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Lecture 8: Fourier Series as approximations

Definition
Let {V,(-,-)} be an inner product space and let {fi,...,f,} be an orthogonal sequence in V
whose span is the subspace F,. Then the projection onto F, is defined as

x, fi)f;
F,X = Z ( )2 , xeV.
[1£il]
In particular, if {e1,...,en} is an orthonormal sequence in V whose span is the subspace E,, then

the projection onto E, is defined as

n

PEnX = Z()@ e;)e,-, x€eV.

i=1
Proposition
Let {e1,...,en} be an orthonormal sequence in the inner product space {V,(-,-)} and let E, be
its span. If x,y € E,, then
n n
x=Pgx=> (xe)e and y=Pgy=> (y,e)ei
i=1 i=1

Moreover, Parseval’s identity holds

n
(x,y) =D (x.e)ly,e).
i=1
S. Hassi (seppo.hassi@uwasa.fi) Integral Transformations Autumn, 2016 19 / 55



Lecture 8: Fourier Series as approximations

Theorem
Let {e1,...,en} be an orthonormal sequence in the inner product space {V,(-,-)} and let E, be
its span:
n
E, = Za,—e,— a2, €CorR
i=1

Moreover, let Pg, be as defined above. Then for any vector x € V:

lIx = Pe x|l < [Ix = yll,  Vy € En.

In other words, Pg, x is the element in E, which is closest to x among all elements in E,.
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Lecture 8: Fourier Series as approximations

Approximation by trigonometric functions

Example

Recall that on the real vector space V>,
™
Vo = {f : [-m, 7] = R continuous : / (f(s))%ds < oo},
-
with the inner product (-,-) : Vo X Vo — R defined as
us
()= [ fe)ee)s, fge v,
-

is an inner product and that for every N € N,

(eorer, . e} = { 1 cos(x) sin(x) cos(Nx) sin(Nx)}

is an orthonormal sequence in {V2, (+,-)}. Now define Ey to be the span of the above g;'s:

N
En ={a0 + Z(an cos(nx) + bnsin(nx)) : ag, ..., an, b1,..., by € R}.

n=1
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Lecture 8: Fourier Series as approximations

Let f be any function in V5, then the best approximation to this function in Ep is

Peyf = (f,e0)en + ZQ’ L, eanz 1)e2n_1 + N (F, en)ean .
e LV S e - (0
=4[ f(t)d5+ Z lf” f(s) cos(ns)) ds cos(nx) + L S°N _1 /7, (f(s) sin(ns)) dssin(nx).

Now for a function f, define

1 [~ 1 ™ 1 a
a = 7/ f(s)ds, a,= — / f(s) cos(ns)ds, b, = 7/ f(s)sin(ns)ds.
™) TJ_x T

Then
N
Z ap cos(nx) + b, sin(nx)).

N‘C,

l.e., the partial Fourier series is the best approximation in the space of cos nx and sin nx functions up to a
certain frequency. Therefore the Fourier series itself ("N = co”) is the best approximation in the space of all

cos nx and sin nx functions.
Recall the following useful calculation rules for Fourier series:
Sar+g(x) = aSe(x) + Sg(x), a € R;
H if f is even, i.e. f(—x) = f(x), then b, =0, n=1,..;
if f is odd, i.e. f(—x) = —f(x), thena, =0,n=0,..;
A if f(x) = %0 + EnN:1 (an cos(nx) + b, sin(nx)), then S¢(x) = f(x).
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Lecture 8: Fourier Series as approximations

Example

The Fourier series S¢ of f(x) = 2cos(3x) + 10sin(8x), —m < x < 7 is f itself. Because the
Fourier series is the best approximant in the space spanned by 1,sin(x), cos(x), sin(2x),
cos(2x), ... and f is already in that space.

Let g(x) = x,—7 < x < m, determine its Fourier series and find the best approximant of f in
the space spanned by {1, cos(x),sin(x)} and by {1, cos(x), sin(x), sin(2x), cos(2x)}.

The first step is to determine the Fourier series of g. Since g is an odd function, only the
bn's need to be determined:

n

o o= 1)" = (1) ] S [sin(nt)] 7, = — 2530

n

b, = 1 f tsm nt dt H_tM] +f cos| "t)dt:|

Hence, the Fourier series of g is given by

0o [ qyntl
Se(x) =2 Z % sin(nx) = 2 (sin(x) — %sin(2x) + %sin(3x) - >
n=1

and the asked for approximants are 2sin(x) and 2sin(x) — sin(2x), respectively.

Determine the Fourier series of h(x) = x + 2cos(3x) + 10sin(8x), —7 < x < 7.
This problem can be solve by using the linearity property of Fourier series:

Sh(x) = S¢(x) + Sg(x) = 2 cos(3x) + 105sin(8x) + 2 (sin(x) - % sin(2x) + % sin(3x) — .. ) .
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Lecture 8: Complex Fourier series

Complex Fourier series
Fourier series can also be written with respect to an exponential basis. Therefore remember:

inx __ ao—inx inx —inx
sin(nx) = % and cos(nx) = %
1

With the help of these formulas one has that

) einx 4 g—inx einx _ g—inx a, — ib, a ib, .
an cos(nx) + bpsin(nx) = ap +2 + b, 5 =2 5 D einx 4 20 _; me—inx,
1

Now define the coefficient of e to be ¢y, i.e

—ib ib
Cn:"ﬂz# and g,,:%, n>o0,

where ¢y = ag/2, because by = 0 . Note that ¢, = c_, for n € Z and that
ap=2Rec, and b, =—-2Imc,, n>0.
In this way one has obtained the complex representation of the Fourier series Sy for a function f:

- i N 1 7 .
S¢(x) = Z cpe™ = lim Z cne™, cn = 7/ f(x)e~™dx.
——m —

m— oo 2T
n=—oo
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Lecture 8: Complex Fourier series

Let f be a 2m-periodic function and let ¢, be its complex Fourier coefficients. Then
the set {(n, cn) : n € Z} is called its spectrum,;
the set {(n, |ca|) : n € Z} is called its amplitude spectrum;
the set {(n, arg(cn)) : n € Z} is called its phase spectrum.

The spectrum gives information about the harmonic frequency components e™; the amplitude
spectrum gives the strength of the harmonic frequency under consideration and the phase
spectrum the phase in which the frequency starts.

Proposition
(Parseval’s identity) Let f be a function and let ¢, be its complex Fourier coefficients and a, and
b, its real Fourier coefficients. Then

(oo}

1 a3 X a2 +b2
” f(x) =2 lalf=2+3 =

n=—o00 n=1
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Lecture 8: Complex Fourier series

Example
Recall that if f(x) = x,—7 < x < m, then

S¢(x) = 22

Now ¢y = a9/2 = 0,

1)n+1

sin(nx) = 2 (sm(x) - 1sm(2><) + = sm(3x) .. > .

and

C_p=¢Cy=—Ii

n —n
Hence, f(x) has the following complex Fourier series representation:

Se(x) =i i 7(71),1 ™

n=—oo,nz0

The coefficients could also have been calculated directly. For n = 0:

1 4 217
= — xdx = | — =0.
27 B

-7

and for n € Z \ {0}:

_ 1 [ —inx g, _ 1 e—inx ™ 1 [m a—inx
€ =g [T, xe dx*zw ([X —in 77r+¢‘n ST e ™dx
1 e—imn
= o (7" —in —in ;40
1 ei7rn+e—l7rn i i n
= - (72 = L cos(nm) = L(-1)".
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Lecture 8: Complex Fourier series

The amplitude and phase spectrum of the function are given by

amplitude spectrum: {(n,]enl) :neZ} ={(0,0)}U{(n,|i*=
={(0,00tu{(n,1/n) : n € Z\{0}};

{(mara(i50))  n € 2\ {0}}

= {(n, arg(sgn(n)i(=1)")) : n € Z\ {0}}

={(n,sgn(n)(-1)"%) : n € Z\ {0}}.

i )) ‘neZ\{0}}

phase spectrum: {(n,arg(cn)) : n€ Z}

Figure: The amplitude spectrum.

Figure: The phase spectrum.
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Lecture 8: Complex Fourier series

Furthermore, Parseval’s identity yields

1 [ 2 S 2 .- (1"
LD SIS
TS —m n=—o0 n=—00,n#0 n
Now - )
1
1 dex_i{i] ™
2 J_n 2 [ 3 | _, 3
and ) )
(e o) oo oo
(=1)" 1 1
D s R o EE o
n=—o00,n7#0 n=—o00,n#0 n=1

Therefore Parseval's identity yields:
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Lecture 9: Introduction to the Fourier transform

Fourier series on arbitrary intervals

For a 2L-periodic function, or for a function defined on [—L, L], a Fourier series can be defined:

Sf( +Z(ancos( )+bn5|n(n7LrX)),

1t 1 1t T
aO:Z/Lr’(X)dx, a":Z/, f(x)cos( )dx and bniZ/,Lf(X)sm (%) dx.

This Fourier series can also be written in complex form:

Z che L, cn= 5 f(x)efT .

n=—o0

In this series the frequencies and angular frequencies of the functions are

n T
— and n—

N
2L o "EW

whereas in a "normal” Fourier series the frequencies and angular frequencies of the functions are

n
— and n, néeN.
2w
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Lecture 9: Introduction to the Fourier transform

Example
Find the 2L-periodic, L > 1, Fourier series of the function

F(x) = 1, —-1<x<1;
1 0, otherwise.

Since the function is even, only the a,-coefficients need to be calculated:

ap :LLf :Lf ].dX—,

zﬁ:fxwm<ﬂwdx:%f1wﬂ%¥wu:%{Aﬂw%%ﬂi

= L (sin () —sin (—27)) = 2500/,

an

Hence, the function's 2L-periodic Fourier series is

P T s ().

SHx) =

h\'—‘
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Lecture 9: Introduction to the Fourier transform

Fourier transformation

Let f(x) be a function which on each interval, around 0, of length 2L can be represented by a
Fourier series. Then

f(x) =ao + Z(an cos(wpx) + sin(wpx)), wp = nTW

n=1
Plugging in the definition of the a; and b; yields

L

f(x) = i /fL f(s)ds + %i (cos(w,,x) /L f(s) cos(wps)ds + sin(w,,x)/

—L —L

f(s) sin(w,,s)ds) .

n=1
Let Aw be the difference between the different (angular) frequencies:

(n+)7 nm 0w
Aw — VPR G N7 AL
W Wt T W L L1
Then f(x) can be written as:

f(x) = i /_LL f(s)ds + % i:; (cos(w,,x) /_LL f(s) cos(wys)ds + sin(w,x) /_LL f(s) sin(w,,s)ds) Aw.

Assuming f to be absolutely integrable, sending L to oo gives us the Fourier integral

f(x) = %/Om <cos(w><) /j:o f(s) cos(ws)ds + sin(wx) /j:c f(s) sin(ws)ds> dw.
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Lecture 9: Introduction to the Fourier transform

The Fourier integral can also be written in complex form:

Flx) = % /7 O; e ( A o:o e*fWSf(s)ds> dw.

Based on this result, the concept of a Fourier transform is introduced: For an absolutely
integrable function f the Fourier transform of f is the function

Sl .
F(fiw) = / e 5 f(s)ds,
— o0
which is also denoted as F(w). The inverse Fourier transform of F(w) is

f(x) =F H(F(w)ix) = %/_OO e F(w)dw.

Remark

Based on our deduction, the following interpretation for the Fourier transform F(w) of a function
f(x) has been obtained: F(w) measures the intensity of f(x) in the (angular) frequency interval
between w and w 4 Aw.
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Lecture 9:The Fourier transform

The Fourier transform: Definition

Let f be a real-valued or complex-valued function, then its Fourier transform F(f(t); w) also
denoted by F¢(w) or F(w), is defined as

F(F(t);w) = /_oo f(t)e ™dt, weR.

This transformation is well defined for all w € R if f is absolutely integrable over R:

/oo [f(t)|dt < oo.

The inverse Fourier transform of a function g, which is absolutely integrable, is defined as
1 [ ;
F0 =5 [ etweaw.
27 J — oo

The Fourier and the inverse Fourier transforms are each others inverses:

Fzl(t) =f(t) and Froa(w) = g(w).

The functions
|[F(w)| and argF(w)

are called the amplitude and phase spectrum function of f, respectively.
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Lecture 9:The Fourier transform

Example
Let f be

_ k, —a<t<a
F(t) = { 0, otherwise,
where a > 0. Then

a

Fe(w) = [, (e de = [° ke idt = k [ dze ]

— k 1 e—iaw + ieiaw — %e"awfe_iaw — 2k sin(aw)
—iw iw w 2i w :

Example
Let g be
g(t)y=e?lt, a>o0.

Then
G(w) = fi’ooo g(t)e*“Wtdt = fgoo ete=Mtdt 4 fooo e e~ Wt

: : (a—iw)t 10 —(atiw)t 10
JO oo BT Mtd 4 [ e (@timigy = [eafiwt] e T [ef(aﬂw)t]o
1 1 2a

T a—iw  —(atiw) T a%24w?”
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Lecture 9:The Fourier transform

The Fourier transform: Basic properties

Proposition

Let f and g be absolutely integrable and let a, b € C, then
F(af(t) + bg(t); w) = aF(f(t); w) + bF(g(t); w);
F(f(at);w) = LF(F(t); %), a>0;
F(f(t — to); w) = e~ ™0 F(f(t); w);
m F(f(t)e'ot; w) = F(f(t); w — wp).

The Fourier transformation also satisfies Parseval's identity:

Proposition
(Parseval) Let f be an absolutely integrable function. Then

[ irwpae =5 [ 1Fw)Raw.
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Lecture 9:The Fourier transform

Example
Calculate the Fourier transform of f, where
-2, “2r<t<—m,

T < t<2m;
, otherwise.

f(t) =

on

Note that f(—t) = —f(t). Define fi(t) and f2(t) as

o -2, 2r<t<-—m, _ 2, w<t<2m,
ft) = { 0, otherwise, and  f(t) = { 0, otherwise.

Then f = 1 + .
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Lecture 9:The Fourier transform

Define g as

|1, —m/2<t<m/2
&(t) _{ 0, otherwise.

Then f(t) = fi(t) + f(t) = —2g(t + 37/2) + 2g(t — 37/2). Hence, using the result of a previous
exercise and the above proposition yields

F(f(t);w) = F(—2g(t+37/2)+2g(t—37/2);w)
—2F(g(t+37/2); w) +2F(g(t — 37/2); w)
—2e3 W2 F(g(t); w) + 232 F(g(t); w)
_2(e3m‘w/2 _ e*?’""‘”‘/z)]:(g(t); W)

_ 4 e37riw/2 —37rwi/2 25in(7-rw/2)

== sm(37r\/\2//2) sm(7rw/2)
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Lecture 9:The Fourier transform

Example
Let f be given by

1, —1<t<1;
F(1) _{ 0, otherwise.

Then Fr(w) = 2%\/‘)”) and a direct calculation shows that

oo 1
/ |f(t)|2dt:/ 1dt = 2,
—00 -1
Furthermore,

e ot [ (B = 2 [T () e

Hence, Parseval's identity yields
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Lecture 10: Properties of the Fourier transform

The Fourier transform: Transform of the d-function
The delta function §(t) is formally defined by means of integrals:

/b5(f — to)f(t)dt = { f(t), a<to<b;

0, otherwise.

b
1, a<0<b;
/a o(t)de 7{ 0, otherwise.

The Fourier transform of the § function is easily determined:

In particular,

F(6;w) = / S(t)e ™dt =0 =1.
— 00

A similar calculation shows that F~1(§; t) = (2m) L. Therefore F(1/2m; w) = §(w) or,
equivalently,
F(1;w) = 2w6(w).
Using the shifting property of Fourier transform, the preceding result yields
F(eMot: w) = F(1-e™t w) = F(1;w — wp) = 276(w — wp).

In particular,

F <Z age™t; w) = Z akF(e™t w) = 2n Z agd(w — wy).
k=1 k=1 k=1

This shows that the Fourier transform maps the oscillations e "Wkt "to their corresponding
frequencies” wy.
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Lecture 10: Properties of the Fourier transform

The Fourier transform: Differentiation

Proposition
Assume that f has a derivative and that |f| and |f'| are absolutely integrable over R. Then

F(f(t); w) = iwF(f(t); w).

In particular, if f is n times differentiable and || and all the derivatives |f'|, |F()], ... [f(")] are

absolutely integrable, then

F(F(t); w) = (iw)"F(F(£); w).

Proposition

Let f be absolutely integrable and piecewise smooth and if t™f(t), m € N, has a Fourier
transform, then

F(t™f(t);w) = i’"%F(f(t): w).
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Lecture 10: Properties of the Fourier transform

Example

Determine the Fourier transform of
—2/2
f(t) = te .

By definition
F(f(t),w)=F (teft2/2; W> =—-F <:1—iteft2/2; W> = —iwF (efrzﬂ7 W> .

2 2
From the tables you can find F (e_t /2, W) = 2me"/2, Consequently,

F(f(t),w) = —\/ﬁiwefwz/z.

Example
Determine the Fourier transform of

_ —at _ te™, t>0;
f(t) = u(t)te 7{ 0. t<0 ° a>0.

Using the second rule

d 1 1

F(f(t);w) = F(tu(t)e ™ w) = iif(u(t)e*at; w) = id773+ = Grmpe

dw

Here the fact that F(u(t)e™?; w) = (a + iw) ™1, which can be found from the tables, was used.
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Lecture 10: Properties of the Fourier transform

The Fourier transform: Convolution

Let f and g be functions defined on R, then the convolution of f and g is the function f x g
which is defined by

(re)®) = [ o)t —s)as= [ f(t-a(s)ds = (g + F)(e).

The convolution can be used to calculate the product of Fourier transforms.
Proposition
Let f and g be continuous and absolutely integrable on R. Then

F((f = g)(t); w) = F(f(t); w)F(g(t); w).

Example
Let f(t) = e2ltl and let g(t) = cos(at), where a > 0, then determine their convolution. By the
preceding statement

2a

F(f « giw) = F(f(2); w) - F(g(t);w) = -w(8(w — a) + 6(w + a)),

where the tables were used. Taking the inverse Fourier transform on both sides yields:

(f xg)(t) *f‘l( oz (8w — a) + 6(w + )i t)
= 2 W2+a2 ~m(8(w — a) + 6(w + a))e™ dw
= foooo Wzﬁ (8(w — a) + 8(w + a))e™ dw

iat —iat 1 eftye—iat cos(at)
= e 3 et — leTien ™ _ coslat)
A s B, 3 2 a
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Lecture 10: Application of the Fourier transform to DE's

The Fourier transform: Application to differential equations

Example

For a fixed function r and for a ¢ N, solve the differential equation
—y"(t) + ay(t) = r(1).
To solve this problem use the Fourier transform: First transform the lefthand side

F(—y"(t) + 2%y(t); w) —F(y"(1); w) + a2 F(y(t); w)

—(w)2F(y,w) + &> F(y,w)
= (w? + %) F(y, w).

Hence by Fourier transforming our differential equation we obtain that
(W? + ) F(y(t); w) = F(r(t); w)

or, equivalently, our Fourier transform F(y(t); w) is given by

1
Fy(t)yw) = m]:(f(f); w).
From the tables one finds that
2a
—alt|. —
Fle hw) = peRpe a>o0.

S. Hassi (seppo.hassi@uwasa.fi) Integral Transformations

Autumn, 2016

43 /55



Lecture 10: Application of the Fourier transform to DE's

Hence (with a > 0)
2a

w2 + a2’

Combining this with our obtained expression for the Fourier transform of y yields that

Fle=lthw) =

Fly(0)iw) = —

Consequently,
1

y(t) = i (e*a'lu\ * r(u)> (6) = o /_o; e~ 1t~ (u)du.

The above solution is not an unique solution of the differential equation, because no initial
conditions were given. Therefore solutions of the homogeneous differential equation

—y"(t)+ay(t) =0
can be added to the obtained solution.

In particular, if r(t) = §(t), then the solution
1 _ 1

of the differential equation —y”/(t) + a?y(t) = &(t) is found
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Lecture 10: Application of the Fourier transform to DE's

Heat equation on an infinite line
The problem of the flow of heat in an infinite medium with initial temperature distribution f(x)
and heat source g(x, t) can be mathematically modeled as follows:

U (X, t) = a=2ue(x, t) 4+ q(x, t), —o00 < x < 00,t >0,

B.C.: limx oo (X, t) = 0,lim| | o0 ux(x, t) =0,

I.C. u(x,0) = f(x), —oo<x<0.
Here u(x, t) is the heat at point x and time t, and a > 0 is a thermal diffusivity constant. For
simplicity assume that g(x, t) = 0. To solve this problem take the Fourier transform of u with
respect to the spacial variable:

0 = Flusx(x,t) —a 2ue(x, t); x = w) = Fluw(x, t); x = w) — a2 F (ue(x, t); x = w)
= (iw)2F(u(x, t); x — w) — 3_2%]-'(u(x7 t); x — w).

Denoting F(u(x, t); x = w) by U(w, t), the following initial value problem has been obtained:
a?wlU(w, t) + Ue(w, t) =0, U(w,0) = F(w) = F(f(x); w).

This first-order differential equation can be solved:
2

~an
U(w,t) = F(W)ef"’zwzt = F(f(x);w) - F :\/7;7;;)( —w

Hence, using the convolution theorem and taking inverse Fourier transforms yields

u2

2f

(x— 5)2

u(x, t) = f(s)e 4%t ds.

W) | (= 5= [~
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Lecture 10: Application of the Fourier transform to DE's

Infinite beam on resting on an elastic foundation

If a load f(x) is placed on an infinite beam, then the deflection y(x) of the beam should satisfy:
Ely®(x) + ky(x) = f(x), —o0 < x < co.

Here E, | and k are positive constants which all have a physical interpretation. Now consider the
problem that there exists a constant Fy > 0 such that the load f is given by

7 Fo, —-1<x<1,
flx) = { 0, otherwise.
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Lecture 10: Application of the Fourier transform to DE's

Applying the Fourier transform to both sides gives, using the tables, that

2Rosinl)  — F(f(x); w) = F(ElY®(x) + ky(x); w) = El(iw)* F(y(x); w) + kF(y(x); w)
= (Elw* + k) F(y(x); w).

In other words,

y(x):]-'_1 72,:05“](‘”) x| = i/Oo 72,:05“]('”) e dw.
w(Elw* + k) 27 J oo w(EIW* + k)

Because 2Fg sin(w)/w(EIw* + k) is an even function, the above result can be simplified to

_ Fy [ sin(w)
y(x) = g /_Oo ) cos(wx)dw.

On the righthand side residue calculus can be used, therefore note that the only poles in the
upper halfplane of the integrand are at ¢ - e™/4 and ¢ - €37/4, where c is the positive fourth root
out of El/k. Using those residue’s one obtains

F —c(1+x) 1 —c(l1—x) 1—

Fo (e—ﬂ sin SEEX) | =07 g u> ,

y(x) = 7 7

T2k
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Lecture 12: The Z-transform

The Z-transform

As discussed in the section on the discrete Fourier transform for practical purposes one rather
works with discrete signals. Therefore next a discrete analogue of the Laplace transform, the
Z-transform, will be considered. This is a transform that converts a discrete signal into a
complex frequency domain representation and is used in communication systems.

Example

A typical example of a difference problem is the following: Find a sequence {y(n)} which satisfies

a-y(n+2)+b-y(n+1)+c-y(n)=x(n), n=0,1,2,...,

where a, b and ¢ are constants and {x(n)} is a fixed (known) sequence. To have a unique
solution one needs, like in differential equations, initial conditions, which could for instance take
the form y(0) =0 and y(1) = 1.
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Lecture 12: The Z-transform

The Z-transform: An introduction
Let {x(n)}ncz be a (2-sided) infinite sequence of complex numbers, i.e.

{X(n)} = { . ,X(72),X(*l),X(O),X(l),X(2), . -}7

then its Z-transform, denoted by Z(x(n); z) or X(z), is the (formal) expression

oo

Z(x(n);z)= Y x(mz". (7.1)

n—=—oo

l.e., the Z-transform of a sequence is a Laurent series at 0, which therefore a well-defined
function (converges) in an annulus or nowhere. In applications, one usually deals with causal
sequences {x(n)}, which means that x(n) =0 if n < 0, cf. the Laplace transform.

Since the Z-transform is a Laurent series, the sequence {x(n)} can be recovered from its

Z-transform: 1 ¥
x(n) = —]{ (2) dz, n€Z,
2ni Jo z—ntl

where C is a closed curve contained in the annulus where X’(z) converges. Alternatively, residue
calculus might be used to calculate the coefficients x(n) of a causal sequence:

X
x(n) = Z Resz=a; (z—aj—)l) , nez,
a;

where the sum is over all the poles a; of the function X(z).
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Lecture 12: The Z-transform

Example
Consider the sequence {x(n)}, where x(—2) = —4, x(0) = 1, x(1) = 10, and all the other

coefficient are zero. Then
Z(x(n);z) = —42° + 1+ 10271

Let {x(n)} be a causal sequence, where x(n) = a" for a € C, n € N. Then
a\n 1 z
Y-t

Z(x(n);z) = 23”27" = Z <z
n=0

z—a

n=0

Here use of the geometrical series was made, from which it in particular follows that the

preceding Z-transform converges for (is well defined for) |z| > |a|.
Let {x(n)} be a causal sequence, where x(n) = n, n € N. Then
Z(x(n)iz) = Xgnz "=z Renz "= —z L Yy = 24 ()
_ -1 _ z
- T e

Here the preceding Z-transform converges for (is well defined for) |z| > 1.

Integral Transformations Autumn, 2016
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Lecture 12: The Z-transform

The Z-transform: Basic properties

Z-transform of causal series have properties quite similar to those of the Laplace transform.

Proposition

Let {x(n)} and {y(n)} be causal series and let X(z) and Y(z) be their Z-transforms which
converge in Dy = {a < |z| < B} and Dy = { < |z| < &}, respectively, and let a,b € C. Then

Z(ax(n) + by(n); z) = aX(z) + bY(z), where D = D1 N Dy;
(n—ng);z) =z MX(z) 4z Zm*—ng x(m)z—™, where D = Dy and ng > 0;

HH

E

x(n+ ng); z) = z™X(z) — Z"‘]:_O x(m)z"™~™, where D = D; and ng > 0;

m

Z(x
Z(
Z(a"x(n); z) = X(%), where D = {|a] - a < |z| < |a] - B};
(
(

>]

nx(n); z) = —ZiX(Z), where D = Dy;
Z((xxy)(n); z) = X(2)Y(z), where D = Dy N Dy. Here

2 =
N

n

(e y)(n) = S x(k)y(n— k), neZ
k=0

Note that in the shift to the left (item 2) it is assumed that x(—1),...,x(—ng) are non-zero even
though the sequence is causal. If these numbers are not specifically given, then they are assumed
to be zero.
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Lecture 12: The Z-transform

Example

To determine the Z-transform of the causal sequence x(n) = na", n € N, the fifth item in
the above statement and the tables can be used:

d d z d a az
z n; — _ z "; — _ =—z— (1 = -
(na";2) ‘a4z (@"2) ‘a4z (z—a) ‘a4z ( + z—a) (z — a)?

To determine the Z-transform of the causal sequence y(n) = a"~2, note that y(n) is a shift
of the causal sequence x(n) = a" with initial conditions x(—1) = a—! and x(—2) = a~%:
y(n) = x(n —2). Hence, by item 2 of the above Proposition with ny = 2,

V(z) =Z(y(n);z)=Z(x(n—2);z)=2z"2X(z)+ 27231 x(m)z—™m

m=—2

_ ,—2_z —2(,—2,2 -1} — 1 -2 —1,-1
=z Z_a—f—z (a zc+a z)_z(z_a)+a +a -z .

Here again we used that X'(z) = %, which can be found from the tables.
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Lecture 12: The Z-transform

Example
Determine the inverse Z-transform of X(z) = z?/((z — a)(z — b)), where a # b. Note that with
U(z) = z/(z — a) and V(z) = z/(z — b) one has that

u(n) = Z7YU(z);n) = a" and v(n):= Z71(V(z);n) = b".

Hence, by the convolution statement in Proposition 25

“HX(2)in) = Z7HU(2) - V(2);n) = Z71(Z(u(n); 2) - Z(v(n); 2); n)
= 21 (2((u = v)(n): 2) n)—(u*v)(n) Shgulk)v(n K
=2 hgakbnk :ank:O( ) (a/ab/)b T = afg

Another way to solve the problem would be to use partial fractions. Therefore observe that

z2 b z a z

(z—a)(z—b) b—az—b b—az—a

Hence, using the linearity of the inverse Z-transform

-1 22 . _z-1( b _z _ _a _z . _ —1( 2z z .
= ((z—a)(sz)’n> =2 (b az—b b—a z—a'n) - —aZ (sz n (z—a'n)
a n pnt1_  n+
a = —F .
—a b—a

Finally, the inverse Z-transform can also be calculated by means of residue calculus. Therefore note that X'(z)
is analytic in C except for poles (of order one) at a and b. Therefore

—  b—a a—b b—a

1 2 ,2,n—1 2,n—1 p2pn—l | 21 pntl_ntl
z ((z—a)(z—b)’") —RCS"(( == ))*Resa(u Ble= b))
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Lecture 12: The Z-transform

The Z-transform: Solving difference equations.

Example
Solve the (initial value) difference equation

y(n+2)+3y(n+1)+2y(n)=0, y(0)=1,y(1)=-3.

This problem will be solved by using the Z-transform. Therefore note that

Z(y(n+2)iz) = 22Z(y(n); z) — 224(0) — 2ly(1) = 22Z(y(n): z) — 22 + 3z

Z(y(n+1)iz) =2z'"Z(y(n)iz) - z'y(0) = 2Z(y(n); 2) — z.
Hence, since the Z-transform of 0 is 0, Z-transforming the difference equation yields
0 Z(y(n+2) +3y(n+1) +2y(n); 2)
Z(y(n+2);2) +3Z(y(n+1); 2) + 2Z(y(n); 2)

22Z(y(n); z) — 22 + 3z + 3(2Z(y(n); 2) — 2) + 2Z(y(n); 2)
= (Z243z+2)Z(y(n); 2z) — 2.

Therefore Z(y(n); z) is given by

22 22

z24+3z42 = (z4+2)(z+1)

Consequently, it follows from the calculated results that

Z(y(n);2) =

— 22 _oyn+1_(_qyn+1
y(n) _z-1 ((z+2)(2+1);n) _ 2)727((713) — (_1)n+1 _ (_2)n+1.

Finally, check whether obtained the solution is correct!
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Lecture 12: The Z-transform

Example
Solve the (initial value) difference equation

y(n)—y(n=2)=6(n—-1), y(-1)=0,y(-2)=0.
This problem will be solved by using the Z-transform. Therefore note that
Z(y(n—2);z) = 22 Z(y(n); 2) + 22 (y(-1)z + y(=2)2°) = 27 Z(y(n); 2).
Hence, Z-transforming the difference equation yields

Z((n—1);z) =Z(y(n)—y(n—-2);z)= Z(y(N)z: z) = Z(y(n—2);2)
= Z(y(n);z) — z722(y(n); 2) = Z5 Z(y(n); 2).

z2

Therefore Z(y(n); z) is given by

2 2
Z(y(n);z) = Zf—_IZ(é(n —1);z) = mZ(é(n —1);2)
1l (_qyml

=z (U= i2) 20— 1i2) = 2 (L= (-1 )2 %6(n = 1)i2)
Consequently,

01— (=1)n—mtl 0, n<o;
y(n) = Z %J(m -1)= { 1_(2_1)~ n>0
m=0 ’ )

Finally, check whether obtained the solution is correct!
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