
Telecommunication Seminar, TM 3.3.2015

1

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Telecommunications seminar

“Evolutionary algorithms in Communications and systems”

Introduction lecture II: More about EAs

Timo Mantere
Professor

Communications and systems engineering
University of Vaasa

10.3.2015

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Evolutionary algorithms in communications

MORE ABOUT Eas – This time we introduce different EAs
� Differential evolution
� Swarm intelligence
� Cultural algorithms
� Meta-EA
� Island models
� Cellular EA
� Co-evolution
� Pareto front
� Hybridization
We will go to the applications in the exercises



Telecommunication Seminar, TM 3.3.2015

2

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Application areas
� Evolutionary algorithms have been applied to almost all 

possible search, design and optimization problems that 
anyone can think of
�Just take a look of IEEE database with keywords: 

‘whatever’ + ”genetic algorithm” or ”evolutionary 
algorithm” 
http://ieeexplore.ieee.org/search/advsearch.jsp

� They are particularly strong with problems that do not at be 
solved with mathematical optimization methods.  
�Nonlinear problems
�NP-complete problems
�Noncontinuous problems
�The problems that cannot be expressed mathematically

� It is enough that we can evaluate the fitness value somehow, and the evaluator 
can be a human being, simulator, computer program etc.

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Simple GA

In the original GA by John Holland 
� Use binary coding
� Random initial population
� One-point, or multi-point crossover
� Crossover more important than mutation
� The roulette wheel parent selection, each individual had a chance to 

become parent that was linearly dependent of it’s fitness value => each 
individual got as big share of the roulette wheel as it’s fitness value 
compared to the sum of fitness values of all individuals.

� Mutation: bit flipping with constant probability
� All old individuals are replaced, so there was no elitism
Nowadays this Hollands original GA is called as Simple GA (SGA). It is 

rarely used any more, mainly it can be used as comparison level, when 
the new evolution algorithms are tested



Telecommunication Seminar, TM 3.3.2015

3

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Differential evolution (DE) 
� The previous slides showed that arithmetic 

crossover, which is quite often used in the floating 
point coded GAs is problematic, since it is 
averaging method and it losses genetic information

� In floating point GAs this problem is compensated 
with Gaussian distributed mutation, but these 
usually takes a lot of time to provide exact solutions 
(finding the last decimals takes a long time)

� Both of these problems are avoided by using DE 
instead of floating point GAs

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Differential evolution (DE) 
� Combined crossover-mutation operation of DE can lead new 

gene value also to be higher of lower than parent gene value 
� DE also requires the handling of limit violations, since the differential 

can move the gene value out of legal range
� DE finds last decimals very effectively because the 

differentials between parents becomes smaller and smaller 
when the population diversity decreases

� Obviously if there is too fast convergence, the DE system 
can also get stuck to the local optimum
� This can be avoided by several different approaches, mainly 

additional mutations, or using DE as hybrid with other algorithms 



Telecommunication Seminar, TM 3.3.2015

4

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Differential evolution (DE) 

Select four parents (p1, p2, p3, 
p4)

Calculate the difference vector 
between two parents: p1-p2

Add difference to the third 
parent vector with weight F: 
p3+F(p1 -p2)

Crossover between the new 
vector and fourth parent with 
gene selection probability CR
if(Math.random()>CR) xi=xi(p4)

else xi=xi(p3+F(p1-p2)) 

Compare the new child with 
fourth parent (p4), the more fit 
will reach the next generation

Picture from http://www.icsi.berkeley.edu/~storn/code.html

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

DE operation example
Parent 1: 0.12 0.65 0.45 0.32 0.77
Parent 2: 0.16 0.02 0.77 0.34 0.31

Difference: -0.04 0.63 -0.32 -0.02 0.46

*F (=0.5) -0.02 0.32 -0.16 -0.01 0.23

Parent 3: 0.45 0.33 0.23 0.77 0.81

Donor vector: 0.43 0.65 0.07 0.76 1.00*  (*overflow if values [0, 1]) 
(=P3+F*diff) 
Parent 4: 0.23 0.77 0.43 0.88 0.96

New child: 0.43 0.77 0.07 0.76 0.96

(CR=0.6 meaning 3/5 of the gene values taken from donor vector and 2/5 from the 
parent 4) 

http://en.wikipedia.org/wiki/Differential_evolution



Telecommunication Seminar, TM 3.3.2015

5

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Meta-EA approach
� In meta-GA approach we 

have upper-level GA that 
generates GA parameters 
and sends the parameter set 
to the secondary GA

� Secondary GA optimizes the 
problem with parameters it 
got from upper-level GA

� The fitness function of upper-
level GA is how well the 
secondary GA optimizes the 
problem with a parameter set

Upper level 

GA

Secondary 

GA

Problem

GA parameter 
set

Trial solutionFitness

value

2nd GA 
performance 
value

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Meta-GA approach

� Instead of testing pre-set parameter values we could use 
meta-GA approach 
� If changing the example in slide 165 as meta-GA approach we 

would set the upper-level GA optimizing parameter sets for 
secondary GA
�Population size: [10, 200]
�Elitism: [5, 50] %
�Mutation probability:  [0.01, 1.0]
�One-point/uniform crossover ratio: [0, 1]
�Length of test run: 1500 trials

� Meta-GA also requires a lot of time for preliminary GA settings



Telecommunication Seminar, TM 3.3.2015

6

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Best of Different strategies method
� One possibility is also to optimize the problem with different 

algorithms
� All methods could run with their default parameter settings 
� After each one have optimized the problem, we just select the best 

solution of the method that was found to be the best
� The problem might be the work needed for coding all the different 

algorithms

Genetic 
algorithm

Differential 
evolution

Particle swarm 
optimization EA 4

Problem

TrialFitness 
value

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Different strategies island model

� The island model EA method can also be extended 
to different strategies
� Each island uses different optimization method and have its own 

population
� Every now and then some population members (solutions) are 

exchanged between islands
� This method requires that chromosomes with  different methods are 

coded similarly, or at least are easy to exchange coding when 
changed them between the islands

Genetic 
algorithm

Differential 
evolution

Particle swarm 
optimization

EA 4

Exchange of population 
members



Telecommunication Seminar, TM 3.3.2015

7

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Swarm intelligence

� Sometimes we might think that there exist more intelligence 
in the problem than the single individuals can learn
� Some kind of group or Meta-knowledge of the problem in hand
� This knowledge of the problem can be used with different 

optimization methods
�Group based methods like particle swarm optimization and ant colony 

optimization that only contain individuals
�System that has some central upper knowledge coded somewhere else 

than just into the individuals -> Cultural algorithms

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Swarm intelligence

� Particle swarm optimization mimes the bird or fish flocking 
behavior
� One bird or fish is the leader and the rest of the group follows the 

leader
�The leader can change

� In particle swarm optimization we have a group of points and after 
they are evaluated the best one is leader and all the other points 
moves towards the leader according some step size
�The new points are evaluated and if some of them is better than leader, it 

will become new leader
�http://en.wikipedia.org/wiki/Particle_swarm_optimization



Telecommunication Seminar, TM 3.3.2015

8

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Swarm intelligence

� Ant colony optimization mimes the behavior of ants when 
they search for food 
� The ants leave the trail of smell in the path when they move
� The smell in the path where they bring food will get stronger because 

many ants traverse it
�After the food run out the ants start to find new food source and the smell 

trace will evaporate over time
�Usually used as route search algorithm
�http://en.wikipedia.org/wiki/Ant_colony_optimization
�http://en.wikipedia.org/wiki/Ant_colony

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

ACO, pheromone trails, Sudoku

In our ant colony algorithm, the initial generation is created randomly. After 
each generation, the old pheromone paths are weakened by 10%. Then the 
nine best individuals update the pheromone trails by adding the strength 
value by 

for each number that appears in each location (Strengthn) of that Sudoku 
solution proposal, i.e., an ant. These strength values were also chosen after 
several test runs. The system heavily favors the near-optimal solutions.

New ants are generated with a weighted random generator, where each 
number n has a probability 

, where δ ~ Unif(0.000001, 0.01)
to be assigned to each location of the Sudoku solution trial. This means that 
there is small random change for even those numbers to be drawn that have 
zero pheromone. Without any random slack the optimization would get stuck 
in the situation where it cannot create a new generation of unique solutions. 
Table 1 summarizes properties of our algorithms.

2uefitnessval,

2uefitnessval,

2
uefitnessval

1
Strenth

=
>







=+

)(Strength

Strength
9

1

δ

δ

+

+
=
∑

=n
n

n
np

11.3.2015



Telecommunication Seminar, TM 3.3.2015

9

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Cultural algorithms

� Particle swarm and ant colony methods are still consisted 
only individuals and the group intelligence only appears as 
the individual behavior

� If we add central knowledge to the system we get cultural 
algorithm

� This central knowledge is usually expressed as a form of 
belief space
� Belief space gathers the history data of individuals performance and 

guides the production of new individuals according the learned 
cultural knowledge

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Cultural algorithms

� The best individuals will update the belief space
� Belief space influences the reproduction by guiding what 

kind of new individuals should be generated
� Some that are good according the learned meta-knowledge

Reproduction

Evaluation
Population

Belief space

Influence

Best ones will 
update



Telecommunication Seminar, TM 3.3.2015

10

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

CA, belief space e.g. Sudoku
� The belief space in this case was a 

9×9×9 cube, where the first two 
dimensions correspond to the 
positions of a Sudoku puzzle, and the 
third dimension represents the nine 
possible digits for each location 

� After each generation, the belief 
space is updated if:
1) The fitness value of best individual is 2
2) The best individual is not identical with 

the individual that updated the belief 
space previous time

� The belief space is updated so that 
the value of the digit that appears in 
the best Sudoku solution is 
incremented by 1 in the belief space. 
� This model also means that the belief 

space is updated only with near-
optimal solutions (2 positions wrong)

� This information is used only in the 
population reinitialization process

When population is reinitialized, positions that 
have only one non-zero digit value in the belief 
space are considered as givens, these include 
the real givens and also so called “hidden” givens 
that the belief space have learned, i.e. those 
positions that always contain the same digit in the 
near-optimal solutions

n9

…n5

n1

…

Population

Fitness evaluation Reproduction

Update Influence

Belief space

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Cultural algorithms
� If you are interested to know more about cultural algorithms, see slides 

from Reynolds
� http://complex.wayne.edu/Seminars_Fall_05/culturalalgorithm_1108.

ppt
� Wikipedia

� http://en.wikipedia.org/wiki/Cultural_algorithms

� Lamarckism
� http://en.wikipedia.org/wiki/Lamarckism
� http://en.wikipedia.org/wiki/Meme
� http://en.wikipedia.org/wiki/Genetic_memory



Telecommunication Seminar, TM 3.3.2015

11

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Cellular automata and cellular EAs
� This example discusses of the possibilities of using the Cellular Automata (CA) 

and the Cellular Genetic Algorithm (CGA) for the object and pose recognition 
problems, and for the image classification problem. 

� The CGA is a Genetic Algorithm (GA) that has some similarities to cellular 
automata. In CA the cell values are updated with the help of certain rules that 
define the new value according the current value of the cell and the values of its 
neighboring cell. 

� The CGA has similar cellular structure as CA, but different cell value update 
method. In CGA the cell value is updated according to the local fitness function, 
also all cells in the CGA can have different fitness functions. 

� The cell update is done by a kind of one generational GA, where GA population 
contains the individual (or value) of current cell, its neighboring cells and 
preliminarily defined number of values that are generated from the current cell 
and its neighbors by crossovers and mutations. The neighborhood can be e.g.
3×3 or 5×5 cells and the total local population size correspondingly e.g. 16 or 40 
items.

� http://en.wikipedia.org/wiki/Cellular_automata
� http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Cellular automata and cellular EAs
� The CGA is tested for object and pose recognition problems so that we have a 

database of comparison objects, which are usually called the training set. With 
this method they are rather a comparison set or an example set, since we do 
not train the method beforehand. 

� In this method we use raw gray pixel data for comparison. Thus, in this case the
local fitness function for each cell is simply the difference of the pixel values in
the corresponding locations of the tested object and the example object.
� Note that this fitness function only determines the cell update, not the

comparison result of the objects. The morphing is done synchronously, so
that only the cell values after the previous update round have effect on the
cell in this update round, i.e. all the cells are updated simultaneously.

� The unknown object is defined to be the closest to object towards which the 
CGA morphing needs e.g. the shortest time, the lowest number of cell updates, 
or the lowest number of update rounds. 

� Unlike normal CA the cell update is not directly dependent on neighbouring cell 
values. Instead the cell is updated with the neighbouring cell value that get the 
best evaluation value according the local fitness function.



Telecommunication Seminar, TM 3.3.2015

12

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

CA and CGA based morphing

The Problem: 
Ordering images into the 
meaningful order

The Proposed Solution:
Morph images with 
cellular automata or 
cellular genetic algorithm and 
use the 
amount of transforms they need 
to morph from image to image 
as a image distance measure
see earth mover’s distance 
http://en.wikipedia.org/wiki/Earth_mover%27s_distance

215 212 110 101 179

137 64 69 238 213

255 85 228 217 150

232 179 87 222 97

94 246 1 172 224  

8 202 252 91 245

239 108 252 82 33

187 242 115 250 201

70 149 25 123 191

242 87 14 121 135  

207 10 142 10 65

101 51 46 123 180

68 30 113 102 52

162 64 28 107 94

148 159 13 51 88  

6 212 238 101 238

255 110 238 69 49

179 232 87 238 200

85 94 1 97 200

246 87 1 97 138  
 

96 116 166 100 58

190 229 241 17 14

75 12 50 32 164

158 71 168 248 122

235 199 139 180 37

74 114 133 49 202

132 171 53 66 109  

89 57 15 138 12

236 221 92 239 248

87 120 193 114 222

152 19 56 134 150

206 46 161 139 150  

97 77 27 93 135

3 36 48 176 179

118 181 143 161 29

35 122 25 55 71

42 6 54 13 156

119 79 60 144 9,5

61 22 140 127 84  

96 53 17 132 14

229 229 100 241 221

75 109 171 112 176

158 12 53 132 164

199 53 168 139 132  

 

Fig. 1. The cellular automata (CA) version of the proposed 
method. We calculate the differences of the local neighborhood cells 
against the target value and the closest value will be the new value 
of the current cell

Fig. 2. The cellular genetic algorithm (CGA) version of the 
proposed method. The current cell under update will get the closest 
value from either from {local neighborhood cells against the target 
value} as in CA, or from {genetically generated values against the 
target value}, as seen at the bottom

11.3.2015

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Morphing examples with CA and CGA

Cellular automata

Cellular genetic algorithm



Telecommunication Seminar, TM 3.3.2015

13

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Co-evolution
� Co-evolution can be
� Predator-pray type

� Evolutionary arms race 
(http://en.wikipedia.org/wiki/Evolutionary_arms_race) 

� E.g. when the pray evolves faster, also the predator must faster to 
catch the pray

� Forms upward spiral where both species evolves because of the 
other

� Host and a parasite type
� Host and a symbiont type

� E.g. bees and the pollination of flowers

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Co-evolution

� Co-evolutionary generally means that an evolutionary algorithm is 
composed of several species with different types of individuals. 

� Other organisms are among the most important parts of organism’s 
environment. Co-evolution occurs when two species adapts to their 
environment, evolve, together. The goal is to accomplish an upward 
spiral, an arms race, where both species would achieve ever better 
results. 

� The co-evolution is mostly applied to game-playing and artificial life 
simulations. 

� Our examples shows implementation of co-evolution to the simultaneous 
test image and image filter development and testing, and also surface 
measurement and test surface development 
� Both are quite special applications, so therefore these approaches are 

mostly just a proposals at this point. 



Telecommunication Seminar, TM 3.3.2015

14

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Co-evolution approach, motivation
� The idea of applying co-evolutionary methods for 

these examples was motivated by previous 
experience with 

1) generating halftoning filters with GA
2) generating test images for testing halftoning methods

3) generating software test data with GA  
4) the goal of achieving better software

� The goals 1 – 2 and also 3 – 4 seem like natural 
co-evolutionary pairs where the simultaneous 
optimization against the opposite goal could lead 
to the co-development 

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

11.3.2015

58

Examples – from optimization to co-evolution
� Image processing software 

quality is tested by generating 
test images by GA and 
measuring the difference 
between the original and the 
result image

� Accuracy of machine vision 
based measurement software 
is tested by generating 
simulated test surfaces by GA 
and calculating the 
measurement error 

 

Image 
processing 
software as 
”Black box” 

Test image 

Genetic 
algorithm 
based test image 
generator 

Result image 

Image 
comparator 

 

Surface 
measurement
software as 
”Black box” 

GA 
based test 
surface  
generator 

Surface 
comparator 

1 3 5 7 9

11

S1

S5

S9

1 3 5 7 9

11

S1

S5

S9

Reconstructed  
surface 

Simulated  
test surface 



Telecommunication Seminar, TM 3.3.2015

15

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group59

From testing and optimization to co-evolution

One GA generates test images in 
order to test the quality of the image 
processing software. 

Another GA is simultaneously 
developing the image filters used for 
processing images. 

 

Image 
processing 
software as 
”Black box” 

Test image 

Genetic 
algorithm 
based test image 
generator 

Result image 

Image 
comparator 

 Image filter 

Image 
processing 

Fitness value 

GA based  
halftoning 
image filter 
generator Static test 

image set 

Image 
processing 
software 

Test image

Result image

Image 
comparator

GA2

optimizing
image 
filters

GA1 as
test image 
generator

Proposed co-evolutionary software testing 
and 
development approach. 

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Hybridization of EAs
� The common trend of EAs is hybrids between 

different evolutionary algorithms
� These hybrids are relatively easy to do, since most 

EAs can use the same population table and the 
same gene presentation

� Hybrids are mainly done in order to avoid 
shortcomings of one algorithm
�E.g. In GA/DE hybrid GA acts like a global searcher, and 

DE as local searcher, GA finds peaks, and DE finds the 
highest point of the peak (finds even the last decimals 
very quickly)



Telecommunication Seminar, TM 3.3.2015

16

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Example of the Hybridization of EAs (DE+GA) 

� The likelihood of doing GA type 
reproduction is e.g. 30%

� The likelihood of doing DE type 
reproduction is e.g. 70%

� Population size e.g. 100
� DE parameters can be e.g.

F=[0.1, 0.7]
CR=[0.0, 0.9]

� Mutation probability with GA 
can also change, e.g. 
decreases if the best result 
improves, and increases if the 
result is not improving

































8

7

6

5

4

3

2

1

x

x

x

x

x

x

x

x

































8

7

6

5

4

3

2

1

'

'

'

'

'

'

'

'

x

x

x

x

x

x

x

x

GA

DE

GA

DE

Current 
population

Next generation

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

The flow chart of the possible DEGA hybrid

Start and generate the 
initial population randomly

Evaluate the population

Print the ”best” solution 
and stop

Select the crossover 
method randomly

Sort the population, first the 
feasible solutions according 
to the fitness value f(x), 
then the infeasible solutions 
according the amount of 
constrain violations Σg(x) 

Stop condition reached?

Yes

No

GA
DE

Select randomly 
four parents 
and do DE type 
crossover-
mutation 
operation

Select randomly 
two parents and 
do GA type 
crossover and 
mutation

Evaluate the new 
individuals, if the child 
fulfills one of conditions 
(right) it will replace the 
parent it is compared 
with.

Loop: do as many as the 
population size-elitism



Telecommunication Seminar, TM 3.3.2015

17

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Notes

� The finding of good GA and DE parameters and their ratio 
is very difficult, and usually even the final compromises 
does not work ell with all test problems

� Our experiments (in VY) have showed that the DEGA 
method works relatively well with the constrained test 
problems. It reaches the feasible region fast and 
consistently, but 
� Problem: The results were relatively good when compared with the 

other methods with some the benchmark problems, usually the 
best test runs obtained good results, however, the average and 
worst results were not as good, so the method was inconsistent 

� Solution? Need to do further analyze of what characteristics of 
those problems that causes the obstacles for hybrid DEGA and 
improve the method accordingly

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Multi-objective optimization
� Sometimes we have more than one optimization goals, and 

they can be conflicting
� We are trying to find a compromise that fulfils all different objectives 

as satisfactorily as possible
� This kind of problems are e.g. 

�Minimizing weight while maximizing the strength of some structure in 
mechanics and building engineering

�Maximizing performance while minimizing fuel consumption in cars
�Maximizing profits while minimizing risks in economics etc.
�The final solution is clearly a compromise between conflicting goals



Telecommunication Seminar, TM 3.3.2015

18

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group11.3.2015

Pareto optimization

� In Pareto-optimization all points that are dominated by some 
other point are not ’Pareto-optimal’

� Only the points that are not dominated by any other point 
are ’Pareto-optimal’ and they form ’Pareto-front’

� In the next slide we have two objectives, and both are 
minimized. Therefore we can draw lines and all the points 
inside the lines are dominated by the point where the lines 
begin
�http://en.wikipedia.org/wiki/Multi-objective_optimization
�http://en.wikipedia.org/wiki/Pareto_efficiency

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Pareto front

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Pareto 
front

f2(x)

f1(x)



Telecommunication Seminar, TM 3.3.2015

19

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Notes!
� It is important to give different algorithms equal change, when their 

results are compared
� This applies to all algorithms we might compare

(from Eiben and Smith slides `Working with EA’s´) 
� Equal change means:

� Usually:
�timealgorithm1 = timealgorithm2

�Or sometimes:
� tested_trialsalgorithm1 = tested_trialsalgorithm2

� Or sometimes (rarely, requires the same or justified population 
sizes): 
�generationsalgorithm1 = generationsalgorithm2

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Warnings and suggestions

� The benchmark set is important when testing different 
algorithms

� When you compare your results with others you should use 
the same benchmark problems as other people

� The test problem choice has a big influence on the results. 
� This was clearly demonstrated by Morovic and Wang. They showed 

that by selecting an appropriate five-image subset from a 15-image 
test set, any one of the six Gamut Mapping Algorithms tested could 
appear like the best one

� They studied 21 research papers on GMAs and found out that these 
papers have represented results by using only 1 to 7 test images

� So, NEVER use the limited test set (or subset of the whole 
benchmark set) 



Telecommunication Seminar, TM 3.3.2015

20

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Parameter control

� Evolutionary algorithms tend to have several control 
parameters 
� Population size
� Amount of elitism
� Mutation rate
� Crossover rate (portion of different crossover types)
� Etc.

� With different problems the different parameter setting work 
best
� It is difficult to find the combination of parameters that work best for 

the problem in hand

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Parameter control

� There are different ways of setting the parameters
�Good guess 

�choose parameters that seems reasonable according the 
previous experience

�Preliminary testing
�Test different combination of parameters with shorter 

optimization runs and choose the most promising 
�Self-adaptive

�The parameters are coded into chromosome, so that EA 
optimizes them together with the problem

�Meta-GA approach
�Run preliminary tests so that upper-level GA optimizes the 

parameters of secondary GA
�Success-rule based and time-based parameter controls

�See Eiben&Smith slides



Telecommunication Seminar, TM 3.3.2015

21

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Preliminary testing
� If we want to test combination of settings, e.g.

� Population size: {10, 20, 30, 40, 50, 60, 80, 100, 120, 200}
� Elitism: {5, 10, 20, 30, 40, 50} %
� Mutation probability: {0.01, 0.02, 0.03, 0.05, 0.1}
� One-point/uniform crossover ratio: {0, 0.25, 0.5, 0.75, 1.0}

� Testing all possible combinations of parameters would 
require: npsize*nelit*nmut*ncross preliminary test runs 
� so in the upper example: 10*6*5*5= 1500 test runs

� Because the control parameters have mutual influence, 
usually all different combinations must be tested.
� Often leads too heavy preliminary testing and we must run 

preliminary tests short and with quite limited sets of parameter 
values  

UNIVERSITY of VAASA 

Communications and Systems 
Engineering Group

Preliminary testing
� One problem with preliminary testing is that we 

usually do them with shorter optimization runs than 
actual optimization
�The same parameters may not work with the actual longer 

run, because some parameter setting are more greedy -> 
optimization progress aggressively in the beginning, then 
stop evolving, other parameter setting evolve slowly but 
more consistently

The length of optimization run

Fitness 
value

The length of preliminary 
test runs

Optimization runs with 
different parameter settings


