
1

Practical Software Architecting

Tobias Glocker

University of Vaasa

Tobias.Glocker@uwasa.fi

Student Number: p87915

May 20, 2011

1 MANAGING ARCHITECTURE KNOWLEDGE

An architecture of a system contains ”fundamental concepts or properties of a system

in its environment embodied in its element, their relationships and in the principles

of its design and evolution (ISO 42010)”. There is no unique solution for a software

architecture and thus the architectures are ”inherently good or bad”. For build-

ing the architecture of a system it is necessary to create, capture, share, distribute

and understand the knowledge of an organization. ”Architecting is a knowledge-

intensive activity” that ”produces and consumes knowledge artifacts” and ”follows

a reasoning process”. (Avgeriou & Van Heesch 2011.)

Avgeriou & Van Heesch (2011) introduce the workflow and the concept of a backlog

investigated by Hofmeister, Kruchten, Nord, Obbink, Ran & America (2006). The

model of Hofmeister et al. (2006) is based on three main activities called architec-

tural analysis, architectural synthesis and architectural evaluation. These activities

”do not proceed sequentially” and thus the architects need to move from one activity

to another, extending ”the architecture progressively over time”. For an architect

it is impossible to ”analyze, resolve, find solutions and evaluate the architecture for

all architectural concerns simultaneously”. No human mind is able to define all the

goals, constraints, etc. at the beginning of the architecture phase. Most of the time

the goals and constraints are better understood when the architecture grows. To

manage such a ”haphazard process” it is better for the architects to focus on ”a



2

backlog of smaller needs, issues, problems they need to tackle, as well as ideas they

want to use”. The backlog helps the architect to determine the next step that needs

to be done. For small projects a backlog can be a ”list in the architect’s notebook”.

In bigger projects a backlog ”might be an electronic, shared spreadsheet”. To get

full benefits a backlog should be regularly updated with architectural concerns, neg-

ative issues or problems occurred in the evaluation process of the architecture and

with ideas that came up. A backlog item can be considered as a decision statement.

For each item an architectural synthesis is done. After this step the architects need

to think of how the design decisions made for this item could be integrated with

an existing set of design decisions. Backlog items ”drive the architectural analy-

sis and architectural evaluation”. If a backlog item is ”resolved in any way” (idea

explored, requirement satisfied, etc.) it will be removed from the backlog and the

architect will proceed with the next important item. An item is returned to the

backlog when a problem is encountered. Hence, a ”backlog is constantly changing”.

The main task of a backlog is to guide the architectural design flow through the

three previous mentioned activities (architectural analysis, architectural synthesis

and architectural evaluation). (Hofmeister, Kruchten, Nord, Obbink, Ran & Pierre

America 2006.)

2 ARCHITECTURE PATTERNS AND SYSTEM QUALITY ATTRIBUTES

2.1 Software Architecture

Software design can be a very challenging and demanding process. To save time

and development costs a very good software architecture must be created. Harrison

(2011) introduces three important features that should be taken into account when

designing software. One of these features is utility. Another feature is beauty, mean-

ing that the designed software ”must be pleasant to use”. In addition the software

should be reliable and should have an ”adequate performance”. Furthermore it is

desired that the software provides a platform for ”future evolution”. Reliability,

performance and providing a long-term platform belong to the third feature called

firmness. Quality attributes play an essential role in the software architecture. The

most important quality attributes are reliability, performance, capacity, usability,

extensibility, portability and security. Since the architecture ”is designed early in

the project” it is essential to fulfill the quality attributes for the software that needs

to be developed. Changing the attributes at a later state increases the development



3

time and costs. To avoid serious problems it is necessary to do early evaluations and

analyses. In this process prototypes should be developed and if possible simulations

should be done. It is also recommended to review architectural evaluations from

others to learn from their problems and solutions. (Harrison 2011.)

2.2 Architecture Patterns

The most common architecture patterns are pipes and filters, layers, layers with

shared services, micro-kernel, client server, broker, shared repository, blackboard,

model view controller and presentation abstraction control. Pipes and filters pro-

cess data sequentially. This pattern is mostly used for compilers, streaming data

and assembly line support. In addition this pattern is quite flexible since it can have

various configurations. It is very common to use layers due to its good portability

and extensibility. In this pattern multiple abstraction levels are created. ”Each

layer communicates only with adjacent layers”. The micro-kernel architecture pat-

tern provides ”a common plug-and-play interface for (usually) low level operations”

and it has a good portability. Enhancements can be done easily but sometimes

the performance can suffer. In the client server design pattern ”a central server

provides services to multiple clients”. It is especially applied ”among distributed

applications”. Moreover, ”a variable number of clients” can be served and these

”systems scale well by adding more servers”. To ensure availability multiple servers

can be used. The main difference between the client server and a broker pattern is

”generally an extension to client server” pattern that ”intercepts messages and does

some preprocessing”. In addition it provides also security features like a firewall or

an authenticator. A shared repository is ”a common component for keeping data”.

It is ”accessed by multiple other components”. Nowadays most of the databases

are shared repositories. This architecture pattern considers performance, access and

update issues as well as reliability and availability. The blackboard pattern is ”a

special purpose shared repository” with the capability of processing data. This pat-

tern has the advantage that independent programs cooperate with each other by

using a common data structure. The Model View Controller (MVC) architecture is

used to manage user interfaces with three components. One of these components

is the model that takes care of the main processing. It processes the commands

received by the controller (handles user actions) and informs the view whenever a

screen update is required. The presentation abstraction control architecture pattern

is an ”alternative to MVC”.



4

It ”handles different types of data presentations, usually simultaneously” and it con-

tains ”modules with different abstractions and representations of data”. (Harrison

2011.)

2.3 Patterns as they appear in architectures

The architecture patterns discussed in section 2.2 play an essential role when a

software architecture for a certain system is developed. It is necessary to find all the

required architecture patterns. Figure 1 shows an architecture of an airline booking

system that consists of clients, a Wide Area Network (WAN), an application server

and a database server.

Figure 1. Airline Booking System.

It can be seen that this system contains at least two architecture patterns. Since

there are clients and servers in the system, a client and server architecture pattern

is required. Furthermore, the clients and the application server use a layer pattern

architecture. The database storage could be a shared repository. To increase the



5

security of the system, authorization and authentication needs to be added. This

can be done by adding a security layer on top of the business logic. Moreover, it is

more save to store the names, passwords etc. in the database. (Harrison 2011.)

3 INTEROPERABILITY CHALLENGE IN DISTRIBUTED ARCHITECTURES

Complex IT products usually consist of ”several system blocks”, ”several proces-

sor subsystems with several operating systems” and ”several component vendors

with their own software teams”. Especially globally distributed systems like mobile

services, corporate applications, remote access to smart thin-client products, cloud

services and location based services belong to the category of complex IT products.

An architecture landscape for globally distributed systems can be divided into four

parts (see Table 1).

Table 1. Architecture landscape. (Suoranta 2011.)

Drivers Trends

- Business ecosystem - From software to systems

- Partnerships - Increasing distributed intelligence

- Organizations - Importance of open innovation

- Product life cycle

- Technologies

Environment Concerns

- Smart spaces - Standardization vs. open innovation

- Networked R&D - Interoperability

- Connected products: - Global & Local - Component models

There are three important features that need to be considered when developing

globally distributed systems. One of them is modularity. Modularity means that

a system is divided into a set of functional units also known as modules that can

be composed into a larger application. The remaining two implemented features

are functional abstraction and communication abstraction. Functional abstractions

refer to a structured program where the flow of control should be kept as simple

as possible. Furthermore the program should be constructed in such a way that it

embodies top-down design in which a problem is decomposed into smaller problems.



6

Figure 2 illustrates the modularity and abstraction layers of a typical globally

distributed system.

Figure 2. Modularity and Abstraction Layers of a Globally Distributed System.

Some embedded devices contain a service-oriented architecture (SOA). A SOA pro-

vides a flexible set of design principles. An embedded device that uses this archi-

tecture is divided into several subsystems that are connected with each other. This

architecture allows the use of ”heterogenous technologies” in a single device. Fur-

thermore the device is ”stepwise verifiable and testable” since every subsystem can

be tested separately.

In the future complex IT products consist of a globally distributed system architec-

ture with heterogenous platforms. It is possible that several components belonging

to this system architecture are produced by different manufacturers. This leads

to the disadvantage that many challenges must be conquered. To these challenges

belong interoperability, new R&D models and new design paradigms. (Suoranta

2011.)

4 BIBLIOGRAPHY

Avgeriou, Paris & Uwe van Heesch (2011). Managing Architecture knowledge. Uni-

versity of Groningen. Lecture slides.



7

Harrison, Neil (2011). ARCHITECTURE PATTERNS AND SYSTEM QUALITY

ATTRIBUTES. Utah Valley University and the University of Groningen.

Lecture slides.

Hofmeister, Christine, Philippe Kruchten, Robert L. Nord, Henk Obbink, Alexander

Ran & Pierre America (2006). A general model of software architecture

design derived from five industrial approaches. Elsevier Inc.

Suoranta, Risto (2011). Interoperablitiy Challenge in Distributed Architectures.

Notava Oy. Lecture slides.


