Botnia Dragon Knights - Team Description
Paper for RoboCup 2008 Small Size League

Yang Liu', Rafal Chomentowski®, and Tobias Glocker?

! Department of Information Technology
Vaasa University of Applied Sciences, Wolffintie 30, 65200 Vaasa, Finland
2 Department of Computer Science
University of Vaasa, Wolffintie 34, 65200 Vaasa, Finland
yli@puv.fi

Abstract. This paper describes the Botnia Dragon Knights RoboCup
Small Size League team, the current development status and some signif-
icant improvements to the previous years. It gives an overview of the new
generation robot platform including the electronics, mechanics, strategy
system, GUI, vision system, communication system, and simulator.

1 Introduction

The Botnia Dragon Knights team is a joint international RoboCup project and
research team at Vaasa University of Applied Sciences, University of Vaasa in
Finland and Hubei University of Technology in China, which consists of dif-
ferent student groups, i.e. electronics group, software group, mechanics group,
telecommunication group and a staff group for steering the project as well as
doing research. The primary goal of this project is to build a robot soccer team
that can compete in the RoboCup tournaments, as well as many additional goals
to promote the education and research. Botnia Dragon Knights joint team has
been created in 2008 based on the formal Botnia team, which started in 2004 and
has participated in the German Open 2005 (3rd place), Dutch Open 2006 (4th
place), RoboCup 2006 (12th place). German Open 2007 (3rd place), RoboCup
2007 (9th place). The upcoming competitions we are heading for this year will
be German Open 2008 and RoboCup 2008 in China.

The previous Botnia models showed many design and implementation flaws.
Intensive investigations of the old design have been carried out. Improvements
and redesigns are proposed and implementations are on the way. The major im-
provements over the old generation robot include precisely modeled mechanics,
more advanced electronics, optimized power consumption, more stable kicking
system, more reliable wireless communication, fully threaded strategy system
with many new features and a newly built simulator. In the mean time the new
generation robot has been completely redesigned with new mechanics and new
electronics.

2 Overview of Botnia Robots

Botnia team has built three generations of robots and currently the Botnia
Dragon Knights joint team is building the forth generation. The first generation
Botnia SR1 in Figure 1 was built in early 2005 to participate German Open
2005. It was based on 3-omni-directional-wheel design using Faulhaber DC mo-
tors and 9.7:1 gearhead, with spinner bar kicker. The electronics involved Atmel
ATmega microcontroller, discrete motor controllers, and Radiometrix RF mod-
ule. It showed many design flaws during the competition and an enhanced version
Botnia SR1E was built in early 2006 to participate Dutch Open 2006. SR1E used
same platform as SR1 but eliminated major flaws, with major improvements of
motor control and vision system. However due to a very weak kicker, SR1E was
still far behind competitive during the games. After Dutch Open 2006, a hard
decision was made to build completely new second generation Botnia SR2 to
participate the forthcoming RoboCup 2006, with major goals to use solenoid
kickers and to improve the drive system.

Fig. 1. Botnia SR1/SR1E

Fig. 2. Botnia SR2C/SR2D

Botnia SR2 was completely handmade due to the extremely limited time.
From design to implementation it took just one and half month, with all days
and nights” work. SR2 was still based on 3-omni-directional-wheel design using
Faulhaber DC motors, with higher resolution encoders (128/rev compared to
16/rev used in SR1 series), enhanced 24-subroller wheel, and enhanced 9.7:1 ball
bearing gearhead. The main circuit was completely redesigned with optimized

Fig. 3. Botnia SR3 prototype

high efficiency DC converter and noise reduction capability, with SMD 4-layer
PCB. The power supply voltage was increased from 8-cell to 10-cell 2600 mAh
Ni-MH battery pack. The wireless communication system was redesigned to be
able to switch modules between 433 MHz and 869 MHz. A standalone kicker
circuit was built to supply 300V high voltage and charge a 470uF capacitor to
power the solenoid kickers. An additional IR ball detector circuit was used to
trigger the kickers. For an original factory made solenoid without changing the
winding, the forward kicker achieved ball speed of 5 m/s. The kicker circuit
was totally isolated with optical couplers and together with self discharging
circuit made it very safe against electric shock. Due to the lack of mechanical
experience and time, SR2 was not able to combine the forward kicker, chip
kicker and dribbler bar all together. Eventually two variant modes of SR2 were
built, namely SR2C and SR2D as shown in Figure 2. SR2C was the model with
forward kicker and chip kicker. SR2D was the model with forward kicker and
dribbler bar. We managed to use SR2C and SR2D to play as a mixed team during
RoboCup 2006. SR2C was proved to be a quite successful model and scored all
goals during the competition. The main weaknesses of SR2 series were the fragile
and slippery wheels (handmade with plastic material) along with non-precision
handmade mechanics, and its weak wireless communication performance under
heavy interferences.

After RoboCup 2006, Botnia team planned to build its third generation Bot-
nia SR3 for RoboCup 2007 as well as enhanced SR2E for backup and testing
purpose. The major improvements of SR2E included upgrading the whole me-
chanics with CNC-made precision parts, redesigned wheels for better grabbing
and enhanced wireless communication. In addition the kicker circuit was consid-
ered to be redesigned to reduce its size. The power source was also considered
to be replaced with high performance Li-Po batteries. The third generation SR3
design was modified several times due to the inexperience of the team mem-
bers and the outcome was not able to fulfill the design targets. 3D CAD was
first time used to design mechanical parts for SR3 but the manufactured parts
were not precise enough to meet the design requirements. SR3 was based on
4-omni-directional-wheel design using Maxon brushless motors with external 4:1
gear transmission. The major improvements of SR3 were using completely new
architecture of electronic design and strategy software. SR3 used ARMT7 proces-
sor running RTOS with discrete motor drivers. It was designed with capability
of processing part of intelligence on robot itself, i.e. extracting wheel vectors

from coordinates, autonomous lining up robot toward ball, logging function of
status of robot (battery level, power consumption, travel distance, communica-
tion performance), etc, however such functions were not implemented in time
and therefore left to 4th generation design. The kicker circuit was redesigned
to supply 200V high voltage and charge altogether 8800uF capacitors to power
the solenoid kickers. It was capable to switch maximum 200A current with 1024
grades fine adjustable kicking strength. At the full kicking strength, the forward
kicker could achieve ball speed of 18 m/s and the chip kicker could achieve chip
distance of over 5 m. The safety was also assured by using totally isolated cir-
cuit with optical couplers as used in SR2. The wireless communication in SR3
was significantly improved by using universal exchangeable modular design. SR3
could easily switch plug-in wireless modules between 1.9GHz DECT, 916MHz
Linx, and 2.4GHz IEEE 802.15.4 radio. Multi antenna diversity was also taken
into consideration to improve wireless communication performance. The proto-
type SR3 as shown in Figure 3, was tested in RoboCup 2007 with a major failure
of its embedded software and incapable hardware. Nevertheless SR3 was later on
completed after the RoboCup 2007 competition and used for educational demos.

Despite of the failure of SR3, Botnia has redesigned completely 4th generation
SR4 in cooperation with the partner team in China. The SR4 is supposed to
consummate all features designed in SR3 with additional improvements. SR4
still uses 4-wheel subsystem with a forward kicker, a chip kicker and a dribbler
mounted on the platform. Modeling of the omni-directional robot is based on [3],
[4] and [5]. The forward kicker mechanism of SR4 has been significantly improved
with much more powerful full power kicking strength. The chip kicker mechanism
of SR4 has been redesigned to reduce significantly the ball coverage percentage
compared to previous versions. The mechanics are completely produced with
CNC machines. The electronics improvements are significant over SR3. The main
control system uses ARM7 and Altera EP1C6 Cyclone FPGA with extended
data bus. All brushless motors are driven directly with FPGA plus MOSFETs
solution. The wheel motors are equipped with 360 CPR, optical encoders for
high precision control. An IR array is implemented for self ball positioning. For
wireless communications there are now both DECT and Linx modules onboard
and no need to switch between each other. The power systems are optimized to
achieve over 80% high effiecency DC step up/down convertion.

3 Mechanical Design

The new generation Botnia SR4 is designed based on the RoboCup F180 small-
size league rules [1]. The height of the robot is 148 mm, and the maximum
diameter of its projection to the ground is 178 mm, as shown in Figure 4. The
maximum projected ball coverage distance is 10 mm as shown in Figure 5, which
yields the maximum percentage of ball coverage of 17.65%. SR4 is currently still
under development. Figure 6 shows a partly assembled SR4 prototype.

Fig. 4. Dimensions of Botnia SR4

[T

1

Dribbler up

Ry
—
i
SV
/f.fJGﬂ.Ilu_.a
<Ay
Bt
E==n

Dribbler down

Fig. 5. Maximum ball coverage of Botnia SR4 at dribbler down/up position

Fig. 6. A partly assembled SR4 prototype

4 Software Design

The overview of Botnia software structure is presented in Figure 7. It consists of
strategy system, vision system, communication system, and a simulator which
is still under development.

4.1 Strategy System

The old strategy system which was used to control SR1/SR1E/SR2C/SR2D has
been completely overhauled. A gigantic loop was used to make the system work.
This had lead to a very complex to manage system where adding functionality
would mess up other parts of the system. Furthermore, the old design was not
at all modular and would need a complete clean-up to be useful anyway. Also,
the loop made the system quite slow and responses to events did not happen as
fast as they should have.
The main goals for the new system include:

- Speed increase

- Modularity

- Expandability

- Testing of individual modules

Therefore a new design has been made as shown in Figure 8, which is both
modular and expandable, yet easy to maintain with the ability to test individual
parts of the system made easy. The solution was to make the system as threaded
and concurrent as possible. To make actual use of these threads, a Sun T1000
CoolThreads server was acquired which has a SPARC CPU with 6 cores and 4
hardware threads per core. This makes it possible to run 24 threads in parallel.

In order to test modules separately, test software has been written on a
per-module basis which allows various input and output states to be tested for

System Overview
Usecase Diagram A
Version 1.0
Doraemon {video) UDP (5001,5002) - | Strategy RS-232 RF Communication
UDP (x0¢x)
COMPOSITE COMROSITE
VIOEO VIDEQ
Simulated system overview
Usecase Diagram
Version 1.0
Strategy
UDP (5003 M
Output Simulator Input
Renderer3D
Screen

Fig. 7. Overview of software system and simulated system

both accuracy and performance. The Python language will be used to this end.
Python scripts will be furthermore able to take control of the entire strategy
server allowing for real-time interaction with the system during testing phases.

A further advantage of this system is that performance testing and optimiza-
tion per module are possible, allowing people to test and optimize a module
without having to know the entire system - or even have access to the entire
system.

The strategy has been changed a few things from last year. The most impor-
tant change is that it doesn’t have ATTACKER or DEFENDER roles. Instead,
it concentrated on assigning tasks most suitable for certain robot in a certain
time. Robot rules are assigned in every frame. New tasks for robots are added,
and at the moment there are 5 different tasks:

- Goalkeeper - it’s just goalkeeper rule.

- TakeBall - it is a task assigned to the closest robot to the ball, tries to get
the ball and if possible shoot on the goal or pass to other robot that have better
position to shoot.

Strategy Referee VideoSystem
Use Case Diagram =
Version 1.3 - et parameters
Issue judgment of objects
GameSettings

Get parameters

-
=
g
-
2
g
&
g

T Start system

Coach MotionPlanner
Decide tasks m
T optimal position
Assign tasks
ObstacleAvoidance

—_—]
i mnesﬂaiﬂl_) |
TaskSystem Check line unobscured

BallHandlin
Pass calculation
oalKeeper Kick calculation -

Chipkick calculation

b1

BallPrediction

Predict goal hitting line
Predict ball kick line (-
CommandSender
Predict ball chipkick area

RF Transmitter Robot Hardware

I

Issue hardware :
Send d: Receive commands
commands

Fig. 8. State chart of the new strategy system

- ProtectGoal - the robot tries to cover the path to the goal as good as
possible, tries to get to the opponent to a certain distance and blocks the path
to the goal.

- Defend - covers free oponent robots, makes them unable to get a pass.

- FindClearSpot - goes to a position from where it can get a ball from our
robot and have clear shoot path on the goal.

The Goalkeeper task is assigned beforehand, and it doesn’t change during the
game. TakeBall is assigned to the closest robot to the ball. Completely different
things happen with other tasks. The strategy calculates cost of every task for
every robot and then assigns tasks to robots, so the cost in total is lowest. This
system makes sure that efficiency is very high, robots are doing less work, are
faster, consume less power. The biggest advantage in the strategy system is that
it isn’t schematic. Positions aren’t defined beforehand, and thus make it difficult
to predict for opponent teams.

4.2 GUI

Botnia GUI is a software which was developed with Java (JDK1.6) to visualize
the control of robots. This software has also the capability to record and watch
recorded games, which is very useful for finding errors in algorithms and for the
improvement of algorithms. It is a completely multi-threaded software which
consists of 28 classes. Figure 9 shows the overview of the GUI.

The GUI is connected with two video servers, one for each camera. Each of
them sends a plain text stream which includes the positions of the objects. Two
UDP socket server threads that run within the GUI, parse the incoming plain
text stream and write the positions of the detected objects (robots, ball) in a
synchronized ring buffer. If both UDP threads have written their data into the
buffer, a painting thread reads the data from the buffer and draws the objects
on the football panel. In a MYSQL database positions of the objects will be
stored for recording the games. The JDBC (Java Database Connectivity) driver
is used for the database connectivity. Control of the robots is done over a TCP
connection between the GUI and the strategy server. For the joystick control a
library called LWJGL (Lightweight Java Game Library) is used. Java’s common
event listeners are used for the mouse, keyboard and button control.

e View Hop

Hust (153 (ROEGT1 et 5001 comect 8 iliscommct i mm otk o oy

Maiise Comrol
= Mo
e

Wstan]| gav- o o | wndnseo e | 8 ns - Giismdesios | o | L comral [Stewnndes ystiese | sstermstiana [nEEE s iee

Fig. 9. Overview of Botnia GUI

10

4.3 Vision System

The latest version of the Bt848178 driver for Linux Bttv2, V4L2 was used for the
frame grabber. It provided a DMA streaming feature not available with older
versions. Since the Linux X Windows system is based on a client-server method,
Simple Direct Media Layer (SDL) [2] was needed to provide fast access to the
graphics frame-buffer. Since an NTSC video standard output is used at 640x480
pixels with 30 frames per second the frame grabber can capture half of a frame
at a time, even field / odd field i.e. 640x240 pixels at 60 frames per second. For
such an output the processing cycle must be less than 16 ms in order to maintain
the full frame rate.
The processing of such frames is done by the vision system as follows:

— Read the configuration file and initialize the calibration data
— Initialize frame grabber card
— Initialize Video-server UDP socket
— Repeat
— Wait until one field of images data has been transferred to memory
— Do image processing
— Prepare the coordinate data and broadcast through the socket
— Until the user stops the program

Apart from the main routine, a low priority thread was implemented to up-
date the GUI. The status screen of the GUI display shows important information
on the percentage of processing cycle used to find the object indicator for object
found, the velocity of each object’s movement and the frame rate.

Although the previous vision system was quite good over the past year, some
improvements regarding speed have been made. Detection of all the objects has
seen an increase of 30% in speed. For synchronisation purposes, the two video
servers have been combined into one.

4.4 Communication System

In order to adapt to different communication hardware which has different data
throughput, two different formats of control packet are introduced. With higher
throughput communication modules, 10-byte control packet is used, including 2
bytes for robot control (3 bits for ID, 1 bit for forward kick, 1 bit for chip kick, 1
bit for dribbler, 10 bits for kicking strength), 2 bytes for X velocity, 2 bytes for Y
velocity, 2 bytes for Angular velocity, 2 bytes for Error detection. On the other
hand with lower throughput communication modules, 5-byte control packet is
used, including 2 bytes for robot control (3 bits for ID, 1 bit for forward kick, 1
bit for chip kick, 1 bit for dribbler, 10 bits for kicking strength), 1 bytes for X
velocity, 1 bytes for Y velocity, 1 bytes for Angular velocity.

11

Since the video frame capture rate using new cameras will be 50Hz, if the
strategy is calculated based on each video frame then the control packet update
won’t be higher than 50Hz, but this is not good enough to control a fast process.
Also there is always a delay between command sent to robots and their reaction.
Nevertheless under most circumstances the variance of the delay is small, and
it can be partly compensated by fine tuning the control parameters. The inter-
frame control command is introduced, not only for sending commands but also
receiving feedbacks, since there must be some kind of time duplex scheme used for
transmitting and receiving, and they cannot happen simultaneously. Predication
is highly beneficial to be used to decide inter-frame control commands, e.g. to
predict where the ball will go and send robot control command already before
waiting for the next video frame arrives. Therefore an overall update of control
commands around 100Hz will be used to make good use of prediction. It’s not
really necessary to use full throughput of the communication module right now,
but the capacity has been designed for the future.

Real-life performance of wireless communication has been intensively inves-
tigated in terms of round trip delay, bit error rate and packet error rate, etc, by
interfering with simulated jamming signals, and results are shown in Figure 10.

200

Packetcss/packet
=1
=
T

Fig. 10. Performance of Linx under interferences

12

The typical round trip time delay for Linx wireless transmission is around
209 us to 809 us. Under heavy interference the most common bit error rate
is 3 bits per byte. Hence, a 3-bit error correction scheme should be sufficient
to significantly improve the reliability of wireless performance. Besides error
correction, frequency hopping is also employed to resist interferences. The RSSI
levels of all channels are scanned and a black list is generated so that all the bad
channels are excluded from the random frequency hopping sequence to ensure
the hopping channel quality, and thus improve the communication performance
even further.

4.5 Simulator

Extensive work is being put into the creation of an accurate simulator for testing
purposes. The simulator will be able to make use of abstraction layers in order
to use a variety of physics libraries and 3D engines. This allows for a flexibility
regardless of the skills of individual developers. High end 3D engines allow for
easy programming, while OpenGL allows for performance and fun.

5 Conclusion

This paper described the current development status of Botnia Dragon Knights
team. A new generation of physical robots with completely new electronics,
mechanics, communications as well as software have been designed and imple-
mented, which have a number of significant improvements compared to last
generation system. A software simulator is also currently under development.

References

1. RoboCup Organization Official Home page http://www.robocup.org [cited on
14.02.2007]

2. Simple Direct Media Layer (SDL) http://www.libsdl.org [cited on 14.02.2007]

3. Muir, P.F. and Neuman, C.P 1987: Kinematic modeling of wheeled mobile robots
J. Robotic Systems, 4(2): 281-340

4. Sahn, S.K., Angeles, J. and Darcovich, J. 1995: The design of kinematically isotropic
rolling robot with omni-directional wheels Mechanism and Machine theory, 30(8):
1127-1137

5. Y.P. Leow, K.H. Low and W.K. Loh 2002: Kinematic Modeling and Analysis of Mo-
bile Robot with Omni Directional Wheels Proceedings of the Seventh International
Conference On Automation, Robotics, Control And Vision, Singapore

