}$ $(-\pi \le x \le \pi)$.

4. Using the Fourier series of the function $f(x) = x^2$ (cf. Exercise 8.1 above) find the best approximation of the form $a + b \cos x + c \sin x$ for the function

$$g(x) = \frac{x^2 + \sin(x)}{2}$$

with respect to the norm generated by the inner product $(f,g) = \int_{-\pi}^{\pi} f(t)g(t) dt$ in $C(-\pi,\pi)$.

5. Calculate the complex Fourier series of the function

$$f(x) = x^2 \quad (x \in \mathbb{R})$$

on the interval $[-\pi, \pi]$.

6. Apply the Fourier series of the function $f(x) = x^2$ and the Parseval's identity to show that

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$