
 31

Developing and Testing Structural Light Vision Software
by Co-Evolutionary Genetic Algorithm

Timo Mantere
University of Vaasa

Department of Engineering
P.O. Box 700, FIN-65101 Vaasa

+358 6 324 8679

timo.mantere@uwasa.fi

Jarmo T. Alander
University of Vaasa

Department of Engineering
P.O. Box 700, FIN-65101 Vaasa

+358 6 324 8444

jarmo.alander@uwasa.fi

Abstract
In this paper we propose an approach to automatically develop
and test software by co-evolutionary optimization using genetic
algorithms. The idea is to generate both rule based methods for
combining scan image data and corresponding simulated test
surfaces for a structured light volume measurement system. The
goal is to minimize the worst case behavior of error bounds of
the volume measurement. One genetic algorithm is used to
generate rules to combine scan data that give minimum relative
error on the test surface population, which is generated by
another genetic algorithm trying to create surfaces giving high
measurement error. Thus the surface population defines the
fitness of the method population and vice versa. Based on
observations of evolution in nature it is believed that it is this
kind of co-evolution that leads in the long run to excellent
solutions, that would be difficult to find by more traditional
genetic algorithm approaches. Indeed, the preliminary results got
seem to indicate that co-evolution is beneficial in software
development and testing.

Keywords
Co-evolution, genetic algorithms, image processing, 3-D
imaging, machine vision, simulation, software engineering,
software testing, structured light vision.

1. Introduction
A co-evolutionary optimization based approach for software
development and testing is proposed in this work. An example
of the approach applied to the development and testing of
structured light vision system is given. The goal was to find test
surfaces that are most difficult for the object software to
measure, in other words to find out the error bounds of the
volume measurement. Simultaneously the measurement routine
was developed by optimizing its parameters to give the
minimum error when applied on the test surfaces.

The problem was to measure the volume of small objects fixed
on a planar surface. Knowing the profiles of the objects we can
interpolate their volume within certain error bounds. There are
several methods that are developed for imaging based surface
metrology, like stereo photography, structured light vision, and
shading, reflection, and focus based methods. In this paper, we
concentrate on structured light vision [9, 25]. This work was
done in one of our research projects, developing a high-speed 3-

D measurement system for small objects. To confirm that the
proposed system meets the accuracy demands we decided to
simulate the system first.

Genetic algorithms (GA) [12] are optimization methods that are
known to find quite good solutions to many difficult
optimization problems; therefore, we decided to use the GA to
generate 3-D test surfaces. The imaging process was simulated
by evaluating how light planes would lie on the simulated
surfaces (ray tracing) [11] and further generating simulated
images from these height curves. Though the simulated
surface/image does not exactly correspond to the real vision
system, it was felt that it is at least a good starting point for
testing.

Software testing is an important part of software development. It
is time consuming, and even a partial automation can produce
considerable savings [21]. The benefits of automatic test tools
also include that that they are much more objective than human
testers.

2. Genetic Algorithms and Co-evolution
Genetic algorithms are optimization methods that mimic models
of evolution in nature [7]. They are simplified computational
models of evolutionary biology. The GA forms a kind of
electronic population, the members of which fight for survival,
adapting as well as possible to the environment, which is
actually an optimization problem. The GAs use genetic
operations, such as selection, crossover, and mutation in order to
generate solutions that meet the given optimization constraints
ever better and better. Survival and crossbreeding probabilities
depend on how well individuals fulfill the target function. The
set of the best solutions is usually kept in an array called
population. The GAs does not require the optimized function to
be continuous or derivable, or even be expressed as a
mathematical formula, and that is why they gain more and more
popularity in practical technical optimization. Today the GA
methods form a broad spectrum of heuristic optimization
methods.

Co-evolutionary computation [6, 14-15] (CEC) generally means
that an evolutionary algorithm is composed of several species
with different types of individuals, while standard evolutionary
algorithm has only single population of individuals. In CEC the
genetic operations, crossover and mutations are applied to only

 32

on single species, while selection can be performed among
individuals of one or more species. When we deal with an
optimization problem, the environmental conditions of which are
stochastic or immeasurable, we can try to develop the
environmental conditions concurrently with the problem. Trial
solutions implied by one species are evaluated in the
environment implied by another species. The goal is to
accomplish an upward spiral, an arms race, where both species
would achieve ever better results.

3. Structured Light Vision
Structured light vision is a method where the object, the surface
height of which is measured, is lighted in such a way that sharp
lines of light and shadow on the surface can be imaged. In
practice, tilted laser illumination is used. The intersection of the
light plane and the object forms partial height curves that are
recorded by camera and further used to reconstruct the 3-D
geometry of the object. In order to measure the whole surface
we must use multiple light planes or/and move either the light
plane or the object using small steps and recording a new image
after each step. The height information from these images must
be evaluated for estimation of volume. For this we need to know
several parameters including the height curves, the zero level,
camera distance from the zero level, scan directions αs, laser
illumination angle αL, and the focal length, and the actual size
that the pixel corresponds to the surface (fig. 1). Usually the
measurement system consists on a CCD camera, scanning
mechanics and computer.

 Camera Laser

αL

Step size s

Camera height hc

Zero level

hd

Light plane
transition
from zero
level

Measured
surface

αs

Figure 1. The structure of the structured light vision
measurement system, αL, = illumination angle, αs = scan
direction, hd directional height of the surface point.

The problem with this kind of measurement is that the camera
distorts the image towards borders, causing the surface profile
and pixel sizes vary spatially. Another problem is that the light
plane is not ideally thin, and it may cover several pixels with
different tones, so that the exact borderline of the light curve is
difficult or even impossible to define. If the light plane is less
than one pixel thick, the maximum error is equal to the pixel

size; the plane is within one pixel and the location cannot be
evaluated more accurately within one frame.

4. Related Work
Genetic algorithm has previously been adapted to the surface
simulation problem in ref. [18]. There are also several studies of
shape optimization [2, 19, 23-24] using genetic algorithms. For
shape representation using Bezier curves [5] and GAs, see refs.
[2, 16-17], and references therein. The use of GAs for shape
modeling from images is represented in ref. [13], and examples
of GAs in optical system design [10, 22]. In addition, the GAs
has been largely applied to image processing; see bibliography
[3]. GAs has previously been applied to automatic data
generation for software testing in several studies, see refs. [3-4],
and references therein.

5. The Proposed Method
The proposed method consists of a co-evolutionary GA that
consists of two species: one representing control point vectors,
and the other representing measurement rules. The latter
includes αL for each scan direction and the rules how to combine
directional height information, when reconstructing the
measured surface. The first species are used by a surface
generator procedure SurfCreate to create 3-D surfaces, from
which they are further transformed into surface height curves by
procedure EvalCurve, by using the αL from the second
species. The simulated surface height images are then sent to the
structured light vision software SLV that evaluates the height
information and reconstructs the 3-D model of the surface, by
using the information how to combine directional height
information from the second species.

 Co-evolutionary
GA

Fitness

SurfCreate

EvalCurve

Surface parameter
vector Generated surface

Simulated images

Surface volume S

SLV Surface volume
estimate R

Rule base vector

Figure 2. The structure of the proposed test system.

The rules are given in form

∑
∑

=

i
i

di
i

i

w

hw
H

)(
 (1)

where H is the computed height of some surface point, hd:s are
directional heights scanned from each direction, and weights wi
for the heights. Weights are used so that the heights scanned
from different directions are first sorted, and then the first

 33

weight of the array is always multiplied with highest hdi, and the
other ones correspondingly in the decreasing order. Index i
represents the running number of items in the weight array, and
hdi:s sorted to the decreasing order. This way we can define rules
like [1.0, 0, 0, 0] or [0, 1.0, 1.0, 0] that respective mean “the
height is the highest directional height” and “the height is the
mean of the middle values of directional heights”.

The rules are floating point numbers, so that we can get any
mixture of directional values. The rule base also includes some
special rules that cannot directly be expressed as floating point
vectors, like “the height is the lowest directional height that is
greater than zero”, “the height is the value closest to the
average”, or “the height is the most frequent value”. These
special rules are forced when extra parameter value is within
some predefined interval. The rule base may also contain αL =
[45o … 85o] for each scan direction.

The fitness function is evaluated by a subprogram called
Fitness. It gets as its input the original and reconstructed
surfaces S and R, from which it evaluates the differences fij = Rij
- Sij, where i is the index for surfaces, and j is the index for the
rules. The fitness of an item belonging to the surface species is

)0,(min)0,(max)(ijjijjS ffif −= (2)

and the fitness of an individual item of the method species is

ijiP fjf max)(= (3)

Fitness functions define that the fitness value for fS is the error
interval, and for the fP the fitness value is the absolute value of
maximum error. These fitness function definitions were selected,
because they seemed to be the most stable and best working of
the half a dozen different fitness definitions experimented with.
The co-evolutionary method tries to maximize fS and minimize
fP.

GA parameters used in co-evolutionary rule tuning were:
population size 30 in both species, elitism 50%, crossover rate
50%, both one point and uniform crossovers between
chromosomes with 50/50 ratio, in addition, arithmetic crossover
between genes was applied at the rate of 10%, and mutation
probability was 2%. Test runs consisted of 60 generations.

GA parameters used in the verification tests were: population
size 100, elitism 50%, crossover rate 50%, and mutation
probability 2%. New individuals were generated by applying
both one point and uniform crossovers between chromosomes
with 50/50 ratio; in addition, arithmetic crossover between genes
was applied at the rate of 10%. We decided [20] to run tests,
where the error bounds were maximized. The highest and lowest
fitness quartiles of GA population survived for the next
generation and new individuals replaced the middle quartiles.
This way the population also stays more diverse. We did some
comparison runs by only minimizing or maximizing the upper or
lower error bounds, and it seems that the concurrent
optimization finds the bounds approximately as effectively. Test
runs reported here consisted of 100 generations.

3-D freeform surfaces were generated as products of third
degree Bezier curves. The implementation is a simplified

version of the traditional Bezier surfaces and resorted, because
we wanted to restrict the number of parameters that GA
optimizes, to less than one hundred. In our free form surface
model four control points form one curve segment, 11 segments
are further attached together to form a composite Bezier curve,
in such way that the last control point of each curve segment
was also the first control point of the next curve segment. The
first and last control points of the composite curve were equal to
zero, so that the surface would start and end at the zero level.
Therefore, we needed altogether 32 vertical and 32 horizontal
control points. The surface information was implemented as a
chromosome consisting of 64 floating-point numbers in the
range [0.0, 50.0]. We used DeCastaljau [8] algorithm to define xi
= C1(i) and yj = C2(j) values of the current point (i, j), i.e. xi was
calculated from the first composite curve, and yj from the
second, and the value of surface height .

The tests represented hereon were done in such a way that the
volume was normalized to be a constant. Therefore, the absolute
and relative errors were proportional.

When the object is imaged from one direction, the rear hillside is
hidden in the shadows, and not measured properly, the same
happens to the small peaks behind a high peak. These blind areas
can be seen by scanning the object from several directions.
However, scanning from different directions produce different
height matrices, where in some areas the height values might
differ substantially due to the fact that the corresponding area is
in the blind zone when viewed from some other direction. We
have to apply some rules for defining the height, if scans from
different directions lead to different values. The rule could be
using the highest, median, mean, etc. value or some combination
of them.

This rule base could also be optimized e.g. by genetic algorithm.
However, if we optimize the rule base with some static test
object set, we cannot be sure that the same rule base produces
the best accuracy with other objects to be measured. This is
where co-evolution comes in to the picture. We optimize the rule
base with GA and at the same time as we are testing the system
by trying to find the most difficult object to be measured by GA.
The aim is that GA optimizes the worst shape for current rule
base and at the same time the best rule base for the current test
shapes. If this kind of co-development is achieved, we could
assume that the eventual rule base is satisfactory with any object
shapes of the same type.

6. Experimental Results
This work is a continuation to that given in ref [20]. The results
in that study showed that the structured light vision software had
some problems when combining data from several scan
directions.

Figure 3 shows an example of fitness development during the
co-evolutionary test run. The fitness values shown are the values
of best individual, i.e. for fS the maximal value and for fP the
minimal value. At the beginning the method population rapidly
evolves towards small error bounds. This causes the surface
population to evolve slowly towards more difficult test cases,
which further causes the fitness of the method population follow
quite closely the fitness of the surface population. Obviously the
speed of evolution is determined by the speed of the test surface

 34

population. In this case it seems to be much more difficult to
create challenging test cases than robust software. The obvious
reason is that the surface has much more parameters than the
method under development.

0
2
4
6
8

10
12
14
16
18

0 10 20 30 40 50

Generations

Error / % Surface
Parameters

Figure 3. The co-evolutionary development of surface and

parameter population fitness functions with four directional
scans (4a4+p, see fig. 8).

-6

-4

-2

0

2

4

6

8

10

0 20 40 60 80 100
Generations

Error / %

Max
Min

Figure 4. error bounds in the validation test run with same

case as in fig. 3 (4a4+p).

Table 1. The relative measurement error. A) and B) are
upper and lower error tolerances from the ref. [20], and C)
and D) are corresponding error tolerances after co-
evolutionary software tuning in this study.

scan
directions

A [%] B [%] C [%] D [%]

1 -16.88 34.30 -5.65 22.66
2, αs = 180o -18.58 21.83 -4.66 24.67
2, αs = 90o -14.35 2.65 -4.47 11.39
3 -6.31 26.08 -4.66 12.51
4 -5.78 29.85 -5.27 9.51

Figure 4 shows how the upper and lower accuracy error bounds
develop in the validation test run, where the GA only tries to
find the largest accuracy error by generating test surfaces. The
rule base parameters are locked to those found by the co-
evolutionary test run.

Figure 5. An example of a GA generated 3-D test surface.

Figure 6. Measured and reconstructed surface of fig. 3.

Figure 7. Profile of the measurement error between surfaces

shown in figs. 4 and 5.

Table 1 shows the results of the tests in ref. [20]. In the case of
negative error (A) the accuracy got better when more scan
directions were used. In the case of positive error (B), however,
three and four scan directions seem to cause increasing error.
This was a point for further software development.

The co-evolutionary method was applied in this study to see if
the GA could improve measurement accuracy by optimizing,
concurrently with the test surfaces, the rule base of how to
combine height data from several directions.

Table 1 shows also the results after tuning the system with the
co-evolutionary GA. The accuracy in all cases got better with
the negative error (C). In the case of positive error (D), the
accuracy get better in all other cases, except in the case of two

 35

scans with 90o angle between the scan directions. In that case the
negative error bound has gotten better, but the positive error
bound worse, unfortunately, the error bounds interval has widen,
but the error bounds were now more centered around the zero
level (see fig. 6).

The results imply that now the precision increases with
increasing scan directions. This implies that the measurement
software has evolved to combine scan data better than the earlier
version of our software [20].

In all cases, the error bounds are skewed towards positive error,
implying some sort of systematic error. If we could eliminate the
error, the system might get even more accurate.

Figures 5-7 shows an example of GA generated surface after co-
evolutionary tuning, the corresponding reconstructed surfaces,
and the profile of measurement error.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 1a
2(1

80
)

2p
(18

0)
2a

+p
(18

0)

2a
2+

p(1
80

)
2(9

0)
2p

(90
)

2a
+p

(90
)

2a
2+

p(9
0)k

x 3 3p
3a

+p
3a

3+
p 4 4p

4a
+p

4a
4+

p

Test case

Er
ro

r i
nt

er
va

l

Figure 8. The developments of measurement error tolerance
bounds with co-evolutionary tuning for each number of
scan directions (1, …, 4) . Markings of the x-axis in the
order: the number of scan directions; what is optimized: p =
parameters how to compile directional height information,
a=camera angle, a+p = both of the previous with using the
same camera angle for each scan directions, an+p as a+p but
using different camera angle for each scan direction; the
angle between scan directions shown by (α).

Figure 8 shows how the error tolerance bounds of different
number of scan directions have developed with co-evolutionary
tuning. For one scan direction, for which only the illumination
angle could be optimized, the development of bounds were
surprisingly high (44.7%), the optimal αL seems to be about
71.6o.

When we are using more scan directions, we did three tuning
tests. In the first test (marked dark gray in fig. 8) we tune only
the rule base used to combine the directional information, the
overall system (camera angles) were not changed. In the second
test (light gray in fig. 8), we tune the camera angle together with
the rule base; the same angle was used for each direction. In the
third test series (white in fig. 8), we tune the camera angle for

each scan direction together with the rule base. The original
error bounds taken from ref. [20] are marked with black.

Figure 8 illustrates how the system gets nearly always when the
number of system parameters to be tuned is increasing. The only
exceptions are the case of two directional scans, with αS = 90o,
the first test is worse than the original but increases gradually,
and with αS = 180o the best accuracy was found with the same
αL for each scan direction.

With scans from two directions the co-evolutionary tuning did
not gain much more accuracy, while with αS = 180o the accuracy
improved by 27.4%, while with αS = 90o the improvement was
6.7%. With three and four scan directions the accuracy improved
47% and 58.5% respectively. Not surprisingly after the tuning
process the case when scanning from four directions is the most
accurate.

The optimal parameter set found case of scanning from four
directions were approx. w = [0.44, 0.13, 0.54, 0.69] and αL =
{76.0, 79.5, 72.9, 68.9} degrees.

7. Fitness landscape
In order to evaluate if our co-evolutionary approach was
beneficial in this case, we decided to analyze the fitness
landscape as follows. Starting from the optimized test surface
population random mutations were applied to random items of
the population while recording the corresponding fitness of the
volume measurement method.

-6
-5

-4
-3

-2
-1

0
1

2
3

4

0 100 200 300 400 500Steps

Error / %

Figure 9. Two random walks in the fitness landscape before

co-evolution.

-6
-5

-4
-3

-2
-1

0
1

2
3

4

0 100 200 300 400 500
Steps

Error / %

Figure 10. Two random walks in the fitness landscape after

co-evolution.

 36

Random walks created by this method are shown in figures 9
and 10. In both figures, the random walk was started from the
negative optimum. There are two runs in both figures, just to
illustrate that the major patterns of the walks are similar. At first
the fitness value roughly exponentially approaches the zero error
level starting then randomly vary around it. Before co-evolution
the random surfaces cause higher relative error than after co-
evolution. Hence co-evolution has made the system more stable.
When we run longer random walks the original system causes
about twice as high total error, sum of absolute value of relative
error, than the co-evolutionarily optimized system.

Figures 9 and 10 also show that the number of random steps
needed to escape the difficult test case is higher for the original
than for the co-evolutionarily optimized method. This can be
explained so that the most difficult test surface is quite
exceptional. A short random walk hardly reveals a similar case.
However, in the original system it needs more steps to reach
optimum from random landscape. The optimized system is so
well tuned that normal random surfaces causes less error, and
the optimal area is closer to the random landscape.

8. Conclusions and Discussion
In this paper we have developed and tested a structural light
vision software applying a co-evolutionary method in order to
simultaneously develop the measurement system parameters and
the corresponding test data.

The results got in this study confirm that the co-evolutionary
application of GA seems to be capable of generating test
surfaces for testing structured light 3-D vision software, and
concurrently finding system rules that lead to better
measurement accuracy. This leads to the conclusion that
problematic surfaces have some features in common that the GA
is able to adapt, and respectively that GA learns how to arrange
measurement geometry and process the corresponding scan data.

A preliminary analysis seems to confirm that the tuned system is
more capable of handling random surfaces, and there are less
space for extreme cases.

The surface model was not necessarily the best, and future
implementation may use real Bezier surfaces, although it
requires more control points and leads to slower processing.

In general, this kind of co-evolutionary approach could be used
in the design and testing of demanding software and
measurement systems.

In the future, we intend to do more extensive fitness landscape
analysis how the co-evolutionary method effects fitness
landscape. We should evaluate if the improvements really are
due the using of co-evolution. However, computationally the co-
evolutionary tuning is exactly as costly as optimizing the system
against some static test surface set. So, it is hard to see what
disadvantage it could cause, since static set can not cover all
possible cases, and co-evolutionary GA can find the pathological
case for bad system parameters during the tuning, which static
test set would not be able to do.

9. Acknowledgments
Our thanks to Prof. Jukka Tiusanen for his comments conserning
English writing.

10. References
[1] Alander, J.T. An Indexed Bibliography of Genetic

Algorithms in Optics and Image Processing. Department of
Information Technology and Production Economics,
University of Vaasa, Report Series No. 94-1-OPTICS,
2000. Available via ftp:< ftp://ftp.uwasa.fi/cs/report94-1/
gaOPTICSbib.ps.Z >

[2] Alander, J.T., and Lampinen, J. Cam shape optimization by
genetic algorithm. In D. Quagliarella, J. Périaux, C. Poloni,
and G Winter, G. (eds.). Genetic Algorithms and Evolution
Strategies in Engineering and Computer Science, pp. 153–
174, John Wiley & Sons, Chichester, England, 1997.

[3] Alander, J.T., Mantere, T., Moghadampour G., and Matila,
J. Searching protection relay response time extremes using
genetic algorithm – software quality by optimization. In
Electric Power Systems Research 46, pp. 229-233, 1998.

[4] Alander, J.T.,and Mantere, T. Automatic software testing
by genetic algorithm optimization, a case study. In C. Ryan
and J. Buckley (eds.). SCASE'99 - Soft Computing Applied
to Software Engineering, April 11-14, 1999, Limerick,
Ireland, pp. 1-9, 1999.

[5] Bezier, P. Numerical Control: Mathematics and
Applications. Wiley, 1972.

[6] Brodie III, E., and Brodie Jr., E. Predator-prey arms races.
In BioScience 49, pp. 557-568, July 1999.

[7] Darwin, C. The Origin of Species: By Means of Natural
Selection or The Preservation of Favoured Races in the
Struggle for Life. Oxford University Press, London, A
reprint of the 6th edition, 1968.

[8] DeCastaljau, P. Shape Mathematics and CAD. Kogan Page,
London, 1986.

[9] DePiero, F., and Trivedi, M. 3D computer vision using
structured light: design, calibration and implementation
issues. In Advances in Computers 43, pp. 243-278, 1996.

[10] Evans, N., and Shealy, D. Design and optimization of an
irradiance profile-shaping system with a genetic algorithm
method. In Applied Optics 37, pp. 5216-5221, Aug 1998.

[11] Goldstein, R., and Nagel, R. 3-D visual simulation. In
Simulation 16, pp. 25-31, Jan. 1971.

[12] Holland, J. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, MI, Reissued by
The MIT Press, 1992.

[13] Kirihara, S., and Saito, H. Shape modeling from multiple
view images using GAs. In ACCV'98, Lecture Notes in
Computer Science 1352, pp. 448 – 454, Jan 1998.

[14] Kojima, F., and Kubota, N. Electromagnetic inverse
analysis using coevolutionary algorithm and its application
to crack profiles identification. In R. Matousek and P.
Osmera (eds.). MENDEL2001 7th International Conference
on Soft Computing, June 6-8, 2001, Brno, Check Republic,
Brno University of Technology, Kuncik, Brno, pp. 75-80,
2001.

[15] Koza, J. Genetic evolution and co-evolution of computer
programs. In Langton et al. (eds.). Artificial life II,

 37

Proceedings of the Workshop on Artificial Life, Feb 1990,
Santa Fe, NM, Vol. X, Santa Fe Institute Studies in the
Sciences of Complexity. Addison-Wesley Reading, MA,
pp. 603-629, 1992.

[16] Lampinen, J. Cam Shape Optimization by Genetic
Algorithms. Acta Wasaensia, Vaasa, Finland, 1999.

[17] Lampinen, J. Choosing a shape representation method for
optimization of 2D shapes by genetic algorithm. In J. T.
Alander (ed.). Proceedings of the Third Nordic Workshop
on Genetic Algorithms and their Applications (3NWGA),
Helsinki, Finland, 18.-22.Aug. 1997, Finnish Artificial
Intelligence Society (FAIS), Helsinki, Finland, pp. 305–
319, 1997.

[18] Li, X., Kodama, T., and Uchikawa, Y. A reconstruction
method of surface morphology with genetic algorithms in
the scanning electron microscope. In Journal of Electron
Microscopy 49, pp. 599-606, 2000.

[19] Mäkinen, R., Periaux, J., and Toivanen, J. Multidisciplinary
shape optimization in aerodynamics and electromagnetics
using genetic algorithms. In International Journal for
Numerical Methods in Fluids 30, pp. 149-159, 1999.

[20] Mantere, T., and Alander, J.T. Testing Structural Light
Vision Software by Genetic Algorithms - Estimating the
Worst Case Behaviour of Volume Measurement. In D.
Casasent, and E. Hall (eds.). Intelligent Robots and
Computer Vision XX: Algorithms, Techniques, and Active
Vision, volume SPIE-4572, Newton, MA, October 29-31,

2001, SPIE, Bellingham, Washington, USA, pp. 466-475,
2001.

[21] Norman, S. Software Testing Tools. Ovum Ltd. London,
1993.

[22] Ono, I., Tatsuzawa, Y., Kobayashi, S., and Yoshida, S.
Designing lens systems taking account glass selection by
real-coded genetic algorithms. In Systems, Man,
Cybernetics, 1999, IEEE SMC’99 Conference Proceedings,
Vol. 3, IEEE, pp. 592-597, 1999.

[23] Oyama, A., Obayash, S., Nakahashi, K., and Hirose, N.
Aerodynamic wing optimization via evolutionary
algorithms based on structured coding. In CFD Journal 8,
pp. 570-577, Jan. 2000.

[24] Peysakhov, M., Galinskaya, V., and Regli, W. Using graph-
grammars and genetic algorithms to represent and evolve
lego assemblies. In Genetic Algorithms and Evolutionary
Computing Conference (GECCO 2000), Las Vegas, NV,
Late breaking papers, pp. 269-275, Morgan Kaufmann
Publishers, San Francisco, CA, 2000.

[25] Valkenburg, R., and McIvor, A. Accurate 3D
measurements using a structured light system. In Image and
Vision Computing 16, pp 99-110, Feb. 1998.

