

Background
 Evolutionary computing (EA) is a field of science and engineering that tries to apply some phenomena's that appears in the nature to the optimization Most notable is the adaptation of Charles Darwin's evolution theory in order to solve difficult search and optimization
 tasks Method is universally applicable, since it have been successfully applied to almost all thinkable search and optimization problems in engineering, science and people's everyday life. This course will present the basic working principles of evolutionary algorithms and what things have an effect to the algorithm's efficiency. We will also present some applications of EAs. Genetic algorithms, genetic programming, evolution strategies, evolutionary programming, and partly differential evolution also are based on this theory
UNIVERSITY of VAASA Communications and Systems Engineering Group

	Background
	 Other notable EAs are based on herd behaviour of animals
	Ant colony optimization (ACO) adapts some principles of ant behaviour, pheromone paths etc
	Particle swarm optimization adapts some principles of bird and fish swarms and how they "follow the leader"
	 Cultural algorithms and memetic algorithms tries to mix some cultural and learned knowledge into genetics, usually these are composed of basic GA with added cultural components
	 This course will offer a technical view (especially the computer science and automation view) to the biology, genetics and the evolution
	More information about Darwin and the evolution:
	http://en.wikipedia.org/wiki/Charles Darwin
a	<u>http://en.wikipedia.org/wiki/Introduction_to_evolution</u>
	UNIVERSINT Metre wikipedia.org/wiki/Evolution_theory Communications and Systems Engineering Group

Evolutionary algorithms									
	Evolution		Problem solving						
	Environme	ent Proble	em						
	Individual		Solution candidate (trial)						
	Fitness		Quality						
	Fitness	->	will define the probability to survive and reproduce						
	Quality	->	will define the probability to act as a model/basics to the new solution candidates						
•	Individuals populatior problem la	s are poir i individua andscape	nts in the search or fitness space, together the als represent a cloud of points that moves around the e (search space), while they evolve and adapt						
UN Cor Eng	IVERSITY of V mmunications a gineering Grou	AASA and Systems o	5						

What ma	What makes a function difficult?						
EASIER:	MORE DIFFICULT:						
Linear	Nonlinear						
Separable	Inseparable						
Unimodal	Multimodal						
Serializable	Non-serializable						
Unconstrained	Constrained						
Continuous	Discontinuous						
Few parameters	Many parameters						
Small search space	Large search space						
UNIVERSITY of VAASA Communications and Systems Engineering Group							

Crossover and mutation												
•	The crossover is usually done so that we favour those individuals	Cr	oss b	ove c	r: d	e	f	g	h	I	j	
that have the highest fitness values, i.e. they are more likely to be selected as parents				М	n	0	р	q	r	S	t	
	 Crossover can be performed e.g. 			0	0	0	1	1	1	1	1	
	as one-point crossover, where we take the beginning from the first parent and the end the second				d	e	√ p	q	r	S	t	
	parent	k	l utot	M	n	0	f	g	h	Ι	j	
1	In mutation we change some randomly selected gene randomly		b	C	d	e	f	g	h	I	J	
	boundaries of the parameter, e.g. [A, z] or [0, 1] etc.						\downarrow	Мı	utaa	tiok	ohta	
		a	b	С	d	e	v	g	h	i	J	
UNIVERSITY of VAASA Communications and Systems Engineering Group												

Binary coded GA								
In binary coded GA the individuals chromosome is consisted of bitvector In uniform crossover with each bit	Crossover:	Parents Crossover vector (we can be also						
 we randomly select from which parent the bitvalue is taken > We can create either one or two new individuals (in the case of 2 the other one possess the opposite parental genes as the first one) 	10011 0101101100010111001110100	draw and use random values immediately) Offspring = new individuals						
In binary coded GA the mutation means flipping the bit value (either 0->1 or 1-> 0)	Mutations: 0110001011 010001011 0100011011	The individual to be mutated The mutated new individual						
UNIVERSITY of VAASA Communications and Systems Engineering Group								

	Floating point coded GA										
	Parent 1										
	1.51 5.7	77 3.12 0.12 3.00 5.51	Mutation and crossover operations in the floating point coded GA								
		Mutation	•We have a vector of real numbers								
	4.33 7.1	1 9.52 4.44 2.00 0.11	•in crossover we take each								
	Parent 2	···	number from one parent								
		\Box	 In mutation we randomly draw the new value within the 								
(Child 1		boundaries of the values e.g.								
	1.51 5.7	77 9.52 6.66 2.00 0.11	[0.0, 10.0]								
		······································									
	4.33 7.1	1 3.12 0.12 3.00 5.51									
	Child 2										
	UNIVERSITY Communication Engineering Communication	of VAASA ons and Systems Group									

 _								
	Real coded GA							
-	In the floating point coded GA the chromosome of GA consist of real numbers that are within some boundaries, e.g. [0, 1]	Arithmetic crossover and mutation: 0.12 0.15 0.72 0.66 0.98 0.11 Parent 1 0.56 0.76 0.28 0.99 0.55 0.88 Parent 2						
•	In real coded GA we can use one- point, multipoint, uniform or arithmetic crossovers	0.34 0.46 0.50 0.43 0.77 0.50 Child 1 0.21 0.78 0.63 0.73 0.89 0.26 Child 2						
•	In real coded GA the mutation can be random between the boundaries or Gaussian (adding Gaussian distributed random number to the current value)	The child 1 formed: crossover by arithmetic mean: <u>Gene_{Parent1} +Gene_{Parent2}</u> 2 The child 2 formed: crossover by						
•	It is also possible to use binary coded GA and interpret the bit vector into floating point numbers	weighted arithmetic mean: 0.8*GeneParent1+0.2*GeneParent2 The mutated gene in bold and is most likely result of random mutation in child 1 (large change) and Gaussian						
UNI Com Eng	VERSITY of VAASA munications and Systems ineering Group	mutation in child 2 (small change)						

Cro	Crossover without mutation?									
 The "crossover only" EAs do not work, because during the crossover some genetic information is lost, and the population will not obtain new information without a mutation Below is the example why crossover only won't work; if we are optimizing all-ones and there does not exist value 1 for some gene in the current population, the optimum can never be reached without mutation and new possible value for that gene location 										
Population of 4 indi	viduals	Т	he gene	values ir	n 8 gene	locations	s:			
Individual 1:	1	1	0	1	1	0	0	1		
Individual 2:	1	1	0	0	0	1	0	1		
Individual 3:	1	0	0	1	1	1	0	1		
Individual 4:	1	1	0	1	0	0	0	0		
The possible values of each gene locatior after the crossovers:	1	[0, 1]	0	[0, 1]	[0, 1]	[0, 1]	0	[0, 1]		
UNIVERSITY of VAASA Communications and Sy Engineering Group	stems									