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Lecture 8: Fourier Series as approximations

Definition
Let {V , (·, ·)} be an inner product space and let {f1, . . . , fn} be an orthogonal sequence in V
whose span is the subspace Fn. Then the projection onto Fn is defined as

PFnx =
n∑

i=1

(x , fi )fi

||fi ||2
, x ∈ V .

In particular, if {e1, . . . , en} is an orthonormal sequence in V whose span is the subspace En, then
the projection onto En is defined as

PEnx =
n∑

i=1

(x , ei )ei , x ∈ V .

Proposition
Let {e1, . . . , en} be an orthonormal sequence in the inner product space {V , (·, ·)} and let En be
its span. If x , y ∈ En, then

x = PEnx =
n∑

i=1

(x , ei )ei and y = PEny =
n∑

i=1

(y , ei )ei .

Moreover, Parseval’s identity holds

(x , y) =
n∑

i=1

(x , ei )(y , ei ).
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Lecture 8: Fourier Series as approximations

Theorem
Let {e1, . . . , en} be an orthonormal sequence in the inner product space {V , (·, ·)} and let En be
its span:

En =

{
n∑

i=1

aiei : ai ∈ C or R

}
.

Moreover, let PEn be as defined above. Then for any vector x ∈ V :

||x − PEnx || ≤ ||x − y ||, ∀y ∈ En.

In other words, PEnx is the element in En which is closest to x among all elements in En.
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Lecture 8: Fourier Series as approximations

Approximation by trigonometric functions

Example
Recall that on the real vector space V2,

V2 = {f : [−π, π]→ R continuous :

∫ π

−π
(f (s))2ds <∞},

with the inner product (·, ·) : V2 × V2 → R defined as

(f , g) =

∫ π

−π
f (s)g(s)ds, f , g ∈ V2,

is an inner product and that for every N ∈ N,

{eo , e1, . . . , e2N} :=

{
1
√

2π
,

cos(x)
√
π

,
sin(x)
√
π
, . . . ,

cos(Nx)
√
π

,
sin(Nx)
√
π

}
is an orthonormal sequence in {V2, (·, ·)}. Now define EN to be the span of the above ei ’s:

EN = {a0 +
N∑

n=1

(an cos(nx) + bn sin(nx)) : a0, . . . , aN , b1, . . . , bN ∈ R}.
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Lecture 8: Fourier Series as approximations

Let f be any function in V2, then the best approximation to this function in EN is

PEN
f = (f , e0)e0 +

∑N
n=1(f , e2n−1)e2n−1 +

∑N
n=1(f , e2n)e2n

=
∫ π
−π

(
1√
2π

f (s)
)
ds 1√

2π
+
∑N

n=1

∫ π
−π

(
f (s) cos(ns)√

π

)
ds cos(nx)√

π
+
∑N

n=1

∫ π
−π

(
f (s) sin(ns)√

π

)
ds sin(nx)√

π

= 1
2π

∫ π
−π f (t)ds + 1

π

∑N
n=1

∫ π
−π (f (s) cos(ns)) ds cos(nx) + 1

π

∑N
n=1

∫ π
−π (f (s) sin(ns)) ds sin(nx).

Now for a function f , define

a0 =
1

π

∫ π

−π
f (s)ds, an =

1

π

∫ π

−π
f (s) cos(ns)ds, bn =

1

π

∫ π

−π
f (s) sin(ns)ds.

Then

PEN
f =

a0

2
+

N∑
n=1

(an cos(nx) + bn sin(nx)).

I.e., the partial Fourier series is the best approximation in the space of cos nx and sin nx functions up to a
certain frequency. Therefore the Fourier series itself (”N =∞”) is the best approximation in the space of all
cos nx and sin nx functions.

Recall the following useful calculation rules for Fourier series:

1 Saf +g (x) = aSf (x) + Sg (x), a ∈ R;

2 if f is even, i.e. f (−x) = f (x), then bn = 0, n = 1, . . .;

3 if f is odd, i.e. f (−x) = −f (x), then an = 0, n = 0, . . .;

4 if f (x) =
a0
2 +

∑N
n=1 (an cos(nx) + bn sin(nx)), then Sf (x) = f (x).
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Lecture 8: Fourier Series as approximations

Example

1 The Fourier series Sf of f (x) = 2 cos(3x) + 10 sin(8x), −π ≤ x ≤ π is f itself. Because the
Fourier series is the best approximant in the space spanned by 1, sin(x), cos(x), sin(2x),
cos(2x), . . . and f is already in that space.

2 Let g(x) = x ,−π ≤ x ≤ π, determine its Fourier series and find the best approximant of f in
the space spanned by {1, cos(x), sin(x)} and by {1, cos(x), sin(x), sin(2x), cos(2x)}.

The first step is to determine the Fourier series of g . Since g is an odd function, only the
bn’s need to be determined:

bn = 1
π

∫ π
−π t sin(nt)dt = 1

π

[[
−t cos(nt)

n

]π
−π

+
∫ π
−π

cos(nt)
n

dt

]
= 1

nπ
[−π(−1)n − π(−1)n] + 1

πn2 [sin(nt)]π−π = − 2(−1)n

n

Hence, the Fourier series of g is given by

Sg (x) = 2
∞∑
n=1

(−1)n+1

n
sin(nx) = 2

(
sin(x)−

1

2
sin(2x) +

1

3
sin(3x)− . . .

)
and the asked for approximants are 2 sin(x) and 2 sin(x)− sin(2x), respectively.

3 Determine the Fourier series of h(x) = x + 2 cos(3x) + 10 sin(8x), −π ≤ x ≤ π.
This problem can be solve by using the linearity property of Fourier series:

Sh(x) = Sf (x) + Sg (x) = 2 cos(3x) + 10 sin(8x) + 2

(
sin(x)−

1

2
sin(2x) +

1

3
sin(3x)− . . .

)
.
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Lecture 8: Complex Fourier series

Complex Fourier series

Fourier series can also be written with respect to an exponential basis. Therefore remember:

sin(nx) =
e inx − e−inx

2i
and cos(nx) =

e inx + e−inx

2
.

With the help of these formulas one has that

an cos(nx) + bn sin(nx) = an
e inx + e−inx

2
+ bn

e inx − e−inx

2i
=

an − ibn

2
e inx +

an + ibn

2
e−inx .

Now define the coefficient of e inx to be cn, i.e

cn =
an − ibn

2
and c−n =

an + ibn

2
, n ≥ 0,

where c0 = a0/2, because b0 = 0 . Note that cn = c−n for n ∈ Z and that

an = 2Re cn and bn = −2Im cn, n ≥ 0.

In this way one has obtained the complex representation of the Fourier series Sf for a function f :

Sf (x) =
∞∑

n=−∞
cne

inx := lim
m→∞

m∑
n=−m

cne
inx , cn =

1

2π

∫ π

−π
f (x)e−inxdx .
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Lecture 8: Complex Fourier series

Let f be a 2π-periodic function and let cn be its complex Fourier coefficients. Then

1 the set {(n, cn) : n ∈ Z} is called its spectrum;

2 the set {(n, |cn|) : n ∈ Z} is called its amplitude spectrum;

3 the set {(n, arg(cn)) : n ∈ Z} is called its phase spectrum.

The spectrum gives information about the harmonic frequency components e inx ; the amplitude
spectrum gives the strength of the harmonic frequency under consideration and the phase
spectrum the phase in which the frequency starts.

Proposition
(Parseval’s identity) Let f be a function and let cn be its complex Fourier coefficients and an and
bn its real Fourier coefficients. Then

1

2π

∫ π

−π
f (x)2dx =

∞∑
n=−∞

|cn|2 =
a2

0

4
+
∞∑
n=1

a2
n + b2

n

2
.
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Lecture 8: Complex Fourier series

Example
Recall that if f (x) = x ,−π ≤ x ≤ π, then

Sf (x) = 2
∞∑
n=1

(−1)n+1

n
sin(nx) = 2

(
sin(x)−

1

2
sin(2x) +

1

3
sin(3x)− . . .

)
.

Now c0 = a0/2 = 0,

cn =
an − ibn

2
=
−2i (−1)n+1

n

2
= i

(−1)n

n
, n > 0,

and

c−n = cn = −i
(−1)n

n
= i

(−1)−n

−n
, n > 0.

Hence, f (x) has the following complex Fourier series representation:

Sf (x) = i
∞∑

n=−∞,n 6=0

(−1)n

n
e inx .

The coefficients could also have been calculated directly. For n = 0:

c0 =
1

2π

∫ π

−π
xdx =

[
x2

2π

]π
−π

= 0.

and for n ∈ Z \ {0}:

cn = 1
2π

∫ π
−π xe−inxdx = 1

2π

([
x e−inx

−in

]π
−π

+ 1
in

∫ π
−π e−inxdx

)
= 1

2π

(
π e−iπn

−in + π eiπn

−in + 0
)

= 1
−in

(
eiπn+e−iπn

2

)
= i

n cos(nπ) = i
n (−1)n.
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Lecture 8: Complex Fourier series

The amplitude and phase spectrum of the function are given by

amplitude spectrum: {(n, |cn|) : n ∈ Z} = {(0, 0)} ∪ {(n,
∣∣∣i (−1)n

n

∣∣∣) : n ∈ Z \ {0}}
= {(0, 0)} ∪ {(n, 1/n) : n ∈ Z \ {0}};

phase spectrum: {(n, arg(cn)) : n ∈ Z} = {(n, arg(i (−1)n

n
)) : n ∈ Z \ {0}}

= {(n, arg(sgn(n)i(−1)n)) : n ∈ Z \ {0}}
= {(n, sgn(n)(−1)n π

2
) : n ∈ Z \ {0}}.

Figure: The amplitude spectrum.

Figure: The phase spectrum.
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Lecture 8: Complex Fourier series

Furthermore, Parseval’s identity yields

1

2π

∫ π

−π
x2dx =

∞∑
n=−∞

|cn|2 =
∞∑

n=−∞,n 6=0

∣∣∣∣ (−1)n

n

∣∣∣∣2 .
Now

1

2π

∫ π

−π
x2dx =

1

2π

[
x3

3

]π
−π

=
π2

3

and
∞∑

n=−∞,n 6=0

∣∣∣∣ (−1)n

n

∣∣∣∣2 =
∞∑

n=−∞,n 6=0

∣∣∣∣ 1n
∣∣∣∣2 = 2

∞∑
n=1

1

n2
.

Therefore Parseval’s identity yields:

∞∑
n=1

1

n2
=

1

2

π2

3
=
π2

6
.
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Lecture 9: Introduction to the Fourier transform

Fourier series on arbitrary intervals
For a 2L-periodic function, or for a function defined on [−L, L], a Fourier series can be defined:

SL
f (x) =

a0

2
+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
,

where

a0 =
1

L

∫ L

−L
f (x)dx , an =

1

L

∫ L

−L
f (x) cos

(nπx
L

)
dx and bn =

1

L

∫ L

−L
f (x) sin

(nπx
L

)
dx .

This Fourier series can also be written in complex form:

SL
f (x) =

∞∑
n=−∞

cne
inπ
L

x , cn =
1

2L

∫ L

−L
f (x)e−

inπ
L

x .

In this series the frequencies and angular frequencies of the functions are

n

2L
and n

π

L
, n ∈ N,

whereas in a ”normal” Fourier series the frequencies and angular frequencies of the functions are

n

2π
and n, n ∈ N.
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Lecture 9: Introduction to the Fourier transform

Example
Find the 2L-periodic, L > 1, Fourier series of the function

f (x) =

{
1, −1 ≤ x ≤ 1;
0, otherwise.

Since the function is even, only the an-coefficients need to be calculated:

a0 = 1
L

∫ L
−L f (x)dx = 1

L

∫ 1
−1 1dx = 2

L
;

an = 1
L

∫ L
−L f (x) cos

(
nπx
L

)
dx = 1

L

∫ 1
−1 cos

(
nπx
L

)
dx = 1

L

[
L
nπ

sin
(
nπx
L

)]1

−1

= 1
nπ

(
sin
(
nπ
L

)
− sin

(
− nπ

L

))
= 2

L
sin(nπ/L)

nπ/L
.

Hence, the function’s 2L-periodic Fourier series is

SL
f (x) =

1

L
+

2

L

∞∑
n=1

sin(nπ/L)

nπ/L
cos
(nπ

L
x
)
.
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Lecture 9: Introduction to the Fourier transform

Fourier transformation
Let f (x) be a function which on each interval, around 0, of length 2L can be represented by a
Fourier series. Then

f (x) = a0 +
∞∑
n=1

(an cos(wnx) + sin(wnx)), wn =
nπ

L
.

Plugging in the definition of the ai and bi yields

f (x) =
1

2L

∫ L

−L
f (s)ds +

1

L

∞∑
n=1

(
cos(wnx)

∫ L

−L
f (s) cos(wns)ds + sin(wnx)

∫ L

−L
f (s) sin(wns)ds

)
.

Let ∆w be the difference between the different (angular) frequencies:

∆w = wn+1 − wn =
(n + 1)π

L
−

nπ

L
=
π

L
.

Then f (x) can be written as:

f (x) =
1

2L

∫ L

−L

f (s)ds +
1

π

∞∑
n=1

(
cos(wnx)

∫ L

−L

f (s) cos(wns)ds + sin(wnx)

∫ L

−L

f (s) sin(wns)ds

)
∆w .

Assuming f to be absolutely integrable, sending L to ∞ gives us the Fourier integral

f (x) =
1

π

∫ ∞
0

(
cos(wx)

∫ ∞
−∞

f (s) cos(ws)ds + sin(wx)

∫ ∞
−∞

f (s) sin(ws)ds

)
dw .
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Lecture 9: Introduction to the Fourier transform

The Fourier integral can also be written in complex form:

f (x) =
1

2π

∫ ∞
−∞

e iwx
(∫ ∞
−∞

e−iws f (s)ds

)
dw .

Based on this result, the concept of a Fourier transform is introduced: For an absolutely
integrable function f the Fourier transform of f is the function

F(f ;w) =

∫ ∞
−∞

e−iws f (s)ds,

which is also denoted as F (w). The inverse Fourier transform of F (w) is

f (x) = F−1(F (w); x) =
1

2π

∫ ∞
−∞

e iwxF (w)dw .

Remark
Based on our deduction, the following interpretation for the Fourier transform F (w) of a function
f (x) has been obtained: F (w) measures the intensity of f (x) in the (angular) frequency interval
between w and w + ∆w.
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Lecture 9:The Fourier transform

The Fourier transform: Definition

Let f be a real-valued or complex-valued function, then its Fourier transform F(f (t);w) also
denoted by Ff (w) or F (w), is defined as

F(f (t);w) =

∫ ∞
−∞

f (t)e−iwtdt, w ∈ R.

This transformation is well defined for all w ∈ R if f is absolutely integrable over R:∫ ∞
−∞
|f (t)|dt <∞.

The inverse Fourier transform of a function g , which is absolutely integrable, is defined as

F−1
g (t) =

1

2π

∫ ∞
−∞

g(w)e iwtdw .

The Fourier and the inverse Fourier transforms are each others inverses:

F−1
Ff

(t) = f (t) and FF−1
g

(w) = g(w).

The functions
|F (w)| and argF (w)

are called the amplitude and phase spectrum function of f , respectively.
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Lecture 9:The Fourier transform

Example
Let f be

f (t) =

{
k, −a < t < a;
0, otherwise,

where a > 0. Then

Ff (w) =
∫∞
−∞ f (t)e−iwtdt =

∫ a
−a ke

−iwtdt = k
[

1
−iw

e−iwt
]a
−a

= k
(

1
−iw

e−iaw + 1
iw
e iaw

)
= 2k

w
e iaw−e−iaw

2i
= 2k sin(aw)

w
.

Example
Let g be

g(t) = e−a|t|, a > 0.

Then

G(w) =
∫∞
−∞ g(t)e−iwtdt =

∫ 0
−∞ eate−iwtdt +

∫∞
0 e−ate−iwtdt

=
∫ 0
−∞ e(a−iw)tdt +

∫∞
0 e−(a+iw)tdt =

[
e(a−iw)t

a−iw

]0

−∞
+
[
e−(a+iw)t

−(a+iw)

]∞
0

= 1
a−iw

− 1
−(a+iw)

= 2a
a2+w2 .
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Lecture 9:The Fourier transform

The Fourier transform: Basic properties

Proposition
Let f and g be absolutely integrable and let a, b ∈ C, then

1 F(af (t) + bg(t);w) = aF(f (t);w) + bF(g(t);w);

2 F(f (at);w) = 1
a
F(f (t); w

a
), a > 0;

3 F(f (t − t0);w) = e−iwt0F(f (t);w);

4 F(f (t)e iw0t ;w) = F(f (t);w − w0).

The Fourier transformation also satisfies Parseval’s identity:

Proposition
(Parseval) Let f be an absolutely integrable function. Then∫ ∞

−∞
|f (t)|2dt =

1

2π

∫ ∞
−∞
|Ff (w)|2dw .
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Lecture 9:The Fourier transform

Example
Calculate the Fourier transform of f , where

f (t) =

 −2, −2π < t < −π;
2, π < t < 2π;
0, otherwise.

Note that f (−t) = −f (t). Define f1(t) and f2(t) as

f1(t) =

{
−2, −2π < t < −π;

0, otherwise,
and f2(t) =

{
2, π < t < 2π;
0, otherwise.

Then f = f1 + f2.
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Lecture 9:The Fourier transform

Define g as

g(t) =

{
1, −π/2 < t < π/2;
0, otherwise.

Then f (t) = f1(t) + f2(t) = −2g(t + 3π/2) + 2g(t − 3π/2). Hence, using the result of a previous
exercise and the above proposition yields

F(f (t);w) = F(−2g(t + 3π/2) + 2g(t − 3π/2);w)
= −2F(g(t + 3π/2);w) + 2F(g(t − 3π/2);w)

= −2e3πiw/2F(g(t);w) + 2e−3πwi/2F(g(t);w)

= −2(e3πiw/2 − e−3πwi/2)F(g(t);w)

= −4i e
3πiw/2−e−3πwi/2

2i
2 sin(πw/2)

w
= −8i

w
sin(3πw/2) sin(πw/2).
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Lecture 9:The Fourier transform

Example
Let f be given by

f (t) =

{
1, −1 < t < 1;
0, otherwise.

Then Ff (w) = 2 sin(w)
w

and a direct calculation shows that∫ ∞
−∞
|f (t)|2dt =

∫ 1

−1
1dt = 2,

Furthermore,

1

2π

∫ ∞
−∞
|Ff (w)|2dw =

1

2π

∫ ∞
−∞

(
2 sin(w)

w

)2

dw =
2

π

∫ ∞
−∞

(
sin(w)

w

)2

dw .

Hence, Parseval’s identity yields ∫ ∞
−∞

(
sin(w)

w

)2

dw = 2
π

2
= π.

S. Hassi (seppo.hassi@uwasa.fi) Integral Transformations Autumn, 2016 38 / 55



Lecture 10: Properties of the Fourier transform

The Fourier transform: Transform of the δ-function
The delta function δ(t) is formally defined by means of integrals:∫ b

a
δ(t − t0)f (t)dt =

{
f (t0), a ≤ t0 ≤ b;

0, otherwise.

In particular, ∫ b

a
δ(t)dt =

{
1, a ≤ 0 ≤ b;
0, otherwise.

The Fourier transform of the δ function is easily determined:

F(δ;w) =

∫ ∞
−∞

δ(t)e−iwtdt = e−iw0 = 1.

A similar calculation shows that F−1(δ; t) = (2π)−1. Therefore F(1/2π;w) = δ(w) or,
equivalently,

F(1;w) = 2πδ(w).

Using the shifting property of Fourier transform, the preceding result yields

F(e iw0t ;w) = F(1 · e iw0t ;w) = F(1;w − w0) = 2πδ(w − w0).

In particular,

F
(

n∑
k=1

ake
iwk t ;w

)
=

n∑
k=1

akF(e iwk t ;w) = 2π
n∑

k=1

akδ(w − wk ).

This shows that the Fourier transform maps the oscillations e−iwk t ”to their corresponding
frequencies” wk .

S. Hassi (seppo.hassi@uwasa.fi) Integral Transformations Autumn, 2016 39 / 55



Lecture 10: Properties of the Fourier transform

The Fourier transform: Differentiation

Proposition
Assume that f has a derivative and that |f | and |f ′| are absolutely integrable over R. Then

F(f ′(t);w) = iwF(f (t);w).

In particular, if f is n times differentiable and |f | and all the derivatives |f ′|, |f (2)|, . . . |f (n)| are
absolutely integrable, then

F(f (n)(t);w) = (iw)nF(f (t);w).

Proposition
Let f be absolutely integrable and piecewise smooth and if tmf (t), m ∈ N, has a Fourier
transform, then

F(tmf (t);w) = im
dm

dwm
F(f (t);w).
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Lecture 10: Properties of the Fourier transform

Example
Determine the Fourier transform of

f (t) = te−t2/2.

By definition

F(f (t); w) = F
(
te−t2/2; w

)
= −F

(
d

dt
e−t2/2; w

)
= −iwF

(
e−t2/2

,w

)
.

From the tables you can find F
(
e−t2/2; w

)
=
√

2πe−w2/2. Consequently,

F(f (t),w) = −
√

2πiwe−w2/2
.

Example
Determine the Fourier transform of

f (t) = u(t)te−at =

{
te−at , t > 0;

0, t < 0
, a > 0.

Using the second rule

F(f (t);w) = F(tu(t)e−at ;w) = i
d

dw
F(u(t)e−at ;w) = i

d

dw

1

a + iw
=

1

(a + iw)2
.

Here the fact that F(u(t)e−at ;w) = (a + iw)−1, which can be found from the tables, was used.
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Lecture 10: Properties of the Fourier transform

The Fourier transform: Convolution
Let f and g be functions defined on R, then the convolution of f and g is the function f ∗ g
which is defined by

(f ∗ g)(t) :=

∫ ∞
−∞

f (s)g(t − s)ds =

∫ ∞
−∞

f (t − s)g(s)ds = (g ∗ f )(t).

The convolution can be used to calculate the product of Fourier transforms.

Proposition
Let f and g be continuous and absolutely integrable on R. Then

F((f ∗ g)(t);w) = F(f (t);w)F(g(t);w).

Example
Let f (t) = e−a|t| and let g(t) = cos(at), where a > 0, then determine their convolution. By the
preceding statement

F(f ∗ g ; w) = F(f (t); w) · F(g(t); w) =
2a

w2 + a2
· π(δ(w − a) + δ(w + a)),

where the tables were used. Taking the inverse Fourier transform on both sides yields:

(f ∗ g)(t) = F−1
(

2a
w2+a2 · π(δ(w − a) + δ(w + a)); t

)
= 1

2π

∫∞
−∞

2a
w2+a2 · π(δ(w − a) + δ(w + a))e iwtdw

=
∫∞
−∞

a
w2+a2 · (δ(w − a) + δ(w + a))e iwtdw

= a
a2+a2 e

iat + a
(−a)2+a2 e

−iat = 1
a

eiat+e−iat

2 = cos(at)
a .
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Lecture 10: Application of the Fourier transform to DE’s

The Fourier transform: Application to differential equations

Example
For a fixed function r and for a /∈ N, solve the differential equation

−y ′′(t) + a2y(t) = r(t).

To solve this problem use the Fourier transform: First transform the lefthand side

F(−y ′′(t) + a2y(t);w) = −F(y ′′(t);w) + a2F(y(t);w)
= −(iw)2F(y ,w) + a2F(y ,w)
= (w2 + a2)F(y ,w).

Hence by Fourier transforming our differential equation we obtain that

(w2 + a2)F(y(t);w) = F(r(t);w)

or, equivalently, our Fourier transform F(y(t);w) is given by

F(y(t);w) =
1

w2 + a2
F(r(t);w).

From the tables one finds that

F(e−a|t|;w) =
2a

w2 + a2
, a > 0.
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Lecture 10: Application of the Fourier transform to DE’s

Hence (with a > 0)

F(e−a·|t|;w) =
2a

w2 + a2
.

Combining this with our obtained expression for the Fourier transform of y yields that

F(y(t);w) =
1

w2 + a2
F(r ;w) = F

(
e−a·|t|

2a
;w

)
F(r(t);w) = F

((
e−a·|u|

2a
∗ r(u)

)
(t);w

)
.

Consequently,

y(t) =
1

2a

(
e−a·|u| ∗ r(u)

)
(t) =

1

2a

∫ ∞
−∞

e−a·|t−u|r(u)du.

The above solution is not an unique solution of the differential equation, because no initial
conditions were given. Therefore solutions of the homogeneous differential equation

−y ′′(t) + a2y(t) = 0

can be added to the obtained solution.

In particular, if r(t) = δ(t), then the solution

y(t) =
1

2a

(
e−a·|u| ∗ r(u)

)
(t) =

1

2a
e−a·|t|.

of the differential equation −y ′′(t) + a2y(t) = δ(t) is found
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Lecture 10: Application of the Fourier transform to DE’s

Heat equation on an infinite line
The problem of the flow of heat in an infinite medium with initial temperature distribution f (x)
and heat source q(x , t) can be mathematically modeled as follows:

uxx (x , t) = a−2ut(x , t) + q(x , t), −∞ < x <∞, t > 0,
B.C.: lim|x|→∞ u(x , t) = 0, lim|x|→∞ ux (x , t) = 0,
I.C.: u(x , 0) = f (x), −∞ < x < 0.

Here u(x , t) is the heat at point x and time t, and a > 0 is a thermal diffusivity constant. For
simplicity assume that q(x , t) = 0. To solve this problem take the Fourier transform of u with
respect to the spacial variable:

0 = F(uxx (x , t)− a−2ut(x , t); x → w) = F(uxx (x , t); x → w)− a−2F(ut(x , t); x → w)

= (iw)2F(u(x , t); x → w)− a−2 d
dt
F(u(x , t); x → w).

Denoting F(u(x , t); x → w) by U(w , t), the following initial value problem has been obtained:

a2w2U(w , t) + Ut(w , t) = 0, U(w , 0) = F (w) = F(f (x);w).

This first-order differential equation can be solved:

U(w , t) = F (w)e−a2w2t = F(f (x);w) · F

 e
− x2

4a2t

a
√

2πt
; x → w

 .

Hence, using the convolution theorem and taking inverse Fourier transforms yields

u(x , t) =

 e
− u2

4a2t

2a
√
πt
∗ f (u)

 (x) =
1

2a
√
πt

∫ ∞
−∞

f (s)e
− (x−s)2

4a2t ds.
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Lecture 10: Application of the Fourier transform to DE’s

Infinite beam on resting on an elastic foundation

If a load f (x) is placed on an infinite beam, then the deflection y(x) of the beam should satisfy:

EIy (4)(x) + ky(x) = f (x), −∞ < x <∞.

Here E , I and k are positive constants which all have a physical interpretation. Now consider the
problem that there exists a constant F0 > 0 such that the load f is given by

f (x) =

{
F0, −1 < x < 1,

0, otherwise.
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Lecture 10: Application of the Fourier transform to DE’s

Applying the Fourier transform to both sides gives, using the tables, that

2F0 sin(w)
w

= F(f (x);w) = F(EIy (4)(x) + ky(x);w) = EI (iw)4F(y(x);w) + kF(y(x);w)
= (EIw4 + k)F(y(x);w).

In other words,

y(x) = F−1

(
2F0 sin(w)

w(EIw4 + k)
; x

)
=

1

2π

∫ ∞
−∞

2F0 sin(w)

w(EIw4 + k)
e iwxdw .

Because 2F0 sin(w)/w(EIw4 + k) is an even function, the above result can be simplified to

y(x) =
F0

π

∫ ∞
−∞

sin(w)

w(EIw4 + k)
cos(wx)dw .

On the righthand side residue calculus can be used, therefore note that the only poles in the
upper halfplane of the integrand are at c · eπ/4 and c · e3π/4, where c is the positive fourth root
out of EI/k. Using those residue’s one obtains

y(x) =
F0

2k

(
e
−c(1+x)√

2 sin
c(1 + x)
√

2
+ e

−c(1−x)√
2 sin

c(1− x)
√

2

)
.
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Lecture 12: The Z-transform

The Z-transform

As discussed in the section on the discrete Fourier transform for practical purposes one rather
works with discrete signals. Therefore next a discrete analogue of the Laplace transform, the
Z-transform, will be considered. This is a transform that converts a discrete signal into a
complex frequency domain representation and is used in communication systems.

Example
A typical example of a difference problem is the following: Find a sequence {y(n)} which satisfies

a · y(n + 2) + b · y(n + 1) + c · y(n) = x(n), n = 0, 1, 2, . . . ,

where a, b and c are constants and {x(n)} is a fixed (known) sequence. To have a unique
solution one needs, like in differential equations, initial conditions, which could for instance take
the form y(0) = 0 and y(1) = 1.
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Lecture 12: The Z-transform

The Z-transform: An introduction
Let {x(n)}n∈Z be a (2-sided) infinite sequence of complex numbers, i.e.

{x(n)} = {. . . , x(−2), x(−1), x(0), x(1), x(2), . . .},

then its Z-transform, denoted by Z(x(n); z) or X (z), is the (formal) expression

Z(x(n); z) =
∞∑

n=−∞
x(n)z−n. (7.1)

I.e., the Z-transform of a sequence is a Laurent series at 0, which therefore a well-defined
function (converges) in an annulus or nowhere. In applications, one usually deals with causal
sequences {x(n)}, which means that x(n) = 0 if n < 0, cf. the Laplace transform.

Since the Z-transform is a Laurent series, the sequence {x(n)} can be recovered from its
Z-transform:

x(n) =
1

2πi

∮
C

X (z)

z−n+1
dz, n ∈ Z,

where C is a closed curve contained in the annulus where X (z) converges. Alternatively, residue
calculus might be used to calculate the coefficients x(n) of a causal sequence:

x(n) =
∑
ai

Resz=ai

(
X (z)

z−n+1

)
, n ∈ Z,

where the sum is over all the poles ai of the function X (z).
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Lecture 12: The Z-transform

Example

1 Consider the sequence {x(n)}, where x(−2) = −4, x(0) = 1, x(1) = 10, and all the other
coefficient are zero. Then

Z(x(n); z) = −4z2 + 1 + 10z−1.

2 Let {x(n)} be a causal sequence, where x(n) = an for a ∈ C, n ∈ N. Then

Z(x(n); z) =
∞∑
n=0

anz−n =
∞∑
n=0

( a
z

)n
=

1

1− a
z

=
z

z − a
.

Here use of the geometrical series was made, from which it in particular follows that the
preceding Z-transform converges for (is well defined for) |z| > |a|.

3 Let {x(n)} be a causal sequence, where x(n) = n, n ∈ N. Then

Z(x(n); z) =
∑∞

n=0 nz
−n = z

∑∞
n=0 nz

−n−1 = −z d
dz

∑∞
n=0 z

−n = −z d
dz

(
z

z−1

)
= −z

(
−1

(z−1)2

)
= z

(z−1)2 .

Here the preceding Z-transform converges for (is well defined for) |z| > 1.
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Lecture 12: The Z-transform

The Z-transform: Basic properties

Z-transform of causal series have properties quite similar to those of the Laplace transform.

Proposition
Let {x(n)} and {y(n)} be causal series and let X (z) and Y(z) be their Z-transforms which
converge in D1 = {α < |z| < β} and D2 = {γ < |z| < δ}, respectively, and let a, b ∈ C. Then

1 Z(ax(n) + by(n); z) = aX (z) + bY(z), where D = D1 ∩ D2;

2 Z(x(n − n0); z) = z−n0X (z) + z−n0
∑−1

m=−n0
x(m)z−m, where D = D1 and n0 ≥ 0;

3 Z(x(n + n0); z) = zn0X (z)−
∑n0−1

m=0 x(m)zn0−m, where D = D1 and n0 ≥ 0;

4 Z(anx(n); z) = X ( z
a

), where D = {|a| · α < |z| < |a| · β};

5 Z(nx(n); z) = −z d
dz
X (z), where D = D1;

6 Z((x ∗ y)(n); z) = X (z)Y(z), where D = D1 ∩ D2. Here

(x ∗ y)(n) =
n∑

k=0

x(k)y(n − k), n ∈ Z.

Note that in the shift to the left (item 2) it is assumed that x(−1), . . . , x(−n0) are non-zero even
though the sequence is causal. If these numbers are not specifically given, then they are assumed
to be zero.
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Lecture 12: The Z-transform

Example

1 To determine the Z-transform of the causal sequence x(n) = nan, n ∈ N, the fifth item in
the above statement and the tables can be used:

Z(nan; a) = −z
d

dz
Z(an; z) = −z

d

dz

(
z

z − a

)
= −z

d

dz

(
1 +

a

z − a

)
=

az

(z − a)2
.

2 To determine the Z-transform of the causal sequence y(n) = an−2, note that y(n) is a shift
of the causal sequence x(n) = an with initial conditions x(−1) = a−1 and x(−2) = a−2:
y(n) = x(n − 2). Hence, by item 2 of the above Proposition with n0 = 2,

Y(z) = Z(y(n); z) = Z(x(n − 2); z) = z−2X (z) + z−2
∑−1

m=−2 x(m)z−m

= z−2 z
z−a

+ z−2
(
a−2z2 + a−1z

)
= 1

z(z−a)
+ a−2 + a−1z−1.

Here again we used that X (z) = z
z−a

, which can be found from the tables.
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Lecture 12: The Z-transform

Example
Determine the inverse Z-transform of X (z) = z2/((z − a)(z − b)), where a 6= b. Note that with
U(z) = z/(z − a) and V(z) = z/(z − b) one has that

u(n) := Z−1(U(z); n) = an and v(n) := Z−1(V(z); n) = bn.

Hence, by the convolution statement in Proposition 25

Z−1(X (z); n) = Z−1(U(z) · V(z); n) = Z−1(Z(u(n); z) · Z(v(n); z); n)
= Z−1(Z((u ∗ v)(n); z); n) = (u ∗ v)(n) =

∑n
k=0 u(k)v(n − k)

=
∑n

k=0 a
kbn−k = bn

∑n
k=0

(
a
b

)k
= bn (a/b)n+1−1

a/b−1
= an+1−bn+1

a−b
.

Another way to solve the problem would be to use partial fractions. Therefore observe that

z2

(z − a)(z − b)
=

b

b − a

z

z − b
−

a

b − a

z

z − a
.

Hence, using the linearity of the inverse Z-transform

Z−1
(

z2

(z−a)(z−b) ; n
)

= Z−1
(

b
b−a

z
z−b −

a
b−a

z
z−a ; n

)
= b

b−aZ
−1
(

z
z−b ; n

)
− a

b−aZ
−1
(

z
z−a ; n

)
= b

b−a b
n − a

b−a a
n = bn+1−an+1

b−a .

Finally, the inverse Z-transform can also be calculated by means of residue calculus. Therefore note that X (z)
is analytic in C except for poles (of order one) at a and b. Therefore

Z−1
(

z2

(z−a)(z−b) ; n
)

= Resb

(
z2zn−1

(z−a)(z−b)

)
+ Resa

(
z2zn−1

(z−a)(z−b)

)
= b2bn−1

b−a + a2an−1

a−b = bn+1−an+1

b−a .
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Lecture 12: The Z-transform

The Z-transform: Solving difference equations.

Example
Solve the (initial value) difference equation

y(n + 2) + 3y(n + 1) + 2y(n) = 0, y(0) = 1, y(1) = −3.

This problem will be solved by using the Z-transform. Therefore note that

Z(y(n + 2); z) = z2Z(y(n); z)− z2y(0)− z1y(1) = z2Z(y(n); z)− z2 + 3z;
Z(y(n + 1); z) = z1Z(y(n); z)− z1y(0) = zZ(y(n); z)− z.

Hence, since the Z-transform of 0 is 0, Z-transforming the difference equation yields

0 = Z(y(n + 2) + 3y(n + 1) + 2y(n); z)
= Z(y(n + 2); z) + 3Z(y(n + 1); z) + 2Z(y(n); z)
= z2Z(y(n); z)− z2 + 3z + 3 (zZ(y(n); z)− z) + 2Z(y(n); z)
= (z2 + 3z + 2)Z(y(n); z)− z2.

Therefore Z(y(n); z) is given by

Z(y(n); z) =
z2

z2 + 3z + 2
=

z2

(z + 2)(z + 1)
.

Consequently, it follows from the calculated results that

y(n) = Z−1
(

z2

(z+2)(z+1) ; n
)

= (−2)n+1−(−1)n+1

−2−(−1) = (−1)n+1 − (−2)n+1.

Finally, check whether obtained the solution is correct!

S. Hassi (seppo.hassi@uwasa.fi) Integral Transformations Autumn, 2016 54 / 55



Lecture 12: The Z-transform

Example
Solve the (initial value) difference equation

y(n)− y(n − 2) = δ(n − 1), y(−1) = 0, y(−2) = 0.

This problem will be solved by using the Z-transform. Therefore note that

Z(y(n − 2); z) = z−2Z(y(n); z) + z−2(y(−1)z + y(−2)z2) = z−2Z(y(n); z).

Hence, Z-transforming the difference equation yields

Z(δ(n − 1); z) = Z(y(n)− y(n − 2); z) = Z(y(n); z)−Z(y(n − 2); z)

= Z(y(n); z)− z−2Z(y(n); z) = z2−1
z2 Z(y(n); z).

Therefore Z(y(n); z) is given by

Z(y(n); z) = z2

z2−1
Z(δ(n − 1); z) = z2

(z−1)(z+1)
Z(δ(n − 1); z)

= Z
(

1n+1−(−1)n+1

1−(−1)
; z
)
Z(δ(n − 1); z) = Z

(
(1− (−1)n+1)/2 ∗ δ(n − 1); z

)
.
.

Consequently,

y(n) =
n∑

m=0

1− (−1)n−m+1

2
δ(m − 1) =

{
0, n ≤ 0;

1−(−1)n

2
, n > 0.

Finally, check whether obtained the solution is correct!
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