4. Generalized Method of Moments (GMM)

4.1 Background

Observations \(y_i, x_i, i = 1, \ldots, n \).

\[
y_i = g(x_i; \theta) + u_i
\]

(1) where \(g \) is a function ("model between \(y \) and \(x \) variables"), \(\theta \) contains the model parameters, and \(u_i \) is a random error term.

Least squares:

\[
\hat{\theta}_{LS} = \arg\min_{\theta} \sum_{i=1}^{n} (y_i - g(x_i; \theta))^2.
\]

(2)

Maximum Likelihood:

\[
\hat{\theta}_{ML} = \arg\max_{\theta} L(\theta; y, x),
\]

where \(L(\theta; y, x) \) is the likelihood function of \(\theta \).

4.2. Classical Method of Moments

Let \(\theta \) be a \(m \)-vector of parameters that characterize the distribution random variable \(y \).

The \(k^{th} \) moment (provided it exists) is defined as

\[
\mu_k(\theta) = E[y^k].
\]

(4) Suppose we have sample of size \(T \) from \(y \) with observations \(y_1, y_2, \ldots, y_T \) (considered as \(T \) independent random variables).

The corresponding sample moments are

\[
\tilde{\mu}_k = \frac{1}{T} \sum_{t=1}^{T} y_t^k.
\]

(5) With the method of moments one estimates the components of \(\theta \) by simply equating the first \(m \) population moments \(\mu_k(\theta) \) with the corresponding sample moments \(\tilde{\mu}_k \), and solving for the components in the parameter vector \(\theta \).
Example 4.1. Normal distribution:

\(y_1, \ldots, y_T \) sample from \(N(\mu, \sigma^2) \).

\(\theta = (\mu, \sigma^2) \).

(6) \(\mu_1(\theta) = \mathbb{E}[y] = \mu \).

From \(\sigma^2 = \text{Var}[y] = \mathbb{E}[(y - \mu)^2] = \mathbb{E}[y^2] - \mu^2 \).

(7) \(\mu_2(\theta) = \mathbb{E}[y^2] = \sigma^2 + \mu^2 \).

Equate these with the sample moments,

(8) \(\hat{\mu}_1 = \frac{1}{T} \sum_{t=1}^{T} y_t \)

and

(9) \(\hat{\mu}_2 = \frac{1}{T} \sum_{t=1}^{T} y_t^2 \).

That is

(10) \(\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} y_t = \bar{y} \)

and

(11) \(\hat{\sigma}^2 + \hat{\mu}^2 = \frac{1}{T} \sum_{t=1}^{T} y_t^2 \).

Arranging terms, we get for \(\hat{\sigma}^2 \)

(12) \(\hat{\sigma}^2 = \frac{1}{T} \sum_{t=1}^{T} y_t^2 - \hat{\mu}^2 = \frac{1}{T} \sum_{t=1}^{T} y_t^2 - \bar{y}^2 \).

Recalling, \(\sum_{t=1}^{T} (y_t - \bar{y})^2 = \sum_{t=1}^{T} y_t^2 - T\bar{y} \), we get finally

(13) \(\hat{\mu} = \bar{y} \)

and

(14) \(\hat{\sigma}^2 = \frac{1}{T} \sum_{t=1}^{T} (y_t - \bar{y})^2 \)

as the MM estimators of \(\mu \) and \(\sigma^2 \).

Example 4.2. The \(t \)-distribution.

Suppose \(y \) is a random variable following a \(t \)-distribution with \(\nu \) degrees of freedom.

The density is then

(15) \(f(y; \nu) = \frac{\Gamma((\nu + 1)/2)}{\sqrt{\pi\nu}} \left(1 + \frac{y^2}{\nu}\right)^{-\frac{\nu+1}{2}} \),

where

(16) \(\Gamma(x) = \int_{0}^{\infty} t^{x-1}e^{-t}dt \)

is the gamma function, with the property that, if \(n \) is an integer (\(\geq 0 \)) then \(\Gamma(n+1) = n! = n\cdot(n-1)\cdots2\cdot1 \),

note that by definition \(0! = 1 \).

From sample \(y_1, \ldots, y_T \), the MM estimator is obtained as follows.

Provided that \(\nu > 2 \) the expected value of a \(t \)-distributed random variable is zero \(\mathbb{E}[Y_t] = 0 \) and variance

(17) \(\mu_2 = \mathbb{E}[(Y_t - \mathbb{E}[Y])^2] = \mathbb{E}[Y_t^2] = \frac{\nu}{\nu-2} \),

which at the same time is the second (population) moment of the distribution.

Equate this again with the second sample moment and solve for \(\nu \) to obtain

(18) \(\nu = \frac{2\hat{\mu}_2}{\hat{\mu}_2 - 1} \)

provided that \(\hat{\mu}_2 > 1 \), where \(\hat{\mu}_2 = (1/T) \sum_{t=1}^{T} y_t^2 \).

Otherwise the estimate does not exist.
The moment estimators are functions of averages of random variables.

The Law of Large Numbers implies that these converge toward the corresponding theoretical moments.

Thus, the moment estimators are consistent.

Furthermore, (under general conditions) the CLT implies that the asymptotic distributions of MM estimators are normal.

4.3. The Generalized Method of Moments

The Generalized Method of Moments, as the name suggest, can be thought of just as a generalization of the classical MM.

A key in the GMM is a set of population moment conditions that are derived from the assumptions of the econometric model.

Example 4.3 In classical linear regression

\[y_t = x_t' \beta + \varepsilon_t, \]

where \(x_t = (x_{1t}, \ldots, x_{mt})' \) is a \(m \)-vector of explanatory variables and \(\beta \) is an \(m \)-vector of regression coefficients, and \(\varepsilon_t \) is an error term.

The moment conditions are:

(i) \(\mathbb{E}[\varepsilon_t] = 0 \) a constant for all \(t \)

(ii) \(\mathbb{E}[(y_t - x_t'\beta)x_t] = \mathbb{E}[\varepsilon_t x_t] = 0 \) for all \(t \)

(iii) \(\mathbb{E}[\varepsilon_t \varepsilon_u] = 0 \) for all \(t \neq u \),

of which (ii) is the key condition in estimating \(\beta \).

Given data on the observable variables the GMM finds values for the model parameters such that corresponding sample moment conditions are satisfied as closely as possible.
Example 4.4. (Ex 4.3 continued). Given T observations the sample moment corresponding the theoretical moment $E[y_t - x_t^i\beta]$ in the moment conditions (25) is

$$Q(\nu; y) = g_T^T W g_T,$$

where $y = (y_1, \ldots, y_T)'$,

$$g_T(\nu; y) = \begin{pmatrix} \hat{\mu}_4 - \frac{\nu^2}{(\nu - 2)(\nu - 4)} \\ \mu^4 - \frac{3\nu^2}{(\nu - 2)(\nu - 4)} \end{pmatrix},$$

and W is a suitable weighting matrix (2×2).

If we choose $W = I$, the identity matrix, the solution is a kind of nonlinear least squares.

Improved results are, however, achieved if the “less noisy” moment conditions are weighted more than the “noisier” ones. Matrix W serves for this purpose.

Example 4.5. (Example 4.2 continued): Suppose $\nu > 4$, then we can calculate

$$\mu_4 = E [y^4] = \frac{3\nu^2}{(\nu - 2)(\nu - 4)},$$

and the corresponding sample moment is

$$\hat{\mu}_4 = \frac{1}{T} \sum_{t=1}^{T} y_t^4.$$

Thus the moment conditions implied by the model are

$$E \left[\begin{pmatrix} y_t^2 - \frac{\nu^2}{\nu - 2} \\ y_t^4 - \frac{3\nu^2}{(\nu - 2)(\nu - 4)} \end{pmatrix} \right] = 0.$$

Generally we cannot find a single value for ν that satisfies exactly the corresponding sample moment conditions

$$\frac{1}{T} \sum_{t=1}^{T} \begin{pmatrix} y_t^2 - \frac{\nu^2}{\nu - 2} \\ y_t^4 - \frac{3\nu^2}{(\nu - 2)(\nu - 4)} \end{pmatrix} = \begin{pmatrix} \hat{\mu}_2 - \frac{\nu^2}{\nu - 2} \\ \hat{\mu}_4 - \frac{3\nu^2}{(\nu - 2)(\nu - 4)} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(two equations and one unknown).

However, we can choose ν so that both equations are satisfied as closely as possible.

The closeness is measured in terms of (weighted) squared errors (c.f. Least Squares), resulting to minimizing criterion function

$$Q(\nu; y) = g_T^T W g_T,$$

where $y = (y_1, \ldots, y_T)'$,

$$g_T(\nu; y) = \begin{pmatrix} \hat{\mu}_4 - \frac{\nu^2}{(\nu - 2)(\nu - 4)} \\ \mu^4 - \frac{3\nu^2}{(\nu - 2)(\nu - 4)} \end{pmatrix},$$

and W is a suitable weighting matrix (2×2).

It turns out that an optimal weighting matrix is the inverse of

$$S = \lim_{T \to \infty} T \cdot E \left[(g_T(\theta_0; y)) (g_T(\theta_0; y))' \right],$$

where $E \left[(g_T(\theta_0; y)) (g_T(\theta_0; y))' \right]$ is the covariance matrix of the average error terms (residuals)

$$g_{1T} = \frac{1}{T} \sum_{t=1}^{T} \left(y_t^2 - \frac{\nu_0}{\nu_0 - 2} \right) = \frac{1}{T} \sum_{t=1}^{T} u_{1t},$$

and

$$g_{2T} = \frac{1}{T} \sum_{t=1}^{T} \left(y_t^4 - \frac{3\nu_0^2}{(\nu_0 - 2)(\nu_0 - 4)} \right) = \frac{1}{T} \sum_{t=1}^{T} u_{2t},$$

where

$$u_{1t} = y_t^2 - \frac{\nu_0}{\nu_0 - 2}$$

and

$$u_{2t} = y_t^4 - \frac{3\nu_0^2}{(\nu_0 - 2)(\nu_0 - 4)}.$$
Hansen’s two step GMM procedure

Let x_t be an $s \times 1$ vector of variables that are observed at date t, let θ denote the $m \times 1$ unknown parameter vector, and let $u_t = u(x_t; \theta)$ be an $r \times 1$ covariance stationary1 vector valued function, such that for true parameter value θ_0

$$E[u_t] = E[u(x_t; \theta_0)] = 0.$$
(31)

In GMM function $u(x; \theta)$ define the moment or more generally the orthogonality conditions of the model (sometimes called also the residuals of the model).

A sample counterpart of the expected value in (31) is the sample average

$$g_T(\theta) = \frac{1}{T} \sum_{t=1}^{T} u(x_t; \theta) = \frac{1}{T} \sum_{t=1}^{T} u_t.$$
(32)

For the true parameter value θ_0, $g_T(\theta_0)$ measures the average sampling error with $E[g_T(\theta_0)] = 0$.

Consequently an estimator of θ is selected such that $g_T(\theta)$ becomes as close as possible to zero.

In the case where there are equally many moment conditions as estimated parameters a unique estimator for θ_0 can be selected such that the average sampling error (32) becomes exactly equal to zero.

In the general case, where there are more moment conditions than parameters the estimator for θ_0 is a "compromise" that makes (32) close to zero.

This is achieved in the GMM by selecting the estimator for θ_0 such that the sampling error with respect to the estimated value is as small as possible in the (generalized) least squares sense.

That is, the GMM estimator $\hat{\theta}$ of θ_0 is the value of θ that minimizes

$$Q(\theta) = g_T(\theta)'Wg_T(\theta).$$
(33)

where the prime denotes matrix transposition and W is a suitably chosen weighting matrix.

Choosing the weighting matrix W:

The weighting matrix W determines how each moment condition is weighted in the estimation.

The principle is that more accurate (less noisy) moment conditions should be weighted more than the less accurate (more noisy or uncertain) ones.

The accuracy of the moment conditions can be measured by the variance covariance matrix (recall, $E[u_t] = 0$ and $E[g_T(\theta)] = 0$ for the true parameter value)

$$\text{Cov}[g_T(\theta)] = E[g_T(\theta)g_T(\theta)']$$
(34)

$$= \frac{1}{T} E \left[\left(\sum_{t=1}^{T} u_t \right) \left(\sum_{t=1}^{T} u_t \right)' \right]$$

$$= \frac{1}{T} \sum_{t=1}^{T} \sum_{s=1}^{T} E[u_t u_s]$$

†(1) $E[u_t] = \mu$ for all t
(2) $\text{Cov}[u_t, u_{t+j}] = E[(u_t - \mu)(u_{t+j} - \mu)'] = S_j$ for all t. \textbf{Note}: $\text{Cov}[u_t, u_{t-j}] = S_{t-j} = S_j'$.
Let \(j = |t - s| \), then under the assumption of stationarity of \(u_t \)
\[(35) \quad E[u_t u'_{t+j}] = S_j = S'_{-j}\]
for all \(t \). Thus in (34) we can write
\[(36) \quad \sum_{s=1}^{T} \sum_{t=1}^{T} E[u_s u'_t] = T \sum_{j=-T}^{T} (T - |j|)S_j,\]
or by using (35)
\[(37) \quad \sum_{s=1}^{T} \sum_{t=1}^{T} E[u_s u'_t] = T S_0 + \sum_{j=1}^{T} (T - j)(S_j + S'_j).\]

Under the stationarity and some technical assumptions (see, Hansen 1982), it can be shown that
\[(38) \quad \lim_{k \to \infty} k \sum_{j=-k}^{k} S_j = S,\]
where \(S \) is a positive definite matrix, called the long run covariance matrix of \(u_t \).

Thus, because \((T - |j|)/T \to 1\) as \(T \to \infty\)
\[(39) \quad \text{Cov} \left[\sqrt{T} g_T \right] \to \sum_{j=-\infty}^{\infty} S_j = S,\]
as \(T \to \infty \).

Let \(\bar{u}_t \) denote observations on \(u_t \), \(t = 1, \ldots, T \). Then the autocovariance matrices \(S_j \) are estimated by
\[(40) \quad \bar{S}_j = \frac{1}{T} \sum_{t=j+1}^{T} \bar{u}_t \bar{u}'_{t-j},\]
\(j = 0, 1, \ldots, \ell \), where \(\ell \) is the selected maximum lag length. The long-run covariance matrix is estimated then by
\[(41) \quad \bar{S} = \bar{S}_0 + \sum_{j=1}^{\ell} w_j (\bar{S}_j + \bar{S}'_j),\]
where \(w_j \)'s are weights. If \(w_j \equiv 1 \) then all lag lengths are equally weighted.

Usually, however, the more distant lags are weighted less. One popular weighting scheme is the Bartlett weights
\[(42) \quad w_j = 1 - j/(\ell + 1).\]

The two step procedure:

Step 1: Set \(W = I \), the identity matrix and solve the (nonlinear) least squares problem
\[(43) \quad \tilde{\theta}^{(1)} = \arg\min_{\theta} g_T(\theta)'g_T(\theta).\]

Step 2: Compute
\[(44) \quad \tilde{u}_t = u(x_t; \tilde{\theta}^{(1)})\]
and estimate \(S_j \) as
\[(45) \quad \tilde{S}_j = \frac{1}{T} \sum_{t=j+1}^{T} \tilde{u}_t \tilde{u}_{t+j},\]
\(j = 0, 1, \ldots, \ell \).

Estimate \(S \) by
\[(46) \quad \bar{S} = \bar{S}_0 + \sum_{j=1}^{\ell} w_j (\bar{S}_j + \bar{S}'_j).\]
Select $W = S^{-1}$ and obtain the second step estimate
\begin{equation}
\hat{\theta}^{(2)} = \arg\min_\theta g_T(\theta)^T W g_T(\theta).
\end{equation}

Remark 4.1: An iterative GMM iterates Step 2 until convergence of the $\hat{\theta}$-estimate, i.e., when after k^{th} step $\hat{\theta}^{(k+1)} \approx \hat{\theta}^{(k)}$.

\textbf{Instruments}

Suppose our suggested model is
\begin{equation}
y_t = f(x_t; \theta) + \epsilon_t,
\end{equation}
where $f(\cdot)$ is some function, x is some background information, θ contains the model parameters, and $\epsilon_t = y_t - f(x_t; \theta)$ is the residual with
\begin{equation}
E[\epsilon_t] = E[y_t - f(x_t; \theta_0)] = 0.
\end{equation}
Thus this implies one moment or orthogonality condition.

In order $f(x_t; \theta)$ to capture all the systematic variation in y, the residual should be uncorrelated with all potential additional variables (predictors).

Let z_t be a vector of these potential predictors observable at time t, the residuals $y_t - f(x_t; \theta_0)$ should be uncorrelated with the components of z_t.

Technically this can be denoted as
\begin{equation}
E [(y - f(x; \theta)) \otimes z] = 0, \tag{50}
\end{equation}
where \otimes is the Kronecker product.*

\begin{equation}
\text{E.g., } A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \text{ and } B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}, \text{ then } A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{pmatrix}. \tag{51}\end{equation}
Note that (50) includes condition (??) (defining e.g. the first component of z_t, $z_{1t} = 1$).

Variables in z_t are called instrument variables.

The u-function in equation (28) generalizes now

$$u_t = u_t(\theta) = (y_t - f(x_t; \theta)) \otimes z_t,$$

with

$$E[u_t] = 0.$$

Example 4.6 Let $X_t = (X^{*}_t, X^{**}_t)' = (1 + R_t^*, 1 + R_t^*)'$ returns of two assets, $M_t(\theta)$ a stochastic discount factor, and $z_t = (1, z_t)'$ an instrument. Then

$$u_t = (M_{t+1}(\theta) X^{*}_{t+1} - 1) \otimes z_t = \left(\begin{array}{c} M_{t+1}(\theta) X^{*}_{t+1} - 1 \\ M_{t+1}(\theta) X^{**}_{t+1} - z_t \\ M_{t+1}(\theta) X^{**}_{t+1} - z_t \\ M_{t+1}(\theta) X^{*}_{t+1} - 1 \end{array} \right)$$

with

$$E[u_t] = E \left[\begin{array}{c} M_{t+1}(\theta) X^{*}_{t+1} - 1 \\ M_{t+1}(\theta) X^{**}_{t+1} - z_t \\ M_{t+1}(\theta) X^{**}_{t+1} - z_t \\ M_{t+1}(\theta) X^{*}_{t+1} - 1 \end{array} \right] = 0.$$

If $m = r$, where m is the dimension of θ and r is the number of moment conditions, then there are equally many parameters to be estimated as orthogonality conditions, and

$$g(\theta) = \frac{1}{T} \sum_{t=1}^{T} u_t = 0$$

can be solved exactly. We say that the problem is exactly identified.

Example 4.7: OLS as an exactly identified GMM (Example 4.4 revisited).

Assume again the standard regression model

$$y = X\beta + e,$$

where

$$y = (y_1, \ldots, y_T)'$$

is an $(T \times 1)$ vector (prime denotes the transposition), X is an $(T \times m)$, $m < T$, full rank matrix,

$$\beta = (\beta_1, \ldots, \beta_m)'$$

is a $(m \times 1)$ parameter vector, and

$$e = (e_1, \ldots, e_T)'$$

is an $(T \times 1)$ error vector with $E[e] = 0$ and $Cov[e] = \sigma^2 I$, with I an $(T \times T)$ identity matrix, and e is independent of X.

The orthogonality conditions are

$$E[u_t] = E[(y_t - x'_t \beta) x_t] = E[e_t x_t] = 0,$$

where x'_t is the tth row of the X matrix, $t = 1, \ldots, T$.

Now $m = \dim(\beta) = \dim(u_t)$. Thus the problem is exactly identified.
The sample counterpart of (58) is

\[g_T(\beta) = \frac{1}{T} \sum_{t=1}^{T} (y_t - x_t' \beta) x_t = \frac{1}{T} X' (y - X\beta). \]

Setting this equal to zero, multiplying by the \(T \), and arranging terms (denote the beta satisfying the equation by \(\beta \)) yields

\[X'y - X'X\hat{\beta} = 0, \]

and we get finally

\[\hat{\beta} = (X'X)^{-1} X'y, \]

the same as the OLS estimator.

Remark 4.2: Under the assumptions of the above example \(x_t \) and \(e_t \) are independent, which implies that \(E[x_i x_t] = E[x_i]E[x_t] = 0 \), and hence

\[E[u_i u_{i+j}] = E[e_i e_{i+j}] = \sigma^2 E[x_i x_t]. \]

and

\[E[u_i u_{i+j}'] = E[x_i x_{i+j}'] E[e_i e_{i+j}] = 0 \]

because of no autocorrelation in the residuals. These imply

\[S = S_0 = \frac{1}{T} \sum_{t=1}^{T} E[x_i x_t]. \]

Estimating \(\sum_{t=1}^{T} E[x_i x_t] \) by

\[X'X = \sum_{t=1}^{T} x_t x_t', \]

minimization of

\[g_T(\beta)' W g_T(\beta) \]

with

\[W = \frac{1}{\sigma^2} (X'X)^{-1} \]

results exactly again the OLS estimator. However, the solution is obtained directly by solving \(g_T(\beta) = 0 \), because the problem is exactly identified.

Example 4.8: Regression with autocorrelated residuals of unknown form.

If in Example 3.5 we allow autocorrelation of unspecified form in the regression errors

\[e_t = y_t - x_t' \beta, \]

but assuming, however, stationarity of the moment condition errors

\[u_t = (y_t - x_t' \beta) x_t = e_t x_t, \]

we get

\[S_j = E[u_i u_{i+j}'] = E[e_i e_{i+j} x_i x_{i+j}]. \]

Using the OLS residuals, \(\hat{e}_t = y_t - x_t' \hat{\beta}_{OLS} \), from the first step, we can estimate \(S \) in the second step by

\[\hat{S} = \hat{S}_0 + \sum_{j=1}^{\ell} w_j (\hat{S}_j + \hat{S}_j'), \]

where

\[\hat{S}_j = \frac{1}{T} \sum_{t=j+1}^{T} \hat{e}_t x_{t-j}' x_{t-j}, \]

\[j = 0, 1, \ldots, \ell. \]

Note that this accounts for both the unspecified autocorrelation and heteroscedasticity.
If \(m < r \) then there are more orthogonality conditions than parameters to estimate. The above equality does not hold exactly in sample data. It is said that the model is over identified, and one can empirically test the over identification constraints. If the hypothesis is rejected it indicates that the data does not support the estimated model.

The null hypothesis

\[
H_0 : E[u_i(\theta)] = 0
\]

the over identification conditions can be tested with the statistic

\[
J = g(\tilde{\theta})'Wg(\tilde{\theta}_T),
\]

where \(TJ \) is asymptotically \(\chi^2_{r-m} \) distributed under the null hypothesis.

Some properties of the GMM estimators

Because the GMM estimators are sums of (approximately) independent random variables the Central Limit Theorem implies that

\[
\tilde{\theta} \sim AN(\theta, \tilde{\nu}/T),
\]

where

\[
\tilde{\nu} = (D S^{-1} D')^{-1},
\]

where

\[
D = \frac{\partial g(\theta)}{\partial \theta} \bigg|_{\theta = \tilde{\theta}}.
\]

Furthermore under general regularity conditions, it can be shown that

\[
\tilde{\theta} \overset{P}{\rightarrow} \theta_0,
\]

i.e. they are consistent.

4.4. Examples

Example 4.9: Normality of SP500 (daily) returns, \(y_t \).
If normality holds, the following (first four) moment conditions hold:

\[
\begin{align*}
E[y_t - \mu] & = 0 \\
E[(y_t - \mu)^2 - \sigma^2] & = 0 \\
E[(y_t - \mu)^3/\sigma^3] & = 0 \\
E[(y_t - \mu)^4/\sigma^4 - 3] & = 0
\end{align*}
\]

where \(\mu = E[y] \), \(\sigma^2 = \text{Var}[y] \). Data is obtained from finance.yahoo.com web site with sample period Jan 2, 1995 to May 19, 2005.
In EViews open Object → New object → System and write commands (c(1) = mean, c(2) = standard deviation):

```eviews
@inst c
param c(1) 0 c(2) 1.0
spret - c(1)
(spret - c(1))^2 - c(2)^2
((spret - c(1))/c(2))^3
((spret - c(1))/c(2))^4 - 3
```

where `spret` is the SP500 return.

On the parameter line 0 and 1.0 are initial values for the numerical process in the estimation.

Sample statistics

![Sample statistics graph](image)

Series: SPRET
Sample: 201/1995-4/19/2005
Observations: 2570

- **Mean:** 0.034876
- **Median:** 0.052299
- **Maximum:** 5.573247
- **Minimum:** -7.113885
- **Std. Dev.:** 1.140887
- **Skewness:** -0.110042
- **Kurtosis:** 6.117582
- **Jarque-Bera:** 1045.963
- **Probability:** 0.000000

Select Estimate → GMM to get results

System: GMM_NORMALITY
Estimation Method: Generalized Method of Moments
Date: 04/20/05
Time: 02:51

Sample: 2/01/1995 4/19/2005
Included observations: 2570
Total system (balanced) observations: 10280

- **Kernel:** Bartlett, **Bandwidth:** Fixed (8), **No prewhitening**
- **Convergence not achieved after:** 1 weight matrix, 506 total coef iterations

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>0.020709</td>
<td>0.020425</td>
<td>1.013894</td>
</tr>
<tr>
<td>C(2)</td>
<td>1.286071</td>
<td>0.018708</td>
<td>68.74604</td>
</tr>
</tbody>
</table>

- **Determinant residual covariance:** 74161.73
- **J-statistic:** 0.050103

Equation: SPRET - C(1)
Instruments: C
Observations: 2570
S.E. of regression: 1.140975
Sum squared resid: 3344.388

Equation: (SPRET - C(1))^2 - C(2)^2
Instruments: C
Observations: 2570
S.E. of regression: 2.964218
Sum squared resid: 22563.95

Equation: ((SPRET - C(1))/C(2))^3
Instruments: C
Observations: 2570
S.E. of regression: 7.010289
Sum squared resid: 126202.2

Equation: ((SPRET - C(1))/C(2))^4 - 3
Instruments: C
Observations: 2570
S.E. of regression: 31.77565
Sum squared resid: 2592889.

Durbin-Watson stat:
Equation: SPRET - C(1)
Observations: 2570
Sum squared resid: 3344.388

Durbin-Watson stat:
Equation: (SPRET - C(1))^2 - C(2)^2
Observations: 2570
Sum squared resid: 22563.95

Durbin-Watson stat:
Equation: ((SPRET - C(1))/C(2))^3
Observations: 2570
Sum squared resid: 126202.2

Durbin-Watson stat:
Equation: ((SPRET - C(1))/C(2))^4 - 3
Observations: 2570
Sum squared resid: 2592889.

Note that the J-statistic in EViews is not multiplied by number of observations. Thus

\[J = 2570 \times 0.050103 \approx 128.8, \]

which is highly statistically significant ($df = 4 - 2 = 2$), and thus rejects the normality hypothesis.
Let us next test whether a t-distribution with location parameter μ, scale parameter σ^2, and degrees of freedom parameter ν fits better. The density function is

$$f(y) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{2\pi\nu\sigma^2}} \left(1 + \frac{(y-\mu)^2}{\sigma^2(\nu-2)}\right)^{-\frac{\nu+1}{2}}$$

with

$$E[y] = \mu,$$

$$\text{Var}[y] = \frac{\nu\sigma^2}{\nu-2},$$

and

$$E[(y-\mu)^4] = \frac{3\nu^2\sigma^4}{(\nu-2)(\nu-4)}.$$

The implied moment conditions are

$$E[y-\mu] = 0,$$

$$E[(y-\mu)^2 - \frac{\nu\sigma^2}{\nu-2}] = 0,$$

$$E[(y-\mu)^3] = 0,$$

$$E[(y-\mu)^4 - \frac{3\nu^2\sigma^4}{(\nu-2)(\nu-4)}] = 0.$$

The J-statistic is $J = T \times J_{EViews} = 2570 \times 0.0000233 = 0.598$ with p-value 0.439 ($df = 1$), which indicates

the return distribution seems to behave like a t-distribution at least up to the first four moments with estimates $\hat{\mu} = 0.041$, $\hat{\sigma} = 0.934$, and $\hat{\nu} = 6.132$.

Example 4.4 Consumption based asset pricing model: (Ferson, W. and Harvey, C. (1992), Seasonality and Consumption-Based Asset Pricing, Journal of Finance, 47, 511-552.)

Asset pricing is one of the fundamental questions in financial economics.

One approach is that individuals hold assets to optimize intertemporal consumption.

Assume that the current price of a security is p_t and the future payoff (price plus dividends) is p_{t+1}. Let furthermore q denote the amount of the investor chooses to buy of the asset and w_t denote his/her potential to consume (wage plus other available wealth).

Then the problem of the investor is to balance today’s consumption and saving in order to maximize his/her utility.

Thus, the problem then is to maximize (time-additive) expected discounted utility

$$U(c_t, c_{t+1}) = u(c_t) + E_t[\beta u(c_{t+1})],$$

subject to budget constraints

$$c_t = w_t - q_t p_t$$
$$c_{t+1} = w_{t+1} + q_{t+1} p_{t+1},$$

where β is the subjective discount factor.

Using a convenient power utility form,

$$u(c_t) = \frac{c_t^{1-\alpha} - 1}{1-\alpha}.$$

The limit $\alpha \to 1$ is

$$u(c_t) = \log(c_t).$$

Thus, the control variable is q, the amount of shares.

Substituting c_t and c_{t+1} in (80) by the right hand sides of (81), the first order condition for the maximum is obtained by setting the derivative of (80) w.r.t. q to zero, i.e.,

$$\frac{du}{dq} = -p_t u'(c_t) + E_t[\beta u'(c_{t+1}) p_{t+1}] = 0,$$

from which

$$p_t = E_t\left[\frac{u'(c_{t+1})}{u'(c_t)} p_{t+1}\right].$$

SAS estimation results:

http://support.sas.com/rnd/app/examples/ets/harvey/index.htm