
 31

Developing and Testing Structural Light Vision Software  
by Co-Evolutionary Genetic Algorithm 

 

Timo Mantere 
University of Vaasa 

Department of Engineering  
P.O. Box 700, FIN-65101 Vaasa 

+358 6 324 8679 

timo.mantere@uwasa.fi 

Jarmo T. Alander 
University of Vaasa  

Department of Engineering 
P.O. Box 700, FIN-65101 Vaasa 

+358 6 324 8444 

jarmo.alander@uwasa.fi
 
 

 
 

Abstract 
In this paper we propose an approach to automatically develop 
and test software by co-evolutionary optimization using genetic 
algorithms. The idea is to generate both rule based methods for 
combining scan image data and corresponding simulated test 
surfaces for a structured light volume measurement system. The 
goal is to minimize the worst case behavior of error bounds of 
the volume measurement. One genetic algorithm is used to 
generate rules to combine scan data that give minimum relative 
error on the test surface population, which is generated by 
another genetic algorithm trying to create surfaces giving high 
measurement error. Thus the surface population defines the 
fitness of the method population and vice versa. Based on 
observations of evolution in nature it is believed that it is this 
kind of co-evolution that leads in the long run to excellent 
solutions, that would be difficult to find by more traditional 
genetic algorithm approaches. Indeed, the preliminary results got 
seem to indicate that co-evolution is beneficial in software 
development and testing. 
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1. Introduction 
A co-evolutionary optimization based approach for software 
development and testing is proposed in this work. An example 
of the approach applied to the development and testing of 
structured light vision system is given. The goal was to find test 
surfaces that are most difficult for the object software to 
measure, in other words to find out the error bounds of the 
volume measurement. Simultaneously the measurement routine 
was developed by optimizing its parameters to give the 
minimum error when applied on the test surfaces.  

The problem was to measure the volume of small objects fixed 
on a planar surface. Knowing the profiles of the objects we can 
interpolate their volume within certain error bounds. There are 
several methods that are developed for imaging based surface 
metrology, like stereo photography, structured light vision, and 
shading, reflection, and focus based methods. In this paper, we 
concentrate on structured light vision [9, 25]. This work was 
done in one of our research projects, developing a high-speed 3-

D measurement system for small objects. To confirm that the 
proposed system meets the accuracy demands we decided to 
simulate the system first. 

Genetic algorithms (GA) [12] are optimization methods that are 
known to find quite good solutions to many difficult 
optimization problems; therefore, we decided to use the GA to 
generate 3-D test surfaces. The imaging process was simulated 
by evaluating how light planes would lie on the simulated 
surfaces (ray tracing) [11] and further generating simulated 
images from these height curves. Though the simulated 
surface/image does not exactly correspond to the real vision 
system, it was felt that it is at least a good starting point for 
testing. 

Software testing is an important part of software development. It 
is time consuming, and even a partial automation can produce 
considerable savings [21]. The benefits of automatic test tools 
also include that that they are much more objective than human 
testers.  

2. Genetic Algorithms and Co-evolution 
Genetic algorithms are optimization methods that mimic models 
of evolution in nature [7]. They are simplified computational 
models of evolutionary biology. The GA forms a kind of 
electronic population, the members of which fight for survival, 
adapting as well as possible to the environment, which is 
actually an optimization problem. The GAs use genetic 
operations, such as selection, crossover, and mutation in order to 
generate solutions that meet the given optimization constraints 
ever better and better. Survival and crossbreeding probabilities 
depend on how well individuals fulfill the target function. The 
set of the best solutions is usually kept in an array called 
population. The GAs does not require the optimized function to 
be continuous or derivable, or even be expressed as a 
mathematical formula, and that is why they gain more and more 
popularity in practical technical optimization. Today the GA 
methods form a broad spectrum of heuristic optimization 
methods. 

Co-evolutionary computation [6, 14-15] (CEC) generally means 
that an evolutionary algorithm is composed of several species 
with different types of individuals, while standard evolutionary 
algorithm has only single population of individuals. In CEC the 
genetic operations, crossover and mutations are applied to only 
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on single species, while selection can be performed among 
individuals of one or more species. When we deal with an 
optimization problem, the environmental conditions of which are 
stochastic or immeasurable, we can try to develop the 
environmental conditions concurrently with the problem.  Trial 
solutions implied by one species are evaluated in the 
environment implied by another species. The goal is to 
accomplish an upward spiral, an arms race, where both species 
would achieve ever better results. 

3. Structured Light Vision 
Structured light vision is a method where the object, the surface 
height of which is measured, is lighted in such a way that sharp 
lines of light and shadow on the surface can be imaged. In 
practice, tilted laser illumination is used. The intersection of the 
light plane and the object forms partial height curves that are 
recorded by camera and further used to reconstruct the 3-D 
geometry of the object. In order to measure the whole surface 
we must use multiple light planes or/and move either the light 
plane or the object using small steps and recording a new image 
after each step. The height information from these images must 
be evaluated for estimation of volume. For this we need to know 
several parameters including the height curves, the zero level, 
camera distance from the zero level, scan directions αs, laser 
illumination angle αL, and the focal length, and the actual size 
that the pixel corresponds to the surface (fig. 1). Usually the 
measurement system consists on a CCD camera, scanning 
mechanics and computer. 
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Figure 1. The structure of the structured light vision 
measurement system, αL, = illumination angle, αs = scan 
direction, hd directional height of the surface point. 

 

The problem with this kind of measurement is that the camera 
distorts the image towards borders, causing the surface profile 
and pixel sizes vary spatially. Another problem is that the light 
plane is not ideally thin, and it may cover several pixels with 
different tones, so that the exact borderline of the light curve is 
difficult or even impossible to define. If the light plane is less 
than one pixel thick, the maximum error is equal to the pixel 

size; the plane is within one pixel and the location cannot be 
evaluated more accurately within one frame. 

4. Related Work 
Genetic algorithm has previously been adapted to the surface 
simulation problem in ref. [18]. There are also several studies of 
shape optimization [2, 19, 23-24] using genetic algorithms. For 
shape representation using Bezier curves [5] and GAs, see refs. 
[2, 16-17], and references therein. The use of GAs for shape 
modeling from images is represented in ref. [13], and examples 
of GAs in optical system design [10, 22]. In addition, the GAs 
has been largely applied to image processing; see bibliography 
[3]. GAs has previously been applied to automatic data 
generation for software testing in several studies, see refs. [3-4], 
and references therein. 

5. The Proposed Method 
The proposed method consists of a co-evolutionary GA that 
consists of two species:  one representing control point vectors, 
and the other representing measurement rules. The latter 
includes αL for each scan direction and the rules how to combine 
directional height information, when reconstructing the 
measured surface. The first species are used by a surface 
generator procedure SurfCreate to create 3-D surfaces, from 
which they are further transformed into surface height curves by 
procedure EvalCurve, by using the αL from the second 
species. The simulated surface height images are then sent to the 
structured light vision software SLV that evaluates the height 
information and reconstructs the 3-D model of the surface, by 
using the information how to combine directional height 
information from the second species.  
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Figure 2. The structure of the proposed test system. 
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where H is the computed height of some surface point, hd:s are 
directional heights scanned from each direction, and weights wi 
for the heights. Weights are used so that the heights scanned 
from different directions are first sorted, and then the first 
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weight of the array is always multiplied with highest hdi, and the 
other ones correspondingly in the decreasing order. Index i 
represents the running number of items in the weight array, and 
hdi:s sorted to the decreasing order. This way we can define rules 
like [1.0, 0, 0, 0] or [0, 1.0, 1.0, 0] that respective mean “the 
height is the highest directional height” and “the height is the 
mean of the middle values of directional heights”.  

The rules are floating point numbers, so that we can get any 
mixture of directional values. The rule base also includes some 
special rules that cannot directly be expressed as floating point 
vectors, like “the height is the lowest directional height that is 
greater than zero”, “the height is the value closest to the 
average”, or “the height is the most frequent value”. These 
special rules are forced when extra parameter value is within 
some predefined interval. The rule base may also contain αL = 
[45o … 85o] for each scan direction. 

The fitness function is evaluated by a subprogram called 
Fitness. It gets as its input the original and reconstructed 
surfaces S and R, from which it evaluates the differences fij = Rij 
- Sij, where i is the index for surfaces, and j is the index for the 
rules. The fitness of an item belonging to the surface species is 

)0,(min)0,(max)( ijjijjS ffif −=  (2) 

and the fitness of an individual item of the method species is 

ijiP fjf max)( =   (3)  

Fitness functions define that the fitness value for fS is the error 
interval, and for the fP the fitness value is the absolute value of 
maximum error. These fitness function definitions were selected, 
because they seemed to be the most stable and best working of 
the half a dozen different fitness definitions experimented with.  
The co-evolutionary method tries to maximize fS and minimize 
fP. 

GA parameters used in co-evolutionary rule tuning were: 
population size 30 in both species, elitism 50%, crossover rate 
50%, both one point and uniform crossovers between 
chromosomes with 50/50 ratio, in addition, arithmetic crossover 
between genes was applied at the rate of 10%, and mutation 
probability was 2%. Test runs consisted of 60 generations.  

GA parameters used in the verification tests were: population 
size 100, elitism 50%, crossover rate 50%, and mutation 
probability 2%. New individuals were generated by applying 
both one point and uniform crossovers between chromosomes 
with 50/50 ratio; in addition, arithmetic crossover between genes 
was applied at the rate of 10%. We decided [20] to run tests, 
where the error bounds were maximized. The highest and lowest 
fitness quartiles of GA population survived for the next 
generation and new individuals replaced the middle quartiles. 
This way the population also stays more diverse. We did some 
comparison runs by only minimizing or maximizing the upper or 
lower error bounds, and it seems that the concurrent 
optimization finds the bounds approximately as effectively. Test 
runs reported here consisted of 100 generations. 

3-D freeform surfaces were generated as products of third 
degree Bezier curves. The implementation is a simplified 

version of the traditional Bezier surfaces and resorted, because 
we wanted to restrict the number of parameters that GA 
optimizes, to less than one hundred.  In our free form surface 
model four control points form one curve segment, 11 segments 
are further attached together to form a composite Bezier curve, 
in such way that the last control point of each curve segment 
was also the first control point of the next curve segment. The 
first and last control points of the composite curve were equal to 
zero, so that the surface would start and end at the zero level. 
Therefore, we needed altogether 32 vertical and 32 horizontal 
control points. The surface information was implemented as a 
chromosome consisting of 64 floating-point numbers in the 
range [0.0, 50.0]. We used DeCastaljau [8] algorithm to define xi 
= C1(i) and yj = C2(j) values of the current point (i,  j), i.e. xi was 
calculated from the first composite curve, and yj from the 
second, and the value of surface height     . 

The tests represented hereon were done in such a way that the 
volume was normalized to be a constant.  Therefore, the absolute 
and relative errors were proportional. 

When the object is imaged from one direction, the rear hillside is 
hidden in the shadows, and not measured properly, the same 
happens to the small peaks behind a high peak. These blind areas 
can be seen by scanning the object from several directions. 
However, scanning from different directions produce different 
height matrices, where in some areas the height values might 
differ substantially due to the fact that the corresponding area is 
in the blind zone when viewed from some other direction. We 
have to apply some rules for defining the height, if scans from 
different directions lead to different values. The rule could be 
using the highest, median, mean, etc. value or some combination 
of them. 

This rule base could also be optimized e.g. by genetic algorithm. 
However, if we optimize the rule base with some static test 
object set, we cannot be sure that the same rule base produces 
the best accuracy with other objects to be measured. This is 
where co-evolution comes in to the picture. We optimize the rule 
base with GA and at the same time as we are testing the system 
by trying to find the most difficult object to be measured by GA. 
The aim is that GA optimizes the worst shape for current rule 
base and at the same time the best rule base for the current test 
shapes.  If this kind of co-development is achieved, we could 
assume that the eventual rule base is satisfactory with any object 
shapes of the same type. 

6. Experimental Results 
This work is a continuation to that given in ref [20]. The results 
in that study showed that the structured light vision software had 
some problems when combining data from several scan 
directions. 

Figure 3 shows an example of fitness development during the 
co-evolutionary test run. The fitness values shown are the values 
of best individual, i.e. for fS the maximal value and for fP the 
minimal value. At the beginning the method population rapidly 
evolves towards small error bounds. This causes the surface 
population to evolve slowly towards more difficult test cases, 
which further causes the fitness of the method population follow 
quite closely the fitness of the surface population. Obviously the 
speed of evolution is determined by the speed of the test surface 
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population. In this case it seems to be much more difficult to 
create challenging test cases than robust software. The obvious 
reason is that the surface has much more parameters than the 
method under development. 
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Figure 3. The co-evolutionary development of surface and 

parameter population fitness functions with four directional 
scans (4a4+p, see fig. 8). 
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Figure 4. error bounds in the validation test run with same 

case as in fig. 3 (4a4+p). 
 
Table 1. The relative measurement error. A) and B) are 
upper and lower error tolerances from the ref. [20], and C) 
and D) are corresponding error tolerances after co-
evolutionary software tuning in this study. 

# scan 
directions 

A [%] B [%] C [%] D [%] 

1 -16.88 34.30 -5.65 22.66 
2, αs = 180o -18.58 21.83 -4.66 24.67 
2, αs = 90o -14.35 2.65 -4.47 11.39 
3 -6.31 26.08 -4.66 12.51 
4 -5.78 29.85 -5.27 9.51 

Figure 4 shows how the upper and lower accuracy error bounds 
develop in the validation test run, where the GA only tries to 
find the largest accuracy error by generating test surfaces. The 
rule base parameters are locked to those found by the co-
evolutionary test run. 

 
Figure 5. An example of a GA generated 3-D test surface. 

 
Figure 6. Measured and reconstructed surface of fig. 3. 

 
Figure 7. Profile of the measurement error between surfaces 

shown in figs. 4 and 5. 
 

Table 1 shows the results of the tests in ref. [20]. In the case of 
negative error (A) the accuracy got better when more scan 
directions were used. In the case of positive error (B), however, 
three and four scan directions seem to cause increasing error. 
This was a point for further software development. 

The co-evolutionary method was applied in this study to see if 
the GA could improve measurement accuracy by optimizing, 
concurrently with the test surfaces, the rule base of how to 
combine height data from several directions. 

Table 1 shows also the results after tuning the system with the 
co-evolutionary GA.  The accuracy in all cases got better with 
the negative error (C). In the case of positive error (D), the 
accuracy get better in all other cases, except in the case of two 
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scans with 90o angle between the scan directions. In that case the 
negative error bound has gotten better, but the positive error 
bound worse, unfortunately, the error bounds interval has widen, 
but the error bounds were now more centered around the zero 
level (see fig. 6). 

The results imply that now the precision increases with 
increasing scan directions. This implies that the measurement 
software has evolved to combine scan data better than the earlier 
version of our software [20]. 

In all cases, the error bounds are skewed towards positive error, 
implying some sort of systematic error. If we could eliminate the 
error, the system might get even more accurate. 

Figures 5-7 shows an example of GA generated surface after co-
evolutionary tuning, the corresponding reconstructed surfaces, 
and the profile of measurement error. 
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Figure 8. The developments of measurement error tolerance 
bounds  with co-evolutionary tuning for  each  number of 
scan directions (1, …, 4) . Markings of the x-axis in the 
order: the number of scan directions; what is optimized: p = 
parameters how to compile directional height information, 
a=camera angle, a+p = both of the previous with using the 
same camera angle for each scan directions, an+p as a+p but 
using different camera angle for each scan direction; the 
angle between scan directions shown by (α). 

 

Figure 8 shows how the error tolerance bounds of different 
number of scan directions have developed with co-evolutionary 
tuning. For one scan direction, for which only the illumination 
angle could be optimized, the development of bounds were 
surprisingly high (44.7%), the optimal αL seems to be about 
71.6o.   

When we are using more scan directions, we did three tuning 
tests. In the first test (marked dark gray in fig. 8) we tune only 
the rule base used to combine the directional information, the 
overall system (camera angles) were not changed. In the second 
test (light gray in fig. 8), we tune the camera angle together with 
the rule base; the same angle was used for each direction. In the 
third test series (white in fig. 8), we tune the camera angle for 

each scan direction together with the rule base. The original 
error bounds taken from ref. [20] are marked with black. 

Figure 8 illustrates how the system gets nearly always when the 
number of system parameters to be tuned is increasing. The only 
exceptions are the case of two directional scans, with αS = 90o, 
the first test is worse than the original but increases gradually, 
and with αS = 180o the best accuracy was found with the same 
αL  for each scan direction.  

With scans from two directions the co-evolutionary tuning did 
not gain much more accuracy, while with αS = 180o the accuracy 
improved by 27.4%, while with αS = 90o the improvement was 
6.7%. With three and four scan directions the accuracy improved 
47% and 58.5% respectively.  Not surprisingly after the tuning 
process the case when scanning from four directions is the most 
accurate.  

The optimal parameter set found case of scanning from four 
directions were approx. w = [0.44, 0.13, 0.54, 0.69] and αL = 
{76.0, 79.5, 72.9, 68.9} degrees. 

7. Fitness landscape  
In order to evaluate if our co-evolutionary approach was 
beneficial in this case, we decided to analyze the fitness 
landscape as follows. Starting from the optimized test surface 
population random mutations were applied to random items of 
the population while recording the corresponding fitness of the 
volume measurement method. 
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Figure 9. Two random walks in the fitness landscape before 

co-evolution. 
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Figure 10. Two random walks in the fitness landscape after 

co-evolution. 



 36

Random walks created by this method are shown in figures 9 
and 10. In both figures, the random walk was started from the 
negative optimum. There are two runs in both figures, just to 
illustrate that the major patterns of the walks are similar. At first 
the fitness value roughly exponentially approaches the zero error 
level starting then randomly vary around it. Before co-evolution 
the random surfaces cause higher relative error than after co-
evolution. Hence co-evolution has made the system more stable. 
When we run longer random walks the original system causes 
about twice as high total error, sum of absolute value of relative 
error, than the co-evolutionarily optimized system. 

Figures 9 and 10 also show that the number of random steps 
needed to escape the difficult test case is higher for the original 
than for the co-evolutionarily optimized method. This can be 
explained so that the most difficult test surface is quite 
exceptional. A short random walk hardly reveals a similar case. 
However, in the original system it needs more steps to reach 
optimum from random landscape. The optimized system is so 
well tuned that normal random surfaces causes less error, and 
the optimal area is closer to the random landscape. 

8. Conclusions and Discussion 
In this paper we have developed and tested a structural light 
vision software applying a co-evolutionary method in order to 
simultaneously develop the measurement system parameters and 
the corresponding test data. 

The results got in this study confirm that the co-evolutionary 
application of GA seems to be capable of generating test 
surfaces for testing structured light 3-D vision software, and 
concurrently finding system rules that lead to better 
measurement accuracy. This leads to the conclusion that 
problematic surfaces have some features in common that the GA 
is able to adapt, and respectively that GA learns how to arrange 
measurement geometry and process the corresponding scan data.  

A preliminary analysis seems to confirm that the tuned system is 
more capable of handling random surfaces, and there are less 
space for extreme cases.  

The surface model was not necessarily the best, and future 
implementation may use real Bezier surfaces, although it 
requires more control points and leads to slower processing. 

In general, this kind of co-evolutionary approach could be used 
in the design and testing of demanding software and 
measurement systems. 

In the future, we intend to do more extensive fitness landscape 
analysis how the co-evolutionary method effects fitness 
landscape. We should evaluate if the improvements really are 
due the using of co-evolution. However, computationally the co-
evolutionary tuning is exactly as costly as optimizing the system 
against some static test surface set. So, it is hard to see what 
disadvantage it could cause, since static set can not cover all 
possible cases, and co-evolutionary GA can find the pathological 
case for bad system parameters during the tuning, which static 
test set would not be able to do.  
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