
ORMS1020

Operations Research
with GNU Octave

Tommi Sottinen

tommi.sottinen@uwasa.fi
www.uwasa.fi/∼tsottine/or_with_octave/

October 19, 2011

mailto:tommi.sottinen@uwasa.fi
http://www.uwasa.fi/~tsottine/or_with_octave/

Contents

I Introduction and Preliminaries 6

1 Selection of Optimization Problems 7

1.1 Product Selection Problem . 7

1.2 Knapsack Problem . 10

1.3 Portfolio Selection Problem* . 12

1.4 Exercises and Projects . 13

2 Short Introduction to Octave 14

2.1 Installing Octave . 14

2.2 Octave as Calculator . 15

2.3 Linear Algebra with Octave . 18

2.4 Function and Script Files . 28

2.5 Octave Programming: glpk Wrapper 32

2.6 Exercises and Projects . 37

II Linear Programming 39

3 Linear Programs and Their Optima 40

3.1 Form of Linear Program . 40

3.2 Location of Linear Programs’ Optima 43

3.3 Solution Possibilities of Linear Programs 48

3.4 Karush–Kuhn–Tucker Conditions* 53

3.5 Proofs* . 54

3.6 Exercises and Projects . 56

0.0 CONTENTS 2

4 Simplex Algorithm 58
4.1 Simplex tableaux and General Idea 59
4.2 Top-Level Algorithm . 62
4.3 Initialization Algorithm . 66
4.4 Optimality-Checking Algorithm . 68
4.5 Tableau Improvement Algorithm 71
4.6 Exercises and Projects . 76

5 Sensitivity and Duality 78
5.1 Sensitivity Analysis . 78
5.2 Dual Problem . 89
5.3 Duality Theorems* . 97
5.4 Primal and Dual Sensitivity . 102
5.5 Exercises and Projects . 103

III Linear Models 105

6 Data Envelopment Analysis 106
6.1 Graphical Introduction* . 107
6.2 Charnes–Cooper–Rhodes Model . 115
6.3 Charnes–Cooper–Rhodes Model’s Dual 121
6.4 Strengths and Weaknesses of Data Envelopment Analysis 126
6.5 Exercises and Projects . 127

7 Transportation-Type Models 129
7.1 Transportation Problem . 129
7.2 Assignment Problem . 144
7.3 Transshipment Problem . 149
7.4 Exercises and Projects . 154

IV Mixed Integer Linear Programming and Models 156

8 Mixed Integer Linear Programming 157
8.1 Mixed Integer Linear Programming Terminology 157
8.2 Branch-And-Bound Method . 158
8.3 Exercises and Projects . 164

0.0 CONTENTS 3

9 Mixed Integer Linear Models 165

9.1 Traveling Salesman Problem . 165

9.2 Fixed-Charge Problem . 169

9.3 Set-Covering Problem . 173

9.4 Exercises and Projects . 175

A Octave Codes 177

A.1 first_simplex_tableau . 177

A.2 is_optimal_simplex_tableau . 177

A.3 new_simplex_tableau . 178

A.4 npv . 179

A.5 simplex_lp_solver . 179

A.6 stu_lp_solver . 181

A.7 trans_solver . 182

Preface

These are the opinions upon which I base my facts. — Winston Churchill

These lecture notes are for the undergraduate course ORMS 1020 “Operations
Research” for fall 2010 in the University of Vaasa . This is a 5 credit course with
36 hours lectures and 12 hours of exercises. These notes are a radically modified
version of the notes [3] for falls 2008 and 2009 of the same course. The key changes
to [3] are:

• We use GNU Octave instead of GNU Linear Programming Kit.
• Computer programming is emphasized.
• Manual labor is no longer considered important. E.g. solving LPs graphically

or manually with simplex are only mentioned in passing.
• The Big M method for solving LPs is omitted completely.

The notes concentrate on linear (LP) and mixed linear integer (MILP) optimiza-
tion modeling and implementing the models as computer programs with Octave.
Of course, the course deals with optimization theory also: most notably with the
simplex algorithm. The chapters, or sections of chapters, marked with an asterisk
(*) may be omitted if time is scarce. The exercises marked with an asterisk (*)
are projects. These are longer exercises that require programming. The projects
are intended for those who want to show their OR skills for the credits without
taking the course. Each project is worth 0–2 points. A solved project gives 1 point
and an elegantly solved project gives 2 points. Minimal requirements for a solved
project (code) are: (1) It works. Minimal requirements for an elegantly solved
project (code) are: (1) It is a solved project. (2) The code is easy to understand.
(3) The code is documented (or commented) well. (4) There are input-checkings.
4 points gives the grade 1, 6 points grade 2, and so on.

The author wishes to acknowledge that these lecture notes are collected from
the references listed in Bibliography, and from many other sources the author has
forgotten. The author claims no originality, and hopes not to be sued for
plagiarizing or for violating the sacred c© laws.

No rights reserved.

Vaasa October 19, 2011 T. S.

http://www.uwasa.fi/~tsottine/orms1020/
http://www.uwasa.fi/~tsottine/orms1020/
http://www.uwasa.fi/english/
http://www.octave.org/
http://www.gnu.org/software/glpk/

Bibliography

[1] Eaton, J. (2009) GNU Octave Manual Version 3.
www.gnu.org/software/octave/doc/interpreter/.

[2] Laaksonen, M. (2005) TMA.101 Operaatioanalyysi. Lecture notes.
www.uwasa.fi/∼mla/orms1020/oa.html.

[3] Sottinen, T. (2009) ORMS 1020 Operations Research with GNU Linear Pro-
gramming Kit. Lecture notes.
www.uwasa.fi/∼tsottine/or_with_glpk/or.pdf.

[4] Winston, W. (2004) Operations Research: Applications and Algorithms. In-
ternational ed edition, Brooks Cole.

http://www.gnu.org/software/octave/doc/interpreter/
http://www.uwasa.fi/~mla/orms1020/oa.html
http://www.uwasa.fi/~tsottine/or_with_glpk/or.pdf

Part I

Introduction and Preliminaries

Chapter 1

Selection of Optimization
Problems

It isn’t that they can’t see the solution. It’s that they can’t see the problem.
— G. K. Chesterton

The Science Graduate asks “How does it work?”
The Economics Graduate asks “How much does it cost?”
The Engineering Graduate asks “How can we make it?”
The Liberal Arts Graduate asks “Do you want fries with that?”

— Jesse N. Schell.

Education isn’t how much you have committed to memory, or even how much you
know. It’s being able to differentiate between what you do know and what you
don’t. — Anatole France

We jump right into water and consider optimization problems, their mathematical
modeling and solving them with Octave. Have a nice swim!

1.1 Product Selection Problem

In a product selection problem one has to decide how much to
produce each product in order to maximize one’s profit.

The profit and the constraints on production are linear and, in partic-
ular, fractional production is allowed.

Product selection problem is a typical linear program (LP).

1.1 Product Selection Problem 8

1.1.1 Example (Giapetto’s Problem). Giapetto’s Woodcarving Inc. manufac-
tures wooden toy soldiers and trains. A soldier sells for =C27 and uses =C10 worth
of raw materials. Each soldier built increases Giapetto’s labor costs by =C14 . A
train sells for =C21 and uses =C9 worth of raw materials. Each train built increases
Giapetto’s labor costs by =C10 . The manufacture of wooden soldiers and trains
requires two types of skilled labor: carpentry and finishing. A soldier requires 2
hours of finishing labor and 1 hour of carpentry labor. A train requires 1 hour
of finishing and 1 hour of carpentry labor. Each week, Giapetto can obtain all
the needed raw material but only 100 finishing hours and 80 carpentry hours.
Demand for trains is unlimited, but at most 40 soldier are bought each week.

Giapetto wants to maximize weekly profits (revenues−costs).

To model mathematically optimization problems like 1.1.1 one may follow the
following three-step procedure:

1.1.2 Algorithm (Optimization modeling).

Step 1 Find the decision variables, i.e. find out what are the variables whose
values you can choose.

Step 2 Find the objective function, i.e. find out how your objective to be
minimized or maximized depends on the decision variables.

Step 3 Find the constraints, i.e. find out the (in)equalities that the decision
variables must satisfy. (Don’t forget the possible sign constraints!)

Let us then start the mathematical modeling phase following Algorithm
1.1.2 above.

Giapetto produces soldiers and trains. So, the decision variables are:

x1 = number of soldiers produced each week,
x2 = number of trains produced each week.

Once the decision variables are known, the objective function z of this
problem is simply the revenue minus the costs for each toy, x1 and x2 :

z = (27− 10− 14)x1 + (21− 9− 10)x2

= 3x1 + 2x2.

Note that the profit z depends linearly on x1 and x2 . So, this is a linear problem
so far (the constraints must turn out to be linear, too).

It may seem at first glance that the profit can be maximized by simply in-
creasing x1 and x2 . Well, if life were that easy, let’s all start manufacturing trains
and soldiers and move to Jamaica -! Unfortunately, there are constraints that

1.1 Product Selection Problem 9

limit the decisions (or else the model is very likely to be wrong). Indeed, we need
finishing time and carpentry time for the soldiers and trains, and these are scarce
resources. We also need raw material, but this is not scarce. Also, there is a
limitation on how many soldiers can be sold.

Let us consider the finishing time constraint then. Both soldiers and trains
require finishing time. Suppose e.g. that 10 soldiers and 20 trains were built.
The amount of finishing hours needed for that would be 10 times 2 hours (for
soldiers) plus 20 times 1 hour (for trains), for a total of 40 hours of finishing labor.
The general constraint in terms of the decision variables is:

2x1 + x2 ≤ 100.

This is a linear constraint, so we are still dealing with a linear program.

Now that the constraint for the finishing hours is ready, the carpentry hours
constraint is found in the same way:

x1 + x2 ≤ 80.

This constraint is a linear one. So, we are still in the domain of LPs.

There’s only one more constraint remaining for this problem: the weekly de-
mand for soldiers. At most 40 soldiers can be sold each week:

x1 ≤ 40,

again a linear constraint. There is no demand constraint for the trains.

The mathematical modeling phase is finished, and we have the following LP:

(1.1.3)

max z = 3x1 + 2x2 (objective function)
s.t. 2x1 + x2 ≤ 100 (finishing constraint)

x1 + x2 ≤ 80 (carpentry constraint)
x1 ≤ 40 (demand for soldiers)

x1, x2 ≥ 0 (sign constraints)

Note the last sign constraints. They ensures that the values of the decision
variables will always be positive. The problem does not state this explicitly, but
it’s still important (and obvious). The problem also implies that the decision
variables are integers. So, we should also have integrity constraints. However,
we are not dealing with IPs (Integer Programs) yet. So, we will just hope that the
optimal solution will turn out to be an integer one (it will, but that’s just luck).

Now that the mathematical modeling phase is finished, there is the imple-
mentation phase, i.e. we have to tell the problem to a computer so that it
can solve it. Here is the Octave code that solves the Giapetto’s product selection
problem 1.1.1 by using the Octave’s LP solver function glpk:

1.2 Knapsack Problem 10

octave:1> c = [3,2]’;
octave:2> A = [2,1; 1,1; 1,0];
octave:3> b = [100,80,40]’;
octave:4> [x_max,z_max] = glpk(c,A,b,[0,0]’,[],"UUU","CC",-1)
x_max =

20
60

z_max = 180

The answer means that Giapetto should produce x1 = 20 soldiers and x2 = 60
trains. Then he will get the maximal possible profit z = =C180 .

If you don’t understand the code above, don’t worry. We will explain it in
detail in Section 2.5. If you are impatient and you have Octave installed, type
help glpk in Octave’s prompt and all the secrets will be unveiled.

1.2 Knapsack Problem

In a knapsack problem a person has to decide which products and
how many should he put on his knapsack in order to maximize his
comfort.

The difference between the knapsack problem and the product selection prob-
lem is that you can only take whole products in your knapsack. So, you can take
e.g. 1 compass, or 2 compasses, but not 0.5 compasses. So, the knapsack problem
is an integer program (IP): an IP is an LP with the additional constraint that
all the decision variables must be integers.

1.2.1 Example (Hlynur’s Knapsack Problem). Hlynur is going to hike on Eyjaf-
jallajökull. He has a 20 liter knapsack he wants to fill with some tins of hákarl
and bottles of svarti dauði. Hákarl comes in 3 liter tins and svarti dauði in 0.75
liter bottles. A tin of hákarl gives 5 units of comfort and a bottle of svarti dauði
gives 1 unit of comfort.

Hlynur can only take whole tins and bottles in his knapsack. How should Hlynur
pack his knapsack in order to maximize his comfort?

Here is the mathematical modeling phase:
Following the algorithm 1.1.2, let us first find the decision variables. Since

Hlynur only have two things, tins of hákarl and bottles of svarti dauði, in his
knapsack, the decision variables are obvious:

x1 = number of tins of hákarl in the knapsack,
x2 = number of bottles of svarti dauði in the knapsack.

1.3 Knapsack Problem 11

With these decision variables, the objective function, i.e. Hlynur’s comfort is

z = 5x1 + x2.

Next we consider the constraints. First we have the obvious constraint that the
knapsack can only take 20 liters. Since each tin of hákarl takes 3 liters and each
bottle of svarti dauði takes 0.75 liters, we have the constraint

3x1 + 0.75x2 ≤ 20.

Next we note that there are no negative hákarls or svarti dauðis, which is quite
unfortunate in the next morning — especially in the case of svarti dauði, we have
the sign constraints

x1, x2 ≥ 0.

Finally, remember that Hlynur can only take whole tins and bottles in his knap-
sack. So, we have the integrity constraints

x1, x2 are integers.

So, we are dealing with the IP

max z = 5x1 + x2 (objective function)
s.t. 3x1 + 0.75x2 ≤ 20 (knapsack constraint)

x1, x2 ≥ 0, integer (sign and integrity constraints)

As for the implementation phase, here is the Octave code that solves the
Hlynur’s knapsack problem 1.2.1 by using the Octave’s LP solver glpk (which is
also an IP solver):

octave:1> c = [5, 1]’;
octave:2> A = [3, 0.75];
octave:3> b = 20;
octave:4> [x_max,z_max] = glpk(c,A,b,[0,0]’,[],"U","II",-1)
x_max =

6
2

z_max = 32

The answer means that Hlynur should take x1 = 6 tins of hákarl and x2 = 2
bottles of svarti dauði. Then he will get the maximal possible comfort z = 32 .

If you don’t understand the code above, don’t worry. We will explain it in detail
in later chapters. If you are impatient and you have Octave installed, type help
glpk in Octave’s prompt and all the secrets will be unveiled. The key difference
between this code and the code for Giapetto in the previous section is that here
we have "II" for the two integer decisions and in the previous section we had "CC"
for the two continuous decisions.

1.4 Portfolio Selection Problem* 12

1.3 Portfolio Selection Problem*

1.3.1 Example (Mr. K. invests). Mr. K. wants to invest in two stocks: #1 and
#2 .

The following parameters have been estimated statistically:

r1 = 10% is the return of stock #1 ,
r2 = 5% is the return of stock #2 ,
σ1 = 4 is the standard deviation of stock #1 ,
σ2 = 3 is the standard deviation of stock #2 ,
ρ = −0.5 is the correlation between the stocks #1 and #2 .

Mr. K. want at least 8% return for his portfolio.

How should Mr. K. distribute his wealth between the two stocks when he wants
to minimize his risk?

The mathematical modeling phase can be carried out, as before, by using
Algorithm 1.1.2:

Let the decision variables be w1 and w2 , the portions of Mr. K.’s wealth
put in stocks #1 and #2 , respectively. Then Mr. K.’s objective function to be
minimized is the total risk of his portfolio, which is, according to the bilinearity
of the variance function,

z =
√

16w2
1 − 12w1w2 + 9w2

2

The constraints are:
10w1 + 5w2 ≥ 8

for the return,
w1 + w2 ≤ 1,

for the total wealth to be invested, and, if short-selling is not allowed, then there
are the sign constraints

w1, w2 ≥ 0.

At this point we note that this problem is not an LP, since the objective
function is not linear. This problem is actually a quadratic program (QP).
These problems are beyond the scope of this course. If you are interested on how
to carry out the implementation phase with these kinds of quadratic programs
with Octave, type help qp in the Octave prompt. That should give you at least
a starting point.

1.4 Exercises and Projects 13

1.4 Exercises and Projects

1.1. Model the following problem mathematically:

Arty Artist needs to mix orange color. Arty decides that the color orange has
at least 20% red and 20% yellow in it. A 100ml tube of color red costs =C2 and
a 100ml tube of color yellow costs =C3 . Arty needs 100ml of the color orange. He
has infinity supply of the color red but only 50ml (half a tube) of the color yellow.
Arty would like to mix the color orange as cheap as possible.

1.2. Mr. Quine sells gavagais. He will sell one gavagai for 10 Euros. So, one
might expect that buying x gavagais from Mr. Quine would cost 10x Euros. This
linear pricing rule rule may not be true, however. Explain at least three reasons
why not.

1.3. Giapetto’s problem 1.1.1 was modeled as an LP. This is simplification of
reality. Well, all models are. Model Giapetto’s problem in a more realistic way
by taking into account a connection between price and demand, and any other
considerations that may come to your mind.

Is your model linear? Do you think your model can be solved?

1.4. Consider the portfolio selection problem 1.3.1. Suppose Mr K. does not want
to minimize his risk, but has as fixed upper bound for it, and wants to maximize
the return of his portfolio.

(a) Model this problem.
(b) How is this problem related to the original problem 1.3.1?

1.5. Consider the portfolio selection problem 1.3.1. Suppose Mr. K. measures his
risk, not with standard deviation, but with the probability of losing money.

(a) What kind of parameters must Mr. K. estimate and how could he estimate
them?

(b) Model this problem.

1.6. * Solve the portfolio selection problem 1.3.1 with Octave’s function qp.

http://www.naute.com/funimages/rabtiger.jpg

Chapter 2

Short Introduction to Octave

How do we convince people that in programming simplicity and clarity — in short:
what mathematicians call “elegance” — are not a dispensable luxury, but a crucial
matter that decides between success and failure? — Edsger W. Dijkstra

Computers are useless. They can only give you answers.
— Pablo Picasso

There are only two kinds of programming languages: those people always bitch
about and those nobody uses. — Bjarne Stroustrup

Software is like sex: It’s better when it’s free. — Linus Torvalds

Octave is a matrix-oriented programming language. It is a free alternative to
Matlab c©. In these notes we use Octave version 3.2.3. If you are an experienced
Matlab c© user, you might want to consult
en.wikibooks.org/wiki/MATLAB_Programming/Differences_between_Octave_and_MATLAB.

2.1 Installing Octave

If you use Ubuntu issue the command

$ sudo apt-get install octave

on a terminal (don’t type $, that’s the prompt). Alternatively, you can use the
System → Administration → Synaptic Package Manager, and search for octave.

If you use Windows c© or Mac c©, or some other system than Ubuntu,
or simply want to compile Octave yourself, follow the instruction given in
octave.sourceforge.net.

Note that classroom computers are “cleaned” every now and then and that the
network drives are too slow for any actual use. So, you should install Octave on
a USB stick if you want to use the classroom computers.

http://www.gnu.org/software/octave/about.html
http://mathworks.com
http://en.wikibooks.org/wiki/MATLAB_Programming/Differences_between_Octave_and_MATLAB
http://www.ubuntu.com
http://octave.sourceforge.net

2.2 Octave as Calculator 15

2.2 Octave as Calculator

Basic Arithmetics

Suppose, for example, you want to calculate

1

8
+ 72 × 6− 1.2×10−5.

To do this, type after the Octave prompt (which we denote by octave:#>):

octave:1> 1/8 + 7^2*6 - 1.2e-5

and you get the answer

ans = 294.12

Here we used the “scientific” notation 1.2e-5 for 1.2× 10−5 . We could have also
written 1.2*10ˆ(-5) instead of 1.2e-5.

Suppose then, you want to calculate

1 +
2

7 + 3
.

How to write this in the command line? Is it 1+2/7+3 or (1+2)/7+3? It is neither!
It is 1+2/(7+3). But it is also 1+(2/(7+3)): It is never wrong to use parentheses
to indicate what should be calculated first! E.g., 2*eˆ2/7+1 is

2e2

7
+ 1,

but to be sure of this you have know the precedence of the operators ˆ, *, /, and
+. If you are not sure about their precedence, you can always use parentheses:
Instead of 2*eˆ2/7+1 write (2*(eˆ2)/7))+1.

Variables

To assign the value 1
3 to a variable x , you simply issue

octave:1> x = 1/3
x = 0.33333

So, if you want to calculate, e.g., 1.21/3 , you can do it all at once by issuing
1.2ˆ(1/3), or you can do it in two phases:

octave:1> x = 1/3;
octave:2> 1.2^x
ans = 1.0627

2.2 Octave as Calculator 16

Here we used the semicolon (;) to suppress the output in the command x = 1/3;.
The semicolon (;) is extremely useful in functions where you do not want to have
the intermediate steps print their outputs. In the next code we suppress all the
outputs of all the commands:

octave:1> x = 1/3;
octave:2> y = 1.2^x;

Now Octave will give no answer on the screen. The answer is only stored in the
variables x and y. To see the value of a variable one simply calls the variable by
stating its name (without suppressing the output with the semicolon):

octave:3> x
x = 0.33333
octave:4> y
y = 1.0627

If you want to see the variables you have defined, issue the command who:

octave:1> xx = 2;
octave:2> y = "xx";
octave:3> who
Variables in the current scope:

ans xx y

The command who gives a list of defined variables. In this case we have 3 defined
variables: ans is the latest unassigned Octave output (if you have one), xx is the
scalar 2 and y is the string of characters "xx" (which has nothing to do with the
variable xx). Note that, depending on your system configuration, you may see
other variables too. Also note the double-quote character (") surrounding the
string declaration. You can also use the single-quote character (’):

octave:1> a = "jippo"; b = ’jippo’;
octave:2> strcmp(a,b)
ans = 1

Here the function strcmp compares character strings. It returns 1 (for true) if the
strings are the same, and 0 (for false) otherwise.

Basic Constants and Functions

Octave recognizes some typical mathematical constants like

pi = 3.14159 . . . , e = 2.71828 . . . , i =
√
−1.

Any constant can be redefined by the user. If you (accidentally) redefine them,
you can always recover the original definition by using the clear command. Here

2.3 Octave as Calculator 17

is an example where we first redefine the constant pi (for π) and then clear the
definition to get the standard built-in definition for pi back:

octave:1> pi = 42
pi = 42
octave:2> who
Variables in the current scope:

ans pi

octave:3> clear pi
octave:4> pi
ans = 3.1416

Octave has a host of built-in standard mathematical functions like

exp(x) = ex, log(x) = lnx, abs(x) = |x|.

If you (accidentally) redefine built-in functions, you can clear them back to the
built-in definitions by using the command clear with the switch -f, i.e., by typing
clear -f.

Number Format

Octave standard output uses the precision of 5 significant digits. To get 15 sig-
nificant digits use the command format long. To get back to 5 significant digits
use the command format short.

octave:1> pi
ans = 3.1416
octave:2> format long
octave:3> pi
ans = 3.14159265358979
octave:4> format short; pi
ans = 3.1416

The format command only changes the output format of the precision. It does
not change the internal precision. Octave uses fixed precision, and is thus prone
to rounding errors as most programming languages are:

octave:1> format short
octave:2> 1 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2
ans = 5.5511e-17
octave:3> format long
octave:4> 1 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2
ans = 5.55111512312578e-17

The rounding error in the code above is due to the fact that 0.2 is nasty in base-2
arithmetics: 0.2(base-10) = 0.0011 0011 . . . (base-2) .

2.3 Linear Algebra with Octave 18

2.3 Linear Algebra with Octave

Matrices, vectors, and Their Transposes

The matrix is a world pulled in front of your eyes to hide the truth from you.
— Morpheus

The Morpheus’s answer above to the Neo’s question “What is the matrix?” refers
to the Latin language origin of the word matrix: the womb. In mathematics a
matrix is an array of numbers. We say that A is an (m×n)-matrix if it has m
rows and n columns:

A =

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 .

2.3.1 Example.

A =

[
5 2 −3
6 0 0.4

]
is a (2× 3)-matrix, and, e.g. A12 = 2 and A23 = 0.4 ; A32 does not exist.

In Octave one creates matrices and refers to their elements, in the following
way (cf. Example 2.3.1 above):

octave:1> A = [5, 2, -3; 6, 0, 0.4]
A =

5.00000 2.00000 -3.00000
6.00000 0.00000 0.40000

octave:2> A(1,2)
ans = 2
octave:3> A(2,3)
ans = 0.40000
octave:4> A(3,2)
error: A(I): Index exceeds matrix dimension.

So, elements in a row are separated by a comma (,), or simply by a space, and
the rows are separated by a semicolon (;). To refer to elements of a matrix one
uses parentheses instead of sub-indexes: Aij =A(i,j).

2.3 Linear Algebra with Octave 19

The transpose A′ of a matrix A is obtained by changing its rows to columns,
or vice versa: A′ij = Aji . So, if A is an (m×n)-matrix

A =

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 ,
then its transpose A′ is the (n×m)-matrix

A′ =

A′11 A′12 · · · A′1m
A′21 A′22 · · · A′2m
...

...
. . .

...
A′n1 A′n2 · · · A′nm

 =

A11 A21 · · · Am1

A12 A22 · · · Am2
...

...
. . .

...
A1n A2n · · · Amn

 .

2.3.2 Example. If

A =

[
5 2 −3
6 0 0.4

]
,

then

A′ =

 5 6
2 0
−3 0.4

 .
So, e.g., A′12 = 6 = A21 .

In Octave the transpose operator is, surprise, surprise, the single-quote (’).
So, Example 2.3.2 above with Octave goes like this:

octave:1> A = [5 2 -3; 6 0 0.4];
octave:2> A’
ans =

5.00000 6.00000
2.00000 0.00000

-3.00000 0.40000

octave:3> A’(1,2)
ans = 6
octave:4> A(2,1)
ans = 6

A vector is either an (n×1)-matrix or a (1×n)-matrix. We call (n×1)-
matrices column vectors and (1×n)-matrices row vectors. We will almost
always assume that vectors are column vectors. So, e.g., a 3-dimensional vector x

2.3 Linear Algebra with Octave 20

will be x1
x2
x3

 , not [x1 x2 x3] .

Block and Sub Matrices

When we want to pick up rows or columns of a matrix A we use the dot-notation
(in mathematics) or the colon-notation (in Octave):

Let A be the matrix

A =

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 .
Then its ith row is the n-dimensional row vector

Ai• = [Ai1 Ai2 · · · Ain] .

Similarly, A ’s jth column is the m-dimensional column vector

A•j =

A1j

A2j
...

Amj

 .

2.3.3 Example. If

A =

[
5 2 −3
6 0 0.4

]
,

then
A2• = [6 0 0.4]

and

A•3 =

[
−3
0.4

]
.

With Octave one uses the colon (:) instead of the dot (•). So, Example 2.3.3
above with Octave reads:

2.3 Linear Algebra with Octave 21

octave:1> A= [5 2 -3; 6 0 0.4];
octave:2> A(2,:)
ans =

6.00000 0.00000 0.40000

octave:3> A(:,3)
ans =

-3.00000
0.40000

When we want to combine matrices we use the block-notation:

Let A be a (m×n)-matrix and let B be a (m×k)-matrix Then the block
matrix [A B] is the (m× (n+k))-matrix

[A B] =

A11 A12 · · · A1n B11 B12 · · · B1k

A21 A22 · · · A2n B21 B22 · · · B2k
...

...
. . .

...
...

...
. . .

...
Am1 Am2 · · · Amn Bm1 Bm2 · · · Bmk

 .

Similarly, if C is a (p×n)-matrix, then the block matrix
[
A
C

]
is defined as

[
A
C

]
=

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn
C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
. . .

...
Cp1 Cp2 · · · Cpn

.

2.3.4 Example. Let

A =

 5.1 2.1
6.5 −0.5
0.1 10.5

 , c =

[
20
30

]
, and 0 =

 0
0
0

 .
Then [

1 −c′
0 A

]
=

1 −20 −30
0 5.1 2.1
0 6.5 −0.5
0 0.1 10.5

 .

2.3 Linear Algebra with Octave 22

With Octave one introduces the block matrices in the obvious way: e.g., Ex-
ample 2.3.4 can be written as

octave:1> A=[5.1 2.1; 6.5 -0.5; 0.1 10.5]; c=[20 30]’; o=[0 0 0]’;
octave:2> [1 -c’; o A]
ans =

1.00000 -20.00000 -30.00000
0.00000 5.10000 2.10000
0.00000 6.50000 -0.50000
0.00000 0.10000 10.50000

Finally, let us note that by combining the dot and block notation we have:

A =

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 =

A1•
A2•
...

Am•

 = [A•1 A•2 · · · A•n] .

Matrix Sums and Products

Matrix sum and scalar multiplication are defined pointwise:

Let

A =

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 and B =

B11 B12 · · · B1n

B21 B22 · · · B2n
...

...
. . .

...
Bm1 Bm2 · · · Bmn

 .
Then the matrix sum A + B is defined as

A + B =

A11 +B11 A12 +B12 · · · A1n +B1n

A21 +B21 A22 +B22 · · · A2n +B2n
...

...
. . .

...
Am1 +Bm1 Am2 +Bm2 · · · Amn +Bmn

 .
Let λ be a real number. Then the scalar multiplication λA is defined as

λA =

λA11 λA12 · · · λA1n

λA21 λA22 · · · λA2n
...

...
. . .

...
λAm1 λAm2 · · · λAmn

 .

2.3 Linear Algebra with Octave 23

2.3.5 Example. Let

A =

[
5 2

33 20

]
and I =

[
1 0
0 1

]
.

Then

A− 100I =

[
−95 2

33 −80

]
.

With Octave Example 2.3.5 goes like this:

octave:1> A=[5 2; 33 20]; I=[1 0; 0 1];
octave:2> A-100*I
ans =

-95 2
33 -80

Let A be a (m×n)-matrix

A =

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 ,
and let B be a (n×p)-matrix

B =

B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...
Bn1 Bn2 · · · Bnp

 .
Then the product matrix C = AB is the (m×p)-matrix defined by

Cij =
n∑
k=1

AikBkj .

2.3.6 Example.

[
2 1 5
0 3 −1

] 1 5 3 −1
7 −4 2 5
0 2 1 6

 =

[
9 16 13 33

21 −14 5 9

]
,

since, e.g.,

9 = C11

= A11B11 +A12B21 +A13B31

= 2×1 + 1×7 + 5×0.

2.3 Linear Algebra with Octave 24

With Octave one uses star (*) to denote matrix multiplication. So, Example

2.3.6 would read

octave:1> [2 1 5; 0 3 -1] * [1 5 3 -1; 7 -4 2 5; 0 2 1 6]
ans =

9 16 13 33
21 -14 5 9

Note that while matrix sum is commutative: A + B = B + A , the matrix
product is not: AB 6= BA . Indeed, it may be that BA is not even defined even
though AB is. Otherwise the matrix algebra follows the rules of the classical
algebra of the real numbers. So, e.g.,

(A + B)(C + D) = (A + B)C + (A + B)D

= AC + BC + AD + BD

= A(C + D) + B(C + D).

Identity Matrix and Matrix Inverse

The identity matrix In is an (n×n)-matrix (a square matrix) with 1s on the
diagonal and 0s elsewhere:

In =

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

.

We shall usually write shortly I instead of In , since the dimension n of the matrix
is usually obvious. To create an identity matrix with Octave one uses the function
eye:

octave:1> I = eye(4)
I =

Diagonal Matrix

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

The inverse matrix A−1 of a matrix A , if it exists, is such a matrix that

A−1A = I = AA−1.

2.3 Linear Algebra with Octave 25

2.3.7 Example. Let

A =

[
1 2
1 3

]
.

Then

A−1 =

[
3 −2
−1 1

]
.

Finding the inverse of a matrix manually is tedious. We do not even bother to

show how it is done here. With Octave one uses the function inv to create the
inverse matrix:. So, Example 2.3.7 above would read

octave:1> A = [1 2; 1 3];
octave:2> inv(A)
ans =

3 -2
-1 1

2.3.8 Example. The matrix

A =

[
1 1
0 0

]
.

has no inverse. Indeed, if the inverse A−1 existed then, e.g., the equation

Ax =

[
1
1

]
would have a solution in x = [x1 x2]

′ :

x = A−1
[

1
1

]
.

But this is impossible since no matter what x = [x1 x2]
′ you choose

Ax =

[
x1 + x2

0

]
6=

[
1
1

]
.

Here is what Octave says about Example 2.3.8 above:

octave:1> A = [1 1; 0 0];
octave:2> inv(A)
warning: inverse: matrix singular to machine precision,
rcond = 0
ans =

Inf Inf
Inf Inf

2.3 Linear Algebra with Octave 26

Linear Systems of Equations

A linear system, or a linear system of equations, is

(2.3.9)

A11x1 + A12x2 + · · · + A1nxn = b1,
A21x1 + A22x2 + · · · + A2nxn = b2,

...
Am1x1 + Am2x2 + · · · + Amnxn = bm.

Solving the linear system (2.3.9) means finding the variables x1, x2, . . . , xn that
satisfy all the equations in (2.3.9) simultaneously: the parameters Aij and bi are
given.

The connection between linear systems and matrices is the following: Let

A =

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 , x =

x1
x2
...
xn

 , and b =

b1
b2
...
bm

 ,
then the linear system (2.3.9) may be rewritten as

Ax = b.

Solving linear systems manually is tedious. We do not even bother to show how
it is done here. With Octave one can solve linear systems easily with the left
division operator (\): The system Ax = b is “divided from the left” by A , so
that x = A\b . The next Octave code shows how to solve the system

x1 + x2 = 2,
2x1 + 4x2 = 7.

octave:1> A = [1 1; 2 4]; b=[2;7];
octave:2> A\b
ans =

0.50000
1.50000

Pointwise Operators

Octave is matrix-oriented: operators like +, -, *, /,ˆ operate on matrices. This can
cause problems if we want to operate pointwise. For pointwise operations there are
the dotted operators .* and ./ (for + and - there is no need for dotted versions).
The next example elaborates the difference of * and .*.

2.3 Linear Algebra with Octave 27

2.3.10 Example. A firm has 2 employees and 3 tasks. Let the matrix A tell
how many hours each employee (rows) spends on each tasks (columns):

A =

[
6 0 0
1 4 1

]
.

This means that employee number 1 spends 6 hours on task 1 , and none on other
tasks; and employee spends 1 hour for task 1 , 4 hours for task 2 , and 1 hour for
task 3 . Suppose then that the number of working hours by the employee number
1 is increased by 20% on the first task, 10% on the second task, and 5% on the
third task. Similarly, the number of working hours of the employee number 2 is
decreased by 10% on all the tasks 1 , 2 , and 3 . So, the new — relative to the old
one — allocations of the tasks are

N =

[
1.20 1.10 1.05
0.90 0.90 0.90

]
.

How many hours does each employee spend on each task now?

If B is the matrix answering the question, then Bij = AijNij (i = 1, 2 are the
employees and j = 1, 2, 3 are the tasks). So, to construct the matrix B one does
not use the matrix product AN , but the pointwise product A.N :

octave:1> A = [6, 0, 0; 1, 4, 1];
octave:2> N = [1.20, 1.10, 1.05; 0.90, 0.90, 0.90];
octave:3> B = A.*N
B =

7.20000 0.00000 0.00000
0.90000 3.60000 0.90000

So, the new working-hours for employees (rows) in tasks (rows), are

B =

[
7.2 0 0
0.9 3.6 0.9

]
.

If you try the matrix product AN you will get

octave:4> B= A*N
error: operator *: nonconformant arguments (op1 is 2x3, op2
is 2x3)

What he error says is that the dimensions of A (op1) and N (op2) are not
consistent for matrix multiplication.

2.4 Function and Script Files 28

Pointwise Vectorized Functions

Most (but not all!) functions in Octave are pointwise vectorized. This means that
scalar functions y = f(x) are typically extended (vectorized) as

[y1 · · · yn] = y = f(x) = [f(x1) · · · f(xn)].

For example the function exp works this way:

octave:1> exp([1,-1,0])
ans =

2.7183 0.36788 1.0000

So, upto four decimal places, e1 = 2.7183 , e−1 = 0.36788 , and e0 = 1.0000 .

2.4 Function and Script Files

Function Files

A function file is a text file that defines a function you can call from Octave
prompt. The function file should be named fcn_name.m, where fcn_name is the
name of the function.

As an example we present the function npv that calculates the net present
value (NPV) of an cashflow. For that, recall the mathematical formula:

NPV(c) =
∑
t

ct
(1 + r)t

,

where c = [c1 · · · cT]′ is the cashflow and r is the rate of return.

Here is the implementation of the formula above as the function npv. The code
is written in the file npv.m. The line numbers are not part of the code: they are
for reference purposes only.

1 function v = npv(cf,r)
2 ## Function v = npv(cf,r) returns the Net Present Value (npv) of the
3 ## cashflow cf. The cash flow cf is received at the end of each
4 ## period. The rate of return over the period is r. The parameter r
5 ## is scalar. The cash flow cf is a (column) vector.
6
7 T = length(cf); # The number of periods.
8 pv = zeros(T,1); # Initialize present values (pv) at zero.
9 for t=1:T

10 pv(t) = cf(t) / (1+r)^t; # Set the pv’s.
11 endfor
12 v = sum(pv); # npv is the sum of pv’s.
13 endfunction

2.4 Function and Script Files 29

In the line 1 we have first the keyword function. Every function file must start
with this keyword. After the keyword there is the return value, or values, of the
function. In this case the function will return just one value: v, which is the
net present value. It is possible to have many return values. For example, if the
function npv would have 3 return values, v, w, and wv, say, then the line 1 would
be

1 function [v,w,vw] = npv(cf,r)

It is even possible to have variable amount of return values by using the keyword
varargout (variable arguments out).

After the return value comes always the equal sign (=) followed by the name of
the function (in this case npv) that should be the same as the name of the function
file (without the extension .m).

After the name of the function come, inside parentheses, the input parameters
of the function. In this case we have two input parameters: cf for the cash flow and
r for the rate of return. It is possible to have variable amount of input parameters
by using the keyword varargin (variable arguments in).

Next, in the lines 2–5 there is a comment block. Octave will interpreter any-
thing that follows the pound signs (#) as a comment until the end of the line. In
general, for Octave a comment is something to be read by humans, and not to be
interpreted by a computer. The comments right after the function-line have a
special meaning, however: they are the lines to be printed out when a user types
help for the function:

octave:1> help npv
‘npv’ is a function from the file /home/tsottine/work/teaching/or2010/
m-files/npv.m

Function v = npv(cf,r) returns the Net Present Value (npv) of the
cash flow cf. The cash flow cf is received at the end of each
period. The rate of return over the period is r. The parameter r
is scalar. The cash flow cf is a (column) vector.

Additional help for built-in functions and operators is
available in the on-line version of the manual. Use the command
‘doc <topic>’ to search the manual index.

Help and information about Octave is also available on the WWW
at http://www.octave.org and via the help@octave.org
mailing list.

The empty line 6 is here to terminate the comment block.

In the line 7 we set the variable T to be the number of periods of the cash flow,
which is the same as the length of the vector cf. Note the semicolon (;) at the

2.4 Function and Script Files 30

end of the expression. The semicolon (;) is there to suppress the output: typically
one does not want functions to print any results. The functions’ results should be
in the output variables! The line ends with a comment after the comment sign
(#). We use these end-of-the-line comments also later, as you can see.

In the line 8 we initialize a vector pv for the present values of the individual
payments. It is not strictly necessary to initialize your variables, but it is a very
good idea to do so. Indeed, initialization will speed up the code, make it more
difficult to make mistakes, and make your code easier to debug once you have made
a mistake. We initialize all the pv values to zero (for no apparent reason) with
the function zeros. Type help zeros for more information of how the function
zeros work. Indeed, it is always helpful to use help whenever you encounter a
piece of code you do not understand ,. Note, again, that the line ends with the
semicolon (;) so that Octave would not print out a vector of zeros here.

The lines 9–11 constitute a for-loop where we set the true present values for pv
in the line 10, which is indented to emphasize the fact that it is inside a for-loop.
Note the semicolon in the line 10, that prevents the unnecessary printing of the
value of the variable pv. The line 9 denotes the beginning of a for-loop. Octave’s
for-loop works quite differently from the for loops of, say, C or Java. In Octave,
the running index (t in this case) runs through the values of the elements of a
given vector (1:T in this case). In Octave a:b means a vector [a (a+1) · · · b] . So,
this for-loop will run for the values t = 1, 2, . . . , T . The line 11 denotes the end
of the for-loop.

In the line 12 the return value v of the function is set to be the sum of the
present values found in the vector pv. Note, again, that the output is suppressed
by the semicolon (;).

Finally, the line 13 denotes the end of the function-block that started in the
line 1.

Script Files

A script file is a text file containing (almost) any sequence of Octave commands.
It is read and evaluated just as if you had typed each command at the Octave
prompt, and provides a convenient way to perform a sequence of commands. To
call the script file from the Octave prompt one simply issues its name (without
the filename extension .m).

Unlike a function file, a script file must not begin with the keyword function.
Indeed, that would make it a function file. A script file may, however, contain
function definitions: it just may not start with a function definition. If you happen
to have a function definition at the beginning of a would-be script file, you can
always start your file with the line containing just 1; . This line does practically
nothing. Indeed, the command 1; evaluates 1 as 1 and then the semicolon
suppresses the output. So nothing happens, except that now the file does not

2.4 Function and Script Files 31

begin with a function definition. That should do the trick of converting a would-
be function file into a script file. Note that prepending a comment-block or empty
lines before the function definition will not do the trick.

Here is a script file npv_script.m that does pretty much the same as the
function npv, but with fixed parameters cf=[1 1 1 1]’ and r=0.05:

cf = [1 1 1 1]’; # The cash flow.
r = 0.05; # The rate of return.

T = length(cf); # The number of periods.
pv = zeros(T,1); # Initialize present values (pv) at zero.
for t=1:T

pv(t) = cf(t) / (1+r)^t; # Set the pv’s.
endfor
v = sum(pv); # npv is the sum of pv’s.

To use this script file one simply types npv_script in the Octave prompt.

The key difference between the function npv and the script npv_script is that
after calling the script file npv_script the variables cf, r, T, pv, and v are now
(re)defined, while calling the function npv does not set any (global) variables. This
is why the author avoids script files whenever he can ,.

Working Directory and Search Path

A typical problem when working with Octave is that Octave does not find your
function or script files. Octave will look for script and function files from the so-
called search path. To see your search path type path. Here is the path in the
author’s setting:

octave:1> path

Octave’s search path contains the following directories:

.
/usr/local/share/octave/site-m
/usr/lib/octave/3.2.3/oct/i486-pc-linux-gnu
/usr/share/octave/3.2.3/m
/usr/share/octave/3.2.3/m/path
/usr/share/octave/3.2.3/m/testfun
/usr/share/octave/3.2.3/m/linear-algebra
/usr/share/octave/3.2.3/m/plot
/usr/share/octave/3.2.3/m/io
/usr/share/octave/3.2.3/m/miscellaneous
/usr/share/octave/3.2.3/m/specfun
/usr/share/octave/3.2.3/m/help
/usr/share/octave/3.2.3/m/image
/usr/share/octave/3.2.3/m/audio

2.5 Octave Programming: glpk Wrapper 32

/usr/share/octave/3.2.3/m/geometry
/usr/share/octave/3.2.3/m/sparse
/usr/share/octave/3.2.3/m/polynomial
/usr/share/octave/3.2.3/m/signal
/usr/share/octave/3.2.3/m/pkg
/usr/share/octave/3.2.3/m/statistics
/usr/share/octave/3.2.3/m/statistics/distributions
/usr/share/octave/3.2.3/m/statistics/base
/usr/share/octave/3.2.3/m/statistics/models
/usr/share/octave/3.2.3/m/statistics/tests
/usr/share/octave/3.2.3/m/deprecated
/usr/share/octave/3.2.3/m/special-matrix
/usr/share/octave/3.2.3/m/optimization
/usr/share/octave/3.2.3/m/time
/usr/share/octave/3.2.3/m/general
/usr/share/octave/3.2.3/m/startup
/usr/share/octave/3.2.3/m/strings
/usr/share/octave/3.2.3/m/elfun
/usr/share/octave/3.2.3/m/set

Depending your system configuration you may get a different output. The first
path, denoted by dot (.) denotes your current working directory. The current
working directory is always the first directory Octave searches for script or
function files. To see your current working directory, use the command pwd (Print
Working Directory), and to see the contents of your current working directory
type ls (LiSt). If you want to change the current working directory use the
command cd (Change Directory). Finally, if you want to add a directory to
your search path, use the command addpath. For details on how to use these
commands use the command help.

2.5 Octave Programming: glpk Wrapper

We have already seen how to program with Octave in the previous section, and we
will see more Octave programming later. In this section we will further illustrate
Octave programming by building a simple to use wrapper for the Octave’s LP
solver glpk.

Let us first explain how to use glpk (GNU Linear Programming Kit). The
function glpk solves optimization problems of the type

z = [max or min] c′x

subject to

Ax [= or ≤ or ≥] b,

lb ≤ x ≤ ub.

The input parameters for glpk are:

2.5 Octave Programming: glpk Wrapper 33

c A column vector containing the objective function coefficients.
A A matrix containing the constraints coefficients.
b A column vector containing the right-hand side value for each constraint in the

constraint matrix.
lb A vector containing the lower bound on each of the variables.
ub A vector containing the upper bound on each of the variables. If ub is not

supplied, the default upper bound is assumed to be infinite.
ctype An array of characters containing the sense of each constraint in the con-

straint matrix.

"F" A free (unbounded) constraint (the constraint is ignored).
"U" An inequality constraint with an upper bound (Ai•x ≤ bi).
"S" An equality constraint: Ai•x = bi .
"L" A lower bound constraint: Ai•x ≥ bi .
"D" Both upper and lower bound constraints: −bi ≤ Ai•x ≤ bi .

vartype A column vector containing the types of the variables.

"C" A continuous variable.
"I" An integer variable.

sense If sense is 1, the problem is a minimization. If sense is -1, the problem is
a maximization. The default value is 1.

param A structure containing parameters used to define the behavior of solver.
The most useful fields for us are:

msglev This controls the level of (error) messages glpk gives. Setting
param.msglev=0 suppresses all messages and param.msglev=2 gives a
lot of information. The default, param.msglev=1 will only give error
messages.

presol This controls whether glpk will use a presolver or not. The default,
param.presol=1, is to use a presolver. Sometimes it is better not to
use a presolver, i.e., to set param.presol=0.

The return values of glpk are:

xopt The value of the decision variables at the optimum.
fmin The optimal value of the objective function.
status Status of the optimization. E.g.:

180 Solution is optimal.
182 Solution is infeasible.
183 Problem has no feasible solution.
184 Problem has no unbounded solution.
185 Solution status is undefined.

extra A data structure containing, e.g., lambda for shadow prices and redcosts
for reduced costs.

2.5 Octave Programming: glpk Wrapper 34

Now the code

octave:1> c = [3,2]’;
octave:2> A = [2,1; 1,1; 1,0];
octave:3> b = [100,80,40]’;
octave:4> [x_max,z_max] = glpk(c,A,b,[0,0]’,[],"UUU","CC",-1)
x_max =

20
60

z_max = 180

for Giapetto’s problem 1.1.1 should be clear: The meaning of the parameters c,
A, and b are obvious. The column vector [0 0]’ tells that both of the decision
variables must be non-negative. The empty matrix [] tells that there are no a
priori upper bounds for the decision variables. The string "UUU" tells that all the
components of the vector b are upper bounds. The string "CC" tells that both the
decision variables are continuous. (In Hlynur’s problem 1.2.1 the string was "II"
indicating that the decision variables are integers.) Finally, the sense parameter
−1 indicates that we are dealing with a maximization problem. We have omitted
the param parameter, so its default values will apply. Note also, that we have
omitted the return values for status and extra. So, those values are lost to us.

As we see, the function glpk is quite versatile, maybe even too versatile. There-
fore, we create a wrapper for it that is easier to use. The wrapper will only solve
problems of the type

max z = c′x
s.t. Ax ≤ b

x ≥ 0.

The input parameters of the wrapper will be just c, A, and b. The return values
will be z_max for the objective at optimum, x_max for the optimal decision, and
the string status telling the status (obviously) of the offered solution.

Here is the wrapper. We call it stu_lp_solver (Simple To Use LP solver) and
it is written in the file stu_lp_solver.m.

1 function [z_max, x_max, status] = stu_lp_solver(c, A, b)
2 ## Function [z_max, x_max, status] = stu_lp_solver(c, A, b) solves the LP
3 ##
4 ## max c’*x
5 ## s.t. A*x <= b
6 ## x >= 0,
7 ##
8 ## by using glpk.
9 ##

2.5 Octave Programming: glpk Wrapper 35

10 ## Input:
11 ##
12 ## c, A, b
13 ## The (column) vector defining the objective function, the
14 ## technology matrix, and the (column) vector of the constraints.
15 ##
16 ## Output:
17 ##
18 ## z_max, x_max
19 ## The maximal value of the objective and an optimal decision.
20 ##
21 ## status
22 ## A string indicating the status of the solution:
23 ## "bounded"
24 ## A bounded solution was found.
25 ## "unbounded"
26 ## The solution is known to be unbounded.
27 ## "infeasible"
28 ## Solutions are known not to exist.
29 ## "unknown"
30 ## The algorithm failed.
31 ##
32 ## See also: glpk.
33

Here, in the line 1 we have the standard beginning of a function file. The output
and input variables are then explained in the following help-block in the lines
2–32, and the empty line 33 terminates the help-block.

34 ## Get m, the number of constraints (excluding the sign constraints), and
35 ## n, is the number of decision variables, from the technology matrix A.
36 [m,n] = size(A);
37

The line 36 gives short-hand for the dimensions of A. We could have used rows(A)
for m and columns(A) for n everywhere, but this way the code is maybe easier to
read, and a tiny bit faster.

38 ## Some input-checking:
39 if (nargin!=3)
40 error("stu_lp_solver: The number of input arguments must be 3.\n");
41 elseif (columns(c)>1)
42 error("stu_lp_solver: Objective c must be a column vector.\n");
43 elseif (columns(b)>1)
44 error("stu_lp_solver: Upper bounds b must be a column vector.\n");
45 elseif (rows(c)!=n || rows(b)!=m)
46 error("stu_lp_solver: The dimensions of c, A, and b do not match.\n");
47 endif
48

2.5 Octave Programming: glpk Wrapper 36

The lines 38–48 check if the input provided by the user is correct. The main tools
here are the if-block and the error-escape.

First, in the line 39 we check if there are 3 input arguments given, when the
function is called. If this is not the case (!= is Octave for 6=) then the error-
statement in the line 40 is executed: The string in the quotes is printed out, and,
because of the newline character (\n), the function is exited immediately.

Next, if the condition in the line 39 was not satisfied, we check the condition
columns(c)>1 in the line 41. This condition simply checks if the input parameter
c is a column vector. If it is not, then the function is exited immediately and the
error message in the line 41 is printed out.

The lines 43–44 work just like the lines 41-42.

The lines 45–46 we check that the dimensions of c, A and b are consistent.
Here (||) denotes the logical (short circuit) “or”.

The line 47 marks the end of whole the if–elseif-block.

49 ## Set the parameters for glpk:
50
51 ## Set the decision-wise lower bounds all to zero, i.e. build a zero
52 ## column vector with n zeros.
53 o = zeros(n,1);
54

Here we simply set a short-hand notation: o is a column vector of zeros.

55 ## Set the sense of each constraint as an upper bound.
56 ctype = ""; # Start with an empty string.
57 for i=1:m # Loop m times.
58 ctype = [ctype, "U"]; # Append "U" to the string.
59 endfor
60
61 ## Set the type of each variable as continuous.
62 vtype = ""; # Start with an empty string.
63 for i=1:n # Loop n times.
64 vtype = [vtype, "C"]; # Append "C" to the string.
65 endfor
66

In the lines 56–59 we set the ctype-string to be "CCC...C" (m times): First, in
the line 56 we initialize ctype to be an empty string. Then in the line 57 we form
a for-loop that is run m time. Each iteration appends the letter "C" to the end
of the string ctype in the line 58.

The lines 62–65 works the same way as the lines 56–59.

2.6 Exercises and Projects 37

67 ## Solve the system by calling glpk.
68 [x_max, z_max, STATUS] = glpk(c, A, b, o, [], ctype, vtype, -1);
69
70 ## Set the STATUS code given by glpk to the appropriate string
71 status = "unknown"; # Pessimism by default.
72 if (STATUS==180) # Everything went fine.
73 status="bounded";
74 elseif (STATUS==183) # LP infeasible detected.
75 status="infeasible";
76 elseif (STATUS==184) # LP unboundedness detected.
77 status="unbounded";
78 endif
79 endfunction

In the line 68 we call the function glpk with the appropriate parameters, and
in the lines 71–78 we set the status-string according to the STATUS-code glpk
gave us. It is worth noticing that, e.g., in the line 72 we ask if STATUS is 180 by
the double equal sign. Writing STATUS=180 would be wrong: that would assign
the value 180 to the variable STATUS. Also, note that Octave is case sensitive: the
variables status and STATUS are not the same.

2.6 Exercises and Projects

2.1. Calculate

(a) e2
8−256 ,

(b) 264 − 1 ,

(c)
√

1
8e

3 + log 15
2 − sin 7π

2 ,

(d) log(−1) .

2.2. Let

A =

 5 2
6 −1
1 5

 , B =

 5 0
0 1
1 1

 , C =

 1 0 0
0 1 1
0 0 1

 .
Calculate

(a) C−1 ,
(b) B′C−1 ,
(c) AB′C−1 ,
(d) (BA′)′C−1 .

2.3. The function npv assumes that the rate of return r is constant over time.
Modify the function so that is takes as an input variable a vector of rate of returns
that change from one period to another.

2.6 Exercises and Projects 38

2.4. Solve the LP
max z = 4x1 + 3x2
s.t. 2x1 + 3x2 ≤ 6

−3x1 + 2x2 ≤ 3
2x2 ≤ 5

2x1 + x2 ≤ 4
x1, x2 ≥ 0

(a) by using glpk,
(b) by using stu_lp_solver.

2.5. Solve the LP

max z = 2x1 + 9x2
s.t. x1 + 2x2 ≤ 500

x1 + x2 ≥ 100
x1, x2 ≥ 0

(a) by using glpk,
(b) by using stu_lp_solver.

2.6. * Translate all the Octave codes in these notes into Matlab codes.

Part II

Linear Programming

Chapter 3

Linear Programs and Their
Optima

I’m sorry to say that the subject I most disliked was mathematics. I have thought
about it. I think the reason was that mathematics leaves no room for argument. If
you made a mistake, that was all there was to it. — Malcom X

You have chosen the roughest road, but it leads straight to the hilltops.
— John Bunyan

The aim of this chapter is to give a general picture of LPs and to prepare for the
simplex method presented in Chapter 4. The key message of this chapter is the
fundamental theorem of linear programming 3.2.2 which basically says that

The optimal solution of an LP is in one of the corners of the
region of all feasible solutions.

There are some theoretical results, i.e. theorems, in this chapter. The proofs of
the theorems are deferred to the last section 3.5 (which can be omitted if time is
scarce).

3.1 Form of Linear Program

A linear optimization problem, or a linear program (LP), is:

(3.1.1)
max z = c′x
s.t. Ax ≤ b

x ≥ 0

The function z = c′x is the objective function, the matrix A is called the
technology matrix, the inequalities Ai•x ≤ bi are the constraints, and the

3.1 Form of Linear Program 41

inequalities xi ≥ 0 are the sign constraints. The fact that the inequalities are
inclusive — i.e., we have ≤ and ≥ , and not < and > — is important, but subtle.
It has to do with the difference between maximum and supremum, or minimum
and infimum. The subtle-minded student should ask google about infimum and
supremum. The simple-minded students should ignore the previous sentences.

The LP (3.1.1) is the standard form of an LP. In general, an LP may also
be a minimization problem, may have no restriction in sign in some (or all) of
its decision variables, and may have lower bound or equality constraints. Any
LP can however be transformed into a standard form, e.g. by using the following
algorithm:

3.1.2 Algorithm (Standard form transformation).

Step 1: Change into maximization If the LP is a minimization problem,
change it to a maximization problem by multiplying the objective vector
c by −1 :

min z = c′x ; max −z = −c′x.

Step 2: Remove double inequalities If there are both lower and upper
bounds in a single constraint, change that constraint into two constraints:

li ≤ Ai1x1 + · · ·+Ainxn ≤ ui
;

{
li ≤ Ai1x1 + · · ·+Ainxn

Ai1x1 + · · ·+Ainxn ≤ ui .

Note that equality is actually a double inequality. So, transform

Ai1x1 + · · ·+Ainxn = bi

= bi ≤ Ai1x1 + · · ·+Ainxn ≤ bi

;
{
bi ≤ Ai1x1 + · · ·+Ainxn

Ai1x1 + · · ·+Ainxn ≤ bi .

Step 3: Remove lower bounds If there is a lower bound constraint li , change
it to an upper bound constraint by multiplying the corresponding inequality
by −1 :

li ≤ Ai1x1 + · · ·+Ainxn ; −Ai1x1 − · · · −Ainxn ≤ −li.

Step 4: Impose sign constraints by splitting the decision variables If
the decision variable xi is not restricted in sign to be positive, then replace
it everywhere with xi = x+i − x−i where x+i , x

−
i ≥ 0 are now restricted in

sign to be positive.

3.1 Form of Linear Program 42

3.1.3 Example. Let us find the standard form of the LP

min z = −2x1 + 3x2

s.t. 1 ≤ x1 + x2 ≤ 9 (1)
2x1 − x2 ≤ 4 (2)

2 ≤ 7x1 + x2 ≤ 100 (3)
x1, x2 ≥ 0 (4)

Step 1: We turn the LP into a maximization problem, and get the objective

max −z = 2x1 − 3x2.

Step 2: We remove the double inequalities (1) and (3). From the constraint
(1) we get the constraints

1 ≤ x1 + x2 (1.a)
x1 + x2 ≤ 9 (1.b)

and from the constraint (3) we get the constraints

2 ≤ 7x1 + x2 (3.a)
7x1 + x2 ≤ 100 (3.b)

Before going to Step 3 let us check the status of the LP now:

max −z = −2x1 + 3x2

s.t. 1 ≤ x1 + x2 (1.a)
x1 + x2 ≤ 9 (1.b)

2x1 − x2 ≤ 4 (2)
2 ≤ 7x1 + x2 (3.a)

7x1 + x2 ≤ 100 (3.b)
x1, x2 ≥ 0 (4)

Step 3: We remove the lower bounds for the inequalities (1.a) and (3.a). We
obtain the standard form

max −z = −2x1 + 3x2

s.t. −x1 − x2 ≤ −1 (1.a)
x1 + x2 ≤ 9 (1.b)

2x1 − x2 ≤ 4 (2)
−7x1 − x2 ≤ −2 (3.a)

7x1 + x2 ≤ 100 (3.b)
x1, x2 ≥ 0 (4)

There is no need for Step 4, as all the decision variables were constrained in
sign.

3.2 Location of Linear Programs’ Optima 43

Assumptions of Linear Programs

Formula (3.1.1) is the mathematical description of an LP. As such it is complete
and perfect, as is the nature of mathematical formulas. It is also very laconic, as is
also the nature of mathematical formulas. The list below explains the consequences
— or assumptions, if you like — of (3.1.1) for the non-Spartans:

Proportionality The contribution to the objective function from each decision
variable is proportional to the value of the decision variable: If, say, decision
variable x2 is increased by ∆ then the value of objective function is increased
by c2∆ . Similarly, the contribution of each decision variable in restrictions
is also proportional to the value of the said variable. So, e.g., if you double
the value of the decision variable x2 the resources consumed by that decision
will also double.

Additivity The contribution to the objective function for any variable is inde-
pendent of the values of the other decision variables. For example, no matter
what the value of x1 is increasing x2 to x2 + ∆ will increase the value of
the objective function by c2∆ . Similarly, the resources used by decision x2
will increase independently of the value of x1 .

Divisibility It is assumed that the decision variables can take fractional values.
For example x1 may be 3.1414936535 This assumption is in many prac-
tical cases not true, but a reasonably good approximation of the reality. In
case this assumption is violated, we have an integer program (IP) or a mixed
integer–linear program (MILP).

3.2 Location of Linear Programs’ Optima

The feasible region of an (standard form) LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0

is the set of decisions x that satisfy the constraints Ax ≤ b and x ≥ 0 . A
decision x in the feasible region is called, of course, a feasible solution.

Note that the feasible region is determined by the technology matrix A and
the constraints b . The objective c has no effect on the feasible region.

Consider a feasible solution, or a decision, x of an LP. The constraint bi is
active at the decision x if Ai•x = bi , i.e. the ith inequality constraint Ai1x1 +
· · ·+Ainxn ≤ bi turns out to be the equality Ai1x1+· · ·+Ainxn = bi . Constraint i
being active at decision x means that the resource i is fully consumed, or utilized,
with decision x . This means that there is no slack in the resource i .

A feasible solution x = [x1 · · · xn]′ , or decision, of an LP is

3.2 Location of Linear Programs’ Optima 44

Inner point if there are no active constraints at that decision,
Boundary point if there is at least one active constraints at that decision,
Corner point if there are at least n linearly independent active constraints at

that decision. Corner points are also called basic feasible solutions (BFS).

In the above, linear independence means that the constraints are genuinely
different. For example, the constraints

2x1 + 3x2 ≤ 2
x1 + x2 ≤ 4

are linearly independent, but the constraints

(3.2.1) 2x1 + 3x2 ≤ 2 (3.2.1.a)
6x1 + 9x2 ≤ 6 (3.2.1.b)

are not. Indeed, the inequality 2x1 + 3x2 ≤ 2 is the same as the inequality
6x1 + 9x2 ≤ 6 : the latter is simply the former multiplied by 3 . So, the two
constraints in (3.2.1) are actually only a one constraint, i.e. (3.2.1.a) and (3.2.1.b)
are the same.

The next picture illustrates the discussion above. In the picture: None of the
linearly independent constraints (1) , (2) , or (3) is active in the “Inner point”. In
the “Boundary point” one of the constraints, viz. (1) , is active. In the “Corner
point” two (which is the number of the decision variables) of the constraints, viz.
(1) and (3) , are active.

0

1

2

3x2

0 1 2 3
x1

Boundary point

Inner point

Corner point

(1)

(2)

(3)

3.2 Location of Linear Programs’ Optima 45

Here is the theorem that makes linear programming so easy (compared to
non-linear programming):

3.2.2 Theorem (Fundamental theorem of linear programming). An optimal so-
lution of an LP can be found, if it exists, in one of the corner points of the feasible
region, i.e., an optimal solution is a BFS.

By theorem 3.2.2 it seems that we have a very simple Brutus Forcius’s (108–
44 BC) algorithm for finding an optimum: Just check all the corners! And, indeed,
this naïve approach works well with such petty examples we have in this course.
The problem with this brute force approach in practice is a manifestation of the
combinatorial curse: an LP with n decision variables and m constraints has(

n+m

m

)
=

(n+m)!

n!m!

corners (in the slack form that the simplex algorithm will use). So, an LP with 15
decision variables and 15 constraints has(

30

15

)
= 155,117,520

corners. Suppose you have a computer that checks 1, 000 corners per second (this
is pretty fast for today’s computers, and right-out impossible if you program with
JavaTM) . Then it would take almost two days for the computer to check all the
155,117,520 corners. You may think this is not a problem: maybe two days is not
such a long time, and a problem with 15 decision variables is way bigger than
anything you would encounter in the real life anyway. Well, think again! Two
days is a long time if you need to update your optimal solution in a changing
environment of, say, a stock exchange, and LPs with at 15 decision variables are
actually rather small. Indeed, let us be a bit more realistic now: Consider a stock
broker who has 50 stocks in her stock (pun intended). Suppose the broker has 50
constraints in selecting the stocks for her portfolio (not unreasonable) and a super-
computer that checks 100 million corners per second (very optimistic, even if one
does not program with JavaTM). Then checking all the corners to optimize the
portfolio would take 6.89× 1044 years. The author doubts that even the universe
can wait that long!

The bottom line: Checking all the corners would take too long.
The idea of the simplex algorithm is that you do not check all the corners.

This can be done by using the following rather general idea:

3.2.3 Algorithm (Guess–and–improve optimization).

Meta-step 1 Start with some (feasible) solution candidate.
Meta-step 2 Check if the solution candidate is optimal, or at least good enough.

If so, the algorithm terminates. Otherwise go to the next meta-step.
Meta-step 3 Choose a better solution candidate. Go back to meta-step 2.

3.2 Location of Linear Programs’ Optima 46

In simplex algorithm the solution candidates are the corners of the feasible
region, since by the fundamental theorem of linear programming 3.2.2, we know
that, that is where the optimal solutions are. The better solution candidates are
adjacent corners to the previously selected corner. One hopes that in moving from
one corner to a next one, one hits an optimal corner pretty soon, so that one does
not have to check all the corners.

To use the meta-algorithm 3.2.3 in the simplex case we have to:

• identify the corners analytically,
• know how to tell if a chosen corner is optimal,
• know how to go to the best (or at least to a better) adjacent corner.

Once the points raised above are solved we have a genuine algorithm.

Let us end this section by an example that shows how the brute force algorithm
for solving LPs works (in case you are forced to use it). The example also illustrates
how the corners of an LP are identified analytically, which is of course much more
interesting, and infinitely more important, than the actual brute force algorithm.

Consider the LP

(3.2.4)

max z = 3x1 + 4x2
s.t. x1 + x2 ≤ 40

x1 + 2x2 ≤ 60
x1, x2 ≥ 0

By introducing the so-called slack variables si , the LP (3.2.4) is equivalent to
the slack form LP

max z = 3x1 + 4x2
s.t. x1 + x2 + s1 = 40

x1 + 2x2 + s2 = 60
x1, x2, s1, s2 ≥ 0

Now, the brute force method (and the simplex method, to some extent) is based
on the following observation: Consider the constraints of an LP in the slack form.
This is a linear system with m equations and n+m unknowns: n actual decision
variables and m slacks. Since n+m > m this linear system is underdetermined.
In principle, to solve a system of m equations requires only m variables. The
remaining n variables can be set to zero. When solving an LP in slack form with
m equations and n+m unknowns, the m chosen variables used to solve the linear
system are basic variables (BV), and the remaining n variables that are set to
zero are called non-basic variables (NBV).

We choose successively 2 = m of the 4 = n−m variables x1, x2, s1, s2 to be
our BVs and set the remaining 2 = n variables to be zero, or NBV, and solve the

3.3 Location of Linear Programs’ Optima 47

constraint system. If the solution turns out to be feasible (it may not be since
we are omitting the non-negativity constraints here) we check the value of the
objective at this solution. Since we this way check all the BFSs of the system we
must find the optimal value.

From the next table (and the accompanying picture) we read that the optimal
decision is x1 = 20 , x2 = 20 with the slacks s1 = 0 , s2 = 0 . The corresponding
optimal value is z = 140 .

BV Linear system x1 x2 s1 s2 BFS z Pt

s1, s2
0 + 0 + s1 = 40
0 + 0 + s2 = 60

0 0 40 60 Yes 0 F

x2, s2
0 + x2 + 0 = 40
0 + 2x2 + s2 = 60

0 40 0 −20 No – A

x2, s1
0 + x2 + s1 = 40
0 + 2x2 + 0 = 60

0 30 10 0 Yes 120 C

x1, s2
x1 + 0 + 0 = 40
x1 + 0 + s2 = 60

40 0 0 20 Yes 120 B

x1, s1
x1 + 0 + s1 = 40
x1 + 0 + 0 = 60

60 0 −20 0 No – D

x1, x2
x1 + x2 + 0 = 40
x1 + 2x2 + 0 = 60

20 20 0 0 Yes 140 E

0

10

20

30

40
x2

−10 0 10 20 30 40 50 60
x1

A

B

C

D

E

F

3.3 Solution Possibilities of Linear Programs 48

3.3 Solution Possibilities of Linear Programs

Logically there are four possible cases that can happen with LPs: (1) there are
no solutions, (2) there is a unique bounded solution, (3) there are many bounded
solutions, and (4) there are unbounded solutions. There is of course, in principle,
the possibility that the case (3) splits into two sub-possibilities: (3.a) there are
only finitely many optimal bounded solutions and (2.b) there are infinitely many
optimal bounded solutions. The sub-possibility (3.a) can not happen with LPs,
however. The reason is that if x∗ and y∗ are any two optimal solutions then any
convex combination αx∗ + (1−α)y∗ , 0 < α < 1 , is also an optimal solution, i.e.
the feasible region is convex.

Next we illustrate the four possibilities graphically, and check what Octave’s
glpk says about them.

No Solutions

An LP can fail to admit optimal solutions if (and only if) it has no solutions at
all:

(3.3.1)

max z = 2x1 + 3x2
s.t. 0.5x1 + 0.25x2 ≤ 4 (1)

x1 + 3x2 ≥ 36 (2)
x1 + x2 ≤ 10 (3)

x1, x2 ≥ 0 (4)

The graph below shows why there are no feasible solutions of the LP above. The
the dashed line is an isoprofit line with z = 12 .

0

5

10

15
x2

0 10 20
x1

(1)

(2)

(3)

3.3 Solution Possibilities of Linear Programs 49

Here is what glpk says about LP (3.3.1):

octave:1> c=[2 3]’; A=[0.5 0.25; 1 3; 1 1]; b=[4 36 10]’;
octave:2> [x_max,z_max,STATUS] = glpk(c, A, b, [0 0]’, [], "ULU", "CC", -1)
x_max =

NA
NA

z_max = NA
STATUS = 213

Here NA means “missing value”. So, something went wrong. The status code
STATUS=213 says “No primal feasible solution (LP presolver)”. So, glpk indicates
that the LP (3.3.1) is infeasible.

Unique Solution

Consider the LP

(3.3.2)

max z = x1 + x2
s.t. 2x1 + 4x2 ≤ 9 (1)

3x1 + x2 ≤ 6 (2)
x1, x2 ≥ 0 (3)

The next picture shows it all: It is obvious, by moving the dashed isoprofit line
(z = 1 in the picture) further away from the origin that the unique optimal point
is C :

0

1

2

3x2

0 1 2 3 4
x1

B

C

(1)

(2)

Feasible region

Optimum

Here is what glpk says about LP (3.3.2):

3.3 Solution Possibilities of Linear Programs 50

octave:1> c=[1 1]’; A=[2 4; 3 1]; b=[9 6]’;
octave:2> [x_max,z_max,STATUS] = glpk(c, A, b, [0 0]’, [], "UU", "CC", -1)
x_max =

1.5000
1.5000

z_max = 3
STATUS = 180

So, the optimal decision is x = [x1 x2]
′ = [1.5 1.5]′ with the optimal objective

value z = 3 . The status code STATUS=180 means that a bounded solution was
found.

Many Bounded Solutions

Change the objective of the unique solution LP (3.3.2) to z = 6x1 + 2x2. We get
the LP

(3.3.3)

max z = 6x1 + 2x2
s.t. 2x1 + 4x2 ≤ 9 (1)

3x1 + x2 ≤ 6 (2)
x1, x2 ≥ 0 (3)

Now the feasible region of LP (3.3.3) and the unique solution LP (3.3.2) are the
same, since the only thing that changed was the form of the objective function.
But this change made the isoprofit lines parallel to the constraint (2). So, as the
next picture illustrates, this makes all the points in the line segment from B to C
optimal In the picture the dashed line is the isoprofit line z = 6 .

0

1

2

3x2

0 1 2 3 4
x1

B

C

(1)

(2)

Feasible region

Optimum

3.3 Solution Possibilities of Linear Programs 51

Here is what glpk says about LP (3.3.3):

octave:1> c=[6 2]’; A=[2 4; 3 1]; b=[9 6]’;
octave:2> [x_max,z_max,STATUS] = glpk(c, A, b, [0 0]’, [], "UU", "CC", -1)
x_max =

2
0

z_max = 12
STATUS = 180

So, glpk gives an optimal decision and the optimal value of the objective function.
Unfortunately, the STATUS=180 simply means that the found solution is bounded
and optimal: glpk does not recognize that there may be other optimal solutions
also. The omitted output parameter EXTRA in its field redcosts for reduced
costs would give an indication of multiple optimal solutions, however. We will
learn about reduced costs later in Chapter 5.

Unbounded Solution

Unbounded solution means that one can always find better and better solutions
to the problem so that there is no limit on how good the solution can be. In the
case of a maximization problem one can say that the optimal value is +∞ , and
in the case of a minimization problem one can say that the optimal value is −∞ .

The feasible region of an LP is unbounded if there exists at least one decision
variable that can take arbitrarily big or small values. If the feasible region is not
unbounded then it is bounded ,. An LP may have unbounded solution (only) if
its feasible region is unbounded. So, a bounded feasible region ensures a bounded
solution, but an unbounded feasible region does not (necessarily) imply unbounded
solution.

Consider the LP

(3.3.4)

max z = x1 + x2
s.t. x1 − x2 ≥ 1 (1)

6x2 ≥ 2 (2)
x1, x2 ≥ 0 (3)

In the next picture we see that one finds better and better solutions as one
moves the dashed isoprofit lines (z = 1 and z = 2 in the picture) further away
from the origin. Note that one cannot increase the decision x2 bigger than 2 ,
but the possibility to increase x1 without a limit is enough to make the solution
unbounded.

3.3 Solution Possibilities of Linear Programs 52

−1

0

1

2

3

4x2

0 1 2 3 4 5
x1

(1)

(2)

Feasible region

Here is what glpk says about LP (3.3.4):

octave:1> c=[1 1]’; A=[1 -1; 0 6]; b=[1 2]’;
octave:2> [x_max,z_max,STATUS] = glpk(c, A, b, [0 0]’, [], "LL", "CC", -1)
x_max =

NA
NA

z_max = NA
STATUS = 214

So, glpk basically gives up: A lot of “Missing values” and the status=214 means
“No dual feasible solution (LP presolver)”. The reason for this giving up is in
the presolver that uses dual LPs. Indeed, an unbounded (primal) LP implies an
infeasible dual LP. We will learn about primal and dual LPs in Chapter 5.

To fix the problem, one must turn off the presolver glpk uses. To turn
the presolver off set the field presol of the structure param to 0. I.e., issue
param.presol=0, and then call glpk with the non-default parameter param. The
next code illustrates how to do this:

3.4 Karush–Kuhn–Tucker Conditions* 53

octave:1> c=[1 1]’; A=[1 -1; 0 6]; b=[1 2]’;
octave:2> param.presol=0;
octave:3> [x_max,z_max,STATUS] = glpk(c,A,b,[0 0]’,[],"LL","CC",-1,param)
Scaling...
A: min|aij| = 1.000e+00 max|aij| = 6.000e+00 ratio = 6.000e+00

Problem data seem to be well scaled
EQ: min|aij| = 1.000e+00 max|aij| = 1.000e+00 ratio = 1.000e+00
Crashing...
Size of triangular part = 2
x_max =

1.33333
0.33333

z_max = 1.6667
STATUS = 184

Now, glpk gives some error-type messages and the values of x_max and z_max
are wrong. But never mind, the status code STATUS=184 is correct: it means
“Problem has unbounded solution”, although there is an embarrassing typo in the
help glpk in the explanation of the code 184.

3.4 Karush–Kuhn–Tucker Conditions*

Sometimes one can make an educated guess about the optimal corner of an LP.
In that case one asks if the guess is correct. The following Karush–Kuhn–Tucker
theorem 3.4.1 provides a way to check the correctness of one’s guess. It is also
useful for checking the result a computer algorithm gives you, since computers are
prone to rounding errors. The Karush–Kuhn–Tucker theorem is also used later in
proving the validity optimality criteria of the simplex algorithm.

3.4.1 Theorem (Karush–Kuhn–Tucker theorem). Consider the LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0
.

Let x be a feasible solution to the LP. If there are vectors s,u,v such that

(i) Ax + s = b,
(ii) c = A′v − u,
(iii) u′x + v′s = 0,
(iv) s,u,v ≥ 0

then x is an optimal solution to the LP.

3.5 Proofs* 54

The vectors s , u , v in the Karush–Kuhn–Tucker theorem 3.4.1 have the fol-
lowing interpretation:

s is the slack vector: si tells how much of the resource i is unused. If si = 0
then the constraint i is active, i.e., the resource i is completely used. This
interpretation is obvious if you look condition (i) of Theorem 3.4.1.

u is the reduced cost vector. It is connected to the sign constraint x ≥ 0
through the complementary slackness indicated in the condition (iii): if
xi > 0 then the ith sign constraint is not active and ui = 0 .

v is the shadow price vector. It is connected to the resource constraints,
or the dual variables. Basically, condition (iii) states the complementary
slackness that if there is a slack si > 0 in the resource i then vi = 0 .

The interpretations above are closely related to the sensitivity analysis and the
duality of LPs studied in Chapter 5.

3.5 Proofs*

The good Christian should beware of mathematicians and all those who make empty
prophecies. The danger already exists that mathematicians have made a covenant
with the devil to darken the spirit and confine man in the bonds of Hell.

—St. Augustine.

Proof of Theorem 3.2.2. Let us first prove that an optimal value is found in the
boundary of the feasible region.

This is a proof by contradiction: Suppose there is an optimal point x∗ that is
an inner point of the feasible region. Then, for a small enough r , all points that
are not further away from x∗ than the distance r belong to the feasible region.
In particular, the point

w = x∗ +
r

2

c

‖c‖
will belong to the feasible region. Here ‖c‖ denotes the Euclidean distance:

‖c‖ =

√√√√ n∑
i=1

c2i ,

and thus c/‖c‖ is a unit-length vector pointing at the same direction as c .

Now, at point w we get for the objective function c′x that

(3.5.1) c′w = c′x∗ +
r

2

c′c

‖c‖ = c′x∗ +
r

2
‖c‖ > c′x∗,

since c′c = ‖c‖2 . But inequality (3.5.1) is a contradiction, since x∗ was optimal.
So the assumption that x∗ was an inner point must be wrong.

3.5 Proofs* 55

Let us then prove that an optimal value is actually found in a corner of the
feasible region. This part of the proof requires rather deep knowledge of linear
algebra, and of linear spaces, although the idea itself is not so complicated if you
can visualize n-dimensional spaces. (Taking n = 3 should give you the idea.)

Let x∗ be an optimal solution, and let z∗ = c′x∗ be the optimal value. We
already know that x∗ is in the boundary of the feasible region. So, at least one
constraint is active. Let now V be the subspace of Rn spanned by the active
constraints at the point x∗ . Let k be the dimension of V . If k = n , then x∗ is
already a corner point, and we are done. Suppose then that k < n . Then V is a
proper subspace or Rn and any vector in Rn can be written as an orthogonal sum
of a vector from the subspace V and a vector from the orthogonal complement
V ⊥ . Let us write the vector c this way: c = cV + cV ⊥ .

Next we show that c belongs to the subspace V , i.e., cV ⊥ = 0 . (This claim
is the n-dimensional analogue of the 2-dimensional case, where the isoprofit line
must be parallel to a constraint line, if the optimal solution lies in the said line.)
Suppose the contrary: cV ⊥ 6= 0 . Now, there is a small ε > 0 such that x+ =
x∗+εcV ⊥ is a feasible solution. Indeed, x+ is obtained by moving a small amount
along an active constraint line (or surface). This is possible in principle, since we
are not in a corner point. But now

z+ = c′x+

= c′x∗ + εc′cV ⊥

= z∗ + εc′V cV ⊥ + εc′V ⊥cV ⊥

= z∗ + ε‖cV ⊥‖2
> z∗,

which is a contradiction, since z∗ was the optimal value.
Since k < n there is a non-zero point w in V ⊥ such that x̃ = x∗ + αw is

feasible when α > 0 is small enought, and not feasible when α > 0 is too large.
Now, let α be just small enough for x to be feasible. Then at point x̃ at least
one more constraint will become active. So, the space Ṽ associated to the point
x̃ has at least the dimension k+1 . Moreover, the point x̃ is at least as good as
the point x∗ , since

z̃ = c′x̃

= c′(x∗ + αw)

= z∗ + αc′w

= z∗.

Here we used the fact that c belongs to V , i.e. c′w = 0 for all w ∈ V ⊥ .
Now, x̃ is “closer to a corner” than x∗ , since it has k+1 active constraints. By

taking x̃ to be the new x∗ and repeating the procedure described above n−k−1
times we will find an optimal solution in a corner.

3.6 Exercises and Projects 56

Proof of Theorem 3.4.1. Let y be some BFS of the LP. Theorem 3.4.1 is proved
if we can show that c′y ≤ c′x .

Now, since y is feasible there is t ≥ 0 such that Ay + t = b . Denote
w = x− y . Then Aw = s− t , and

c′y = c′(x + w)

= c′x + c′w

= c′x + v′Aw − u′w

= c′x + v′s− v′t− u′w

= c′x + v′s− v′t− u′y + u′x

= c′x− v′t− u′y

≤ c′x.

So, x was indeed optimal.

3.6 Exercises and Projects

3.1. Find the

(a) standard form,
(b) slack form

of the LP
min z = −2x1 + 3x2

s.t. 1 ≤ x1 + x2 ≤ 9
2x1 − x2 ≤ 4

2 ≤ 7x1 + x2 ≤ 100
x2 ≥ 0

You can also make an Octave program that constructs the standard and slack
forms to you automatically.

3.2. Solve the LP of Exercise 3.1 by checking all the corners (of its slack form).
Checking all the corners may be hard work. So, if you are lazy and clever, you
can make an Octave program that checks the corners for you.

3.3. Solve the LP of Exercise 3.1 with

(a) stu_lp_solver,
(b) glpk.

3.6 Exercises and Projects 57

3.4. Find all the optima of the LP

max z = −3x1 + 6x2

s.t. 5x1 + 7x2 ≤ 35
−x1 + 2x2 ≤ 2

x1, x2 ≥ 0

3.5. * Make an Octave function that takes in a general form LP

max or min z = c′x

s.t. l ≤ Ax ≤ u
xi ≥ 0 for all i ∈ I,

where I is a given set of the decision variables, and transforms it into a standard
form. So, the function returns the parameters c , A , and b of the standard form
LP. The input parameters could be t for type (min or max), l , A , u , and I .

Chapter 4

Simplex Algorithm

A simple test of if you understand something is to try to teach it to someone. The
real test is to try to teach it to a computer, for computers cannot be intimidated.

— Anonymous (of course)

The question of whether computers can think is like the question of whether sub-
marines can swim. — Edsger W. Dijkstra

Programmers are in a race with the Universe to create bigger and better idiot-proof
programs, while the Universe is trying to create bigger and better idiots. So far
the Universe is winning. — Rich Cook

We will explain the simplex algorithm by implementing it with Octave. Of
course, there is no practical need for this, since the simplex algorithm is
already implemented, in a much better way, in the Octave function glpk.
Our implementation consists of the main function simplex_lp_solver and
the auxiliary functions first_simplex_tableau, new_simplex_tableau, and
is_optimal_simplex_tableau. We will also elaborate the simplex algorithm
with the following manual example:

4.0.1 Example (Manuel’s Problem). Manuel Eixample produces and sells three
different labels of ice cream: Aragon, Castile and Catalonia. To produce one liter
of each label Manuel needs egg, milk and sugar as follows:

Product
Resource Aragon Castile Catalonia
Egg 8 liters 6 liters 1 liter
Milk 4 liters 2 liters 1.5 liters
Sugar 2 liters 1.5 liters 0.5 liters

Manuel has bought 48 liters of egg, 20 liters of milk, and 8 liters of sugar. A liter
of Aragon sells for =C60 , a liter of Castile for =C30 , and a liter of Catalonia for
=C20 . The demand for Aragon and Catalonia is unlimited, but at most 5 liters of
Castile can be sold.

Manuel wants to maximize total revenue.

4.1 Simplex tableaux and General Idea 59

As a modeling problem Manuel’s problem 4.0.1 is very similar to Gia-
petto’sproblem 1.1.1. After making some comparisons on how we modeled
Giapetto’s problem 1.1.1 we notice that we should set the decision variables to

x1 = liters of Aragon produced
x2 = liters of Castile produced
x3 = liters of Catalonia produced

and that Manuel should solve the following LP:

(4.0.2)

max z = 60x1 + 30x2 + 20x3 (revenue)
s.t. 8x1 + 6x2 + x3 ≤ 48 (egg)

4x1 + 2x2 + 1.5x3 ≤ 20 (milk)
2x1 + 1.5x2 + 0.5x3 ≤ 8 (sugar)

x2 ≤ 5 (Castile demand)
x1, x2, x3 ≥ 0

Before going any further let us admit honestly that there will be a huge hiccup
with our simplex algorithm: It will only solve LPs of the form

(4.0.3)
max z = c′x
s.t. Ax ≤ b

x ≥ 0,

where b ≥ 0 : There are LPs our algorithm cannot handle! The sign constraint
x ≥ 0 or the max-assumption are no problems because any LP can be transformed
into a standard form. The assumption b ≥ 0 is the hiccup! Indeed, e.g. the LP

max z = 3x1 + 2x2
s.t. 2x1 + x2 ≤ −10

x1 + x2 ≥ −80
x1, x2 ≥ 0

cannot be transformed into the form (4.0.3). The problem is the first inequality.
The second inequality is fine, since it can be multiplied by −1 on the both sides
to get the desired form

−x1 − x2 ≤ 80.

The general case, where b may have negative components requires more sophisti-
cated algorithms, e.g. like the ones used by glpk.

4.1 Simplex tableaux and General Idea

The simplex algorithm expresses the LP as a matrix called the simplex tableau.
The first simplex tableau of the LP 4.0.3 is the augmented matrix

(4.1.1) T =

[
1 −c′ 0 0
0 A I b

]
.

4.1 Simplex tableaux and General Idea 60

The idea is that the standard form (4.0.3) is equivalent to the slack form

(4.1.2)

max z
s.t. z − c′x = 0,

Ax + s = b,
x, s ≥ 0.

Here s is the vector of the slack variables: si tells how much there is slack in
the ith constraint Ai•x ≤ bi . In other words, si tells how much of the resource
i is unused. Since we know, by Theorem 3.2.2, that an optimum of an LP is in a
corner of the feasible region, it follows that a solution of the LP (4.1.2) must be a
BFS of the linear system

[
1 −c′ 0
0 A I

] z
x
s

 =

[
0
b

]
.

So, the first simplex tableau comes from this system.

The first simplex tableau (4.1.1) is already solved if you take the slacks to be
the BV. This is so because there is an identity matrix I corresponding to the slack
columns. So, in the first simplex tableau the decision variables are all set to zero,
which is hardly an optimal BFS, since you would just be slacking off ,.

Let us build the first simplex tableau for our manual example 4.0.1. We start
by transforming the Manuel’s LP (4.0.2) into a slack form:

max z = 60x1 + 30x2 + 20x3
s.t. 8x1 + 6x2 + x3 + s1 = 48

4x1 + 2x2 + 1.5x3 + s2 = 20
2x1 + 1.5x2 + 0.5x3 + s3 = 8

x2 + s4 = 5
x1, x2, x3, s1, s2, s3, s4 ≥ 0

Taking s1, s2, s3, s4 to be our first BV our first Simplex tableau for Manuel is:

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 −60 −30 −20 0 0 0 0 z = 0

2 0 8 6 1 1 0 0 0 s1 = 48
3 0 4 2 1.5 0 1 0 0 s2 = 20
4 0 2 1.5 0.5 0 0 1 0 s3 = 8
5 0 0 1 0 0 0 0 1 s4 = 5

In a very small nut-shell the simplex algorithm works then as follows:

If the simplex algorithm identifies the current simplex tableau to be solved with
an optimal BFS there is nothing to be done any more, and the optimal solution

4.1 Simplex tableaux and General Idea 61

can be read from the tableau with the given BV corresponding the BFS. If the
current BFS is not optimal the simplex algorithm starts to look for a better BFS by
changing the BV and then solving the tableau with respect to the new, hopefully
better, BV. This is repeated until an optimal solution is found (if ever).

Let us explain the simplex method in a bit more detail with some matrix
gymnastics:

We write the (first) simplex tableau (4.1.1) so that the variables (decisions or
slacks) that are BV are before the variables (decisions or slacks) that are NBV.
This may require interchanging some columns of the augmented matrix, but that
is not a problem: Augmented matrices remain equivalent under column-switches,
if you just keep track which column means which variable. (The equivalence of
augmented matrices mean that they represent the same system of linear equations.
I.e. augmented matrix [A|b] is equivalent to the augmented matrix [Ã|b̃] if the
linear systems Ax = b and Ãx̃ = b̃ have the same solutions: x = x̃ .) We also
augment the objective coefficients for the slacks to be zero. Similarly, we augment
A to [A I] . We denote by cBV the coefficients corresponding to BV and by cNBV

the coefficients corresponding to NBV. Similarly, we denote by B the columns of
the augmented A corresponding to BV and by N the columns of the augmented
A corresponding to NBV. Finally, we shall use the obvious notations xBV and
xNBV for the BV and NBV parts of the augmented decision-and-slacks vector x .
With this notation we can write (4.1.1) as

(4.1.3) T =

[
1 −c′BV −c′NBV 0
0 B N b

]
.

So, if this is the first simplex tableau, we have just switched the decision variables
and the slacks around. Also, the tableau is solved, since B = I and cBV = 0 .

Now, the simplex algorithm starts changing simplex tableaux into new simplex
tableaux so that all the tableaux are always equivalent. Suppose we change the BV
to a new one. In our notation it means that the columns of (4.1.3) have changed.
So, B is no longer the identity matrix I . In order to solve the tableau (4.1.3) we
simply multiply the lower block of the tableau from the left with the inverse of B .
This way we get the identity matrix B−1B = I . We obtain the tableau

(4.1.4) T =

[
1 −c′BV −c′NBV 0
0 I B−1N B−1b

]
.

But (4.1.4) is not solved for the new BV. Indeed, there may be non-zero coefficients
in −cBV . So, we must eliminate −cBV from the first row. This can be done by
adding the lower block multiplied by c′BV to the the first row. After a bit of
reasonably tedious matrix algebra we obtain

(4.1.5) T =

[
1 0 c′BVB−1N− c′NBV c′BVB−1b
0 I B−1N B−1b

]
.

4.2 Top-Level Algorithm 62

Now it is important to note that given any BV the form of the solved simplex
tableau is always given by the formula (4.1.5). So, we are left with two problems:

1. How to identify an optimal simplex tableau?
2. How to change a non-optimal BV into a better one?

How to solve the problems 1–2 and to carry out the simplex idea explained above
with Octave is the content of the rest of this chapter.

4.2 Top-Level Algorithm

In the previous section we already saw how the simplex algorithm works in the
general level, or top-level, if you like. This general level is implemented in the
Octave function simplex_lp_solver. In this section we go through this top-level
code line-by-line. The code is in the file simplex_lp_solver.m. The line numbers
are not part of the code (they never are). They are for reference purposes only.

1 function [z_max, x_max, status] = simplex_lp_solver(c, A, b, maxiter=100)

The file starts by the keyword function following with the return values z_max,
x_max, and status of the function. Then comes the name simplex_lp_solver of
the function, and the input parameters c, A, b, and maxiter of the function. The
input value maxiter is given a default value 100, that is used if the user does not
provide a different value for it. The meanings of the input and output variables
are given in the help block in the lines 11–34.

2 ## Function [z_max, x_max, status] =
3 ## simplex_lp_solver (c, A, b, maxiter=100) solves the LP
4 ##
5 ## max c’*x
6 ## s.t. A*x <= b
7 ## x >= 0,
8 ##
9 ## where b>=0, by using the standard simplex algorithm.

10 ##
11 ## Input:
12 ##
13 ## c, A, b
14 ## The (column) vector defining the objective function, the
15 ## technology matrix, and the (column) vector of the constraints.
16 ##
17 ## maxiter
18 ## The maximum iterations used in finding a solution (default: 100).
19 ##

4.2 Top-Level Algorithm 63

20 ## Output:
21 ##
22 ## z_max, x_max
23 ## The maximal value of the objective and an optimal decision.
24 ##
25 ## status
26 ## A string indicating the status of the solution:
27 ## "bounded"
28 ## A bounded solution was found.
29 ## "unbounded"
30 ## The solution is known to be unbounded.
31 ## "infeasible"
32 ## Solutions are known not to exist (not applicable for b>=0).
33 ## "unknown"
34 ## The algorithm failed.
35 ##
36 ## simplex_lp_solver uses the functions first_simplex_tableau,
37 ## new_simplex_tableau, and is_best_simplex_tableau.
38 ##
39 ## See also: glpk.
40 ##

Lines 2–39 is a comment block that will be printed if the user asks for help by
typing help simplex_lp_solver. The empty line 40 terminates the help block
so that the following line 41 will not be printed when help is called for.

41 ## Get the first simplex tableau.
42 [T,BV] = first_simplex_tableau(c,A,b);
43

The lines 41–43 call the external function first_simplex_tableau that will
build the first simplex tableau from the coefficient vector c determining objective
function, the technology matrix A, and the upper bounds b. The simplex tableaux
will be identified by the pair [T,BV], where the matrix T is the simplex tableau
without the knowledge of which of the variables are basic, and the vector BV
consists of the indexes (not the values) of the basic variables. The function
first_simplex_tableau will be defined later.

44 ## Look for better simplex tableaux, but avoid the infinite loop.
45 status = "unknown"; # Status still unknown :)
46 iter = 0; # No iterations yet.
47 while (iter<maxiter && ...
48 !is_optimal_simplex_tableau(T,BV) && ...
49 !strcmp(status,"unbounded"))
50 [T,BV,status] = new_simplex_tableau(T,BV); # New [T,BV], unbounded (?).
51 iter = iter + 1; # We just had an iteration.
52 endwhile
53

4.2 Top-Level Algorithm 64

The lines 44–52 are the Beef of the top-level algorithm!

In the line 45 the status of the LP is set to "unknown", since we do not know
its status yet ,.

The variable iter introduced in the line 46 is simply a counter that is increased
each time after a new simplex tableau is generated. If iter exceeds the input
variable maxiter new simplex tableaux will not be generated. The variables iter
and maxiter are needed to avoid a possibly infinite loop in the while-block in
lines 47–52.

In the lines 47–49 an iteration while-loop starts if the number of iterations iter
has not exceeded the number maxiter and we haven’t found an optimal simplex
tableau yet and we haven’t found out that the problem has an unbounded solution.
The external function is_optimal_simplex_tableau is used to check if the sim-
plex tableau [T,BV] is optimal. We don’t care at this point how this is done. The
implementation of the function is_optimal_simplex_tableau will be explained
later. There is a funny-looking statement !strcmp(status,"unbounded") in the
line 49. It would be more intuitive to use the statement status!="unbounded".
That would be wrong, however. In Octave, to check if two strings are same one
uses the function strcmp (string compare). The statement status!="unbounded"
makes character-wise comparisons. It took a long time for the author to realize
this /.

In the line 50 a new simplex tableau is generated from the old one by calling
the external function new_simplex_tableau. Again, at this point we do not care
how the function new_simplex_tableau generates a new simplex tableau. We only
care that it will give us a new simplex tableau with associated BV, and change
the status of the problem to "unbounded" if it finds out that the problem has
unbounded solutions.

Finally, the line 51 increments the counter iter and the line 52 marks the end
of the while-loop.

54 ## Exit (with zeros), if a solution was not found or found unbounded.
55 if (iter>=maxiter || strcmp(status,"unbounded"))
56 z_max = 0;
57 x_max = zeros(length(c),1);
58 return;
59 endif
60

The lines 54–60 check if something went “wrong”. Basically this means that either
the status is still unknown, so that the algorithm was unable to find a solution
in the maxiter amount of iterations, or the solution is known to be unbounded
(the third alternative, infeasible, cannot happen in the simple simplex case). The
if-block in the lines 55–59 is entered if either one of these situations occurred. If
the if-block is entered, the the return values for z_max and x_max are set to zeros

4.3 Top-Level Algorithm 65

(for no apparent reason ,), and we exit the function at the return-statement in
the line 58. The line 59 marks the end of the if-block.

61 ## Collect the results from the last simplex tableau.
62 status = "bounded"; # We know this now.
63 z_max = T(1,columns(T)); # z_max is in the NE corner.
64 x_max = zeros(length(c)+length(b),1); # Zeros for now.
65 x_max(BV) = T(2:(length(b)+1),columns(T)); # Put BV values to x_max.
66 x_max = x_max(1:length(c)); # Cut the slacks away.
67 endfunction

If we ever get to the line 62, i.e. we haven’t exited the function in the line 58, we
must have a bounded solution.

The value of the objective function is in the top-right corner of the simplex
tableau T. It is retrieved to the output variable z_max in the line 63.

Next we retrieve the values of the decision variables. This is a bit tricky, since
we only have the values of the BV in the last column of the simplex tableau T. So,
in the line 64 we set the column vector x_max big enough for both the decisions
and the slacks. The vector is initialized to zero. In the line 65 we set the BV
values to their right places in the vector x_max. The values of the BV are found
from the last column of the tableau T from the row 2 and the following rows. Since
only the BV are non-zero the vector x_max now contains the correct values for all
the decision and slack variables. In the line 66 we crop the slack variables away
from the vector x_max so that only the decision variables remain.

Finally, the line 67 ends the function-block.

Although we do not yet have detailed knowledge of how the function
simplex_lp_solver works, we use it to solve the Manuel’s problem 4.0.1:

octave:1> c = [60; 30; 20];
octave:2> A = [8, 6, 1;
> 4, 2, 1.5;
> 2, 1.5, .5;
> 0, 1, 0];
octave:3> b = [48; 20; 8; 5];
octave:4> [z_max,x_max,status] = simplex_lp_solver(c,A,b)
z_max = 280
x_max =

2
0
8

status = bounded

So, according to simplex_lp_solver, Manuel should produce 2 liters of Aragon,
no Castile at all, and 8 liters of Catalonia. This way his revenue would be =C280 .

4.3 Initialization Algorithm 66

4.3 Initialization Algorithm

The simplex algorithm needs the first simplex tableau to start with. The idea
how to construct it was already given in Section 4.1. The top-level function
simplex_lp_solver explained in the previous Section 4.2 used the function
first_simplex_tableau to construct it. Here we show the details of this func-
tion. The function is written in the m-file first_simplex_tableau.m (surprise,
surprise).

1 function [T,BV] = first_simplex_tableau(c,A,b)

As always, the first line of an Octave function file starts with the keyword function
followed by the output variables, the name, and the input variables of the function.
The output and input variables should be familiar to you by now.

2 ## Function [T, BV] = first_simplex_tableau (c, A, b) builds the first
3 ## simplex tableau for the function simplex_lp_solver. T is the tableau,
4 ## BV are the indexes of the basic variables (the slacks in this case).

In the lines 2–4 following the function-line there is, as usual, the comment block
that will be printed if the user asks for help for the function. In this function we
do not give much help. The reason is that this function is an auxiliary function
used by the top-level function simplex_lp_solver. The idea is that the user
would not call this function directly, although it is perfectly possible for the user
to do so.

5
6 ## n is the number of decision variables, m is the number of constraints.
7 [m,n] = size(A);
8

The empty line 5 prevents the comment line 6 to be printed with the help-
command. In the line 7 we get the number of decision variables and the number
constraints from the dimensions of the technology matrix A. Indeed, the number
of constraints is the number of rows of A, and the number of decision variables is
the number of columns of A.

9 ## The simplex tableau without the BV information.
10 T = [1 -c’ zeros(1,m) 0;
11 zeros(m,1) A eye(m) b];
12
13 ## The indexes of the BV’s (the slacks in this case).
14 BV = ((n+1):(n+m))’;
15 endfunction

4.3 Initialization Algorithm 67

Finally, the simplex tableau T is set in the lines 10–11. Compare this with the
equation (4.1.1).

In the line 14 the indexes of the first BV are collected to the vector BV. Since
the first BV are the slacks, and the m slacks are listed after the n decisions, we
set BV to be [n+1 n+2 · · · n+m]′ .

Finally the line 15 ends the function-block.

If you wish, you can check the first simplex tableau in the manual example
4.0.1:

octave:1> c = [60; 30; 20];
octave:2> A = [8, 6, 1;
> 4, 2, 1.5;
> 2, 1.5, .5;
> 0, 1, 0];
octave:3> b = [48; 20; 8; 5];
octave:4> [T,BV] = first_simplex_tableau(c,A,b)
T =

Columns 1 through 5:

1.00000 -60.00000 -30.00000 -20.00000 0.00000
0.00000 8.00000 6.00000 1.00000 1.00000
0.00000 4.00000 2.00000 1.50000 0.00000
0.00000 2.00000 1.50000 0.50000 0.00000
0.00000 0.00000 1.00000 0.00000 0.00000

Columns 6 through 9:

0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 48.00000
1.00000 0.00000 0.00000 20.00000
0.00000 1.00000 0.00000 8.00000
0.00000 0.00000 1.00000 5.00000

BV =

4
5
6
7

So this is the Octave’s version of the tableau

4.4 Optimality-Checking Algorithm 68

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 −60 −30 −20 0 0 0 0 z = 0

2 0 8 6 1 1 0 0 0 s1 = 48
3 0 4 2 1.5 0 1 0 0 s2 = 20
4 0 2 1.5 0.5 0 0 1 0 s3 = 8
5 0 0 1 0 0 0 0 1 s4 = 5

4.4 Optimality-Checking Algorithm

The top-level function simplex_lp_solver explained in Section 4.2 used the func-
tion is_optimal_simplex_tableau to check whether a given tableau [T,BV] is
optimal or not. The criterion for optimality is:

The simplex tableau [T,BV] is optimal if there are no nega-
tive coefficients in the first row corresponding to the NBV-
variables.

We will not prove the validity of the optimality criterion here. The interested
reader finds the proof in the end of this section.

Before going into the Octave implementation, let us consider the manual ex-
ample 4.0.1 first. In Manuel’s first simplex tableau we have BV = [s1 s2 s3 s4]

′

and the first row of the first simplex tableau is

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 −60 −30 −20 0 0 0 0 z = 0

So, according to the optimality criterion, this tableau is not optimal. Indeed, there
is e.g. −60 for the NBV x1 . Indeed, all the NBV have negative coefficients.

Let us then consider is_optimal_simplex_tableau defined in the m-file
is_optimal_simplex_tableau.m.

1 function optimal = is_optimal_simplex_tableau(T,BV)
2 ## Function optimal = is_optimal_simplex_tableau (T,BV) tells (to the
3 ## function simplex_lp_solver) if the simplex tableau [T, BV] is optimal.
4

As always, the m-file begins with the declaration of the output variables, name,
and the input variables with the functions in the line 1, after which there is a
comment block for the help-command in the lines 2–3. The empty line 4 is there
to break the comment block.

4.4 Optimality-Checking Algorithm 69

5 ## The tableau [T,BV] is optimal if in the first row all the
6 ## coefficients are non-negative for all Non-Basic Variables (NBV).
7 NBV = get_NBV(BV,columns(T)-2); # Get NBV (cf. the function below).
8 optimal = 0; # A priori assume non-optimality.
9 NBVval = T(1,NBV+1); # First column is for z, hence NBV+1.

10 if (all(NBVval>=0)) # Check for optimality.
11 optimal = 1;
12 endif
13 endfunction
14

We need to check the sign of all the NBV in the first row of the tableau T.
In the line 7 the indexes of the NBV are retrieved from the BV and the di-

mension of the decisions-and-slacks vector. This is done by using the auxiliary
function get_NBV that is defined below.

In the line 8 we assume that the simplex tableau is not optimal: We will change
the optimality status later, if optimality is detected.

In the line 9, the vector NBVval is set to contain the values (not indexes) of
the NBV.

The if-block in the lines 10–12 checks the actual optimality: The condition
all(NBVval>=0) is true if and only if all the values of the NBV are non-negative.
If this is the case the if-block is entered, where the optimality status is set to 1
(i.e. true).

Finally, the line 13 ends the main function-block.

15 ###
16 ## Auxiliary function to get NBV indexes from BV indexes.
17 ###
18
19 function NBV = get_NBV(BV,nvar)
20 vars = ones(nvar,1); # Set "true" to all indexes.
21 vars(BV) = 0; # Set "false" to BV indexes.
22 NBV = find(vars); # Get the "true" indexes.
23 endfunction

The lines 19–23 define an internal auxiliary function for the main function
is_optimal_simplex_tableau. Since it is defined in the same m-file as the main
function, a user cannot call it directly. Indeed, only the main function can call it.

The line 19 marks the beginning of the function-block in the normal way.
The input parameters for the function get_NBV are BV, the indexes of the BV, and
nvar, the total number of decision variables and slacks.

The line 20 initializes the vector vars that will be a vector of zeros (for false)
and ones (for true) indicating if a given variable is NBV or not. It is set to be
vectors of ones to begin with. So, at first we assume that all the variables are
NBV.

4.4 Optimality-Checking Algorithm 70

In the line 21 the indexes corresponding to BV in the vector vars are set to
zero. So, now the vector vars has 1 at NBV indexes and 0 at BV indexes.

In the line 22 the vector of NBV indexes is set to be the indexes of the non-
zero (true) values of the vector vars. This is done by the Octave function find.
Now the vector NBV contains the indexes of the NBV and we are done. So, the
function-block ends in the following line 23.

Proof of Optimality Criterion*

We prove the optimality criterion by using the Karush–Kuhn–Tucker theorem
3.4.1. The proof requires some matrix-gymnastics that can be rather tedious. But
it can also be rewarding if you have the stamina for it.

Let x(d) and x(s) denote the decision part and the slack part, respectively, of
the augmented decision vector x = [x′BV x′NBV]′ . Let c(d) be the vector of the
original objective coefficient. We choose u to be the coefficients of the decision
variables in the first row in the (last) simplex tableau, and v to be the coefficients
of the slack variables in the first row in the (last) simplex tableau.

According to Karush–Kuhn–Tucker theorem 3.4.1 we need to show that

(i) Ax(d) + x(s) = b ,
(ii) c(d) = A′v − u ,
(iii) u′x(d) + v′x(s) = 0 ,
(iv) x(s),u,v ≥ 0 .

when c′BVB−1N − c′NBV ≥ 0 , i.e. all the NBV have non-negative coefficients in
the first row of the generic tableau

(4.4.1) T =

[
1 0 c′BVB−1N− c′NBV c′BVB−1b
0 I B−1N B−1b

]
.

Condition (i) is obviously satisfied.

Condition (iv) is almost obviously satisfied. The only thing that needs justifi-
cation is that u,v ≥ 0 . But this our optimality criterion together with the fact
the BV coefficients are zero in the first row. So, (iv) is indeed satisfied.

Condition (iii) also holds. Indeed, if x(d)j is BV then uj = 0 , since BV
must have zero coefficient in the first row in a solved simplex tableau. On the
other hand, if x(d)j is NBV it is zero. So, in any case, ujx(d)j = 0 for all j .
Consequently u′x(d) = 0 . The same argument shows that v′x(s) = 0.

Condition (ii) can be proven by showing that

(4.4.2) (A′v − u)′x(d) = c(d)′x(d)

4.5 Tableau Improvement Algorithm 71

for all decisions x(d) . Now, by (i) and (iii), which hold for all decisions x(d) and
slacks x(s) , the LHS of (4.4.2) is

(A′v − u)′x(d) = v′Ax(d)− u′x(d)

= v′(b− x(s))− u′x(d)

= v′b− v′x(s)− u′x(d)

= v′b.

On the other hand, the RHS of (4.4.2) is, by the first row of the generic simplex
tableau (4.4.1),

c(d)′x(d) = z = c′BVB−1b.

So, our problem becomes showing that

v′b = c′BVB−1b,

which is true, since (after suitable augmentation or deaugmentation)

(4.4.3) v′ = c′BVB−1,

a fact that may not be immediately obvious, but we shall come back to it in the
next chapter

We have proven the optimality criterion to be valid. �

4.5 Tableau Improvement Algorithm

The improvement routing is a very critical part of the simplex algorithm. Indeed,
so far the algorithm just starts with one BFS and checks its optimality. If the
improvement routine that gives the next BFS is not good, we might end up looking
for new BFSs for a very long time, or even forever! (This may still happen with
the improvement routine we present here, but the probability of such a bad luck
is tiny.)

The general idea of the improvement routine is to find the “best” variable in
the NBV and the “worst” variable in the BV and then make a switch.

Let us explain how this work with the manual example 4.0.1.
Recall that we have the first simplex tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 −60 −30 −20 0 0 0 0 z = 0

2 0 8 6 1 1 0 0 0 s1 = 48
3 0 4 2 1.5 0 1 0 0 s2 = 20
4 0 2 1.5 0.5 0 0 1 0 s3 = 8
5 0 0 1 0 0 0 0 1 s4 = 5

4.5 Tableau Improvement Algorithm 72

which we found to be non-optimal since there are negative coefficients in the first
row for an NBV. So, we have to change the BV.

The entering variable is the one with the smallest coefficient
in the first row.

The idea is that this way (we hope) to increase the RHS of the first row as much
and as fast as possible. So, we find that the variable x1 will enter the BV since it
has the smallest coefficient −60 .

The leaving BV will the one associated to the row that wins
the ratio test (the smallest finite positive value is the winner)

RHS of row
Coefficient of entering variable in row

.

The idea of the ratio test is, that we shall increase the entering variable as much
as possible. At some point the increasing of the entering variable will force one of
the BVs to become zero. This BV will then leave. The ratio test picks up the row
associated to the leaving variable.

The ratio test gives Manuel

Row 2 limit in on x1 = 48/8 = 6
Row 3 limit in on x1 = 20/4 = 5
Row 4 limit in on x1 = 8/2 = 4
Row 5 limit in on x1 = 5/0 = ∞ No limit.

So, Row 4 wins the ratio test. Hence s3 is the leaving BV.

Now we have new BV: s1, s2, x1, s4 and an unsolved simplex tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 −60 −30 −20 0 0 0 0 z = 0

2 0 8 6 1 1 0 0 0 s1 = 48
3 0 4 2 1.5 0 1 0 0 s2 = 20
4 0 2 1.5 0.5 0 0 1 0 x1 = 8
5 0 0 1 0 0 0 0 1 s4 = 5

Now we have to solve this Simplex tableau in terms of the BV. This means that
each row must have coefficient 1 for its BV, and that BV must have coefficient 0
on the other rows. This can be done by pivoting with respect to the BV that just
entered. After some tedious pivoting we get the solved simplex tableau

4.5 Tableau Improvement Algorithm 73

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 0 15 −5 0 0 30 0 z = 240

2 0 0 0 −1 1 0 −4 0 s1 = 16
3 0 0 −1 0.5 0 1 −2 0 s2 = 4
4 0 1 0.75 0.25 0 0 0.5 0 x1 = 4
5 0 0 1 0 0 0 0 1 s4 = 5

This tableau is not yet optimal, since the NBV x3 has negative coefficient −5 .
It is obvious that x3 enters the BV. To find out the leaving variable we perform
the ratio test:

Row 2 limit in on x3 = 16/(−1) = −16 No limit
Row 3 limit in on x3 = 4/0.5 = 8
Row 4 limit in on x3 = 4/0.25 = 16
Row 5 limit in on x3 = 5/0 = ∞ No limit

So, row 3 wins the ratio test. Since s2 is the BV of row 3 , s2 will leave. So, we
have the following unsolved simplex tableau

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 0 15 −5 0 0 30 0 z = 240

2 0 0 0 −1 1 0 −4 0 s1 = 16
3 0 0 −1 0.5 0 1 −2 0 x3 = 4
4 0 1 0.75 0.25 0 0 0.5 0 x1 = 4
5 0 0 1 0 0 0 0 1 s4 = 5

which can be solved easily (but tediously) enough by pivoting. We obtain

Row z x1 x2 x3 s1 s2 s3 s4 BV RHS
1 1 0 5 0 0 10 10 0 z = 280

2 0 0 −2 0 1 2 −8 0 s1 = 24
3 0 0 −2 1 0 2 −4 0 x3 = 8
4 0 1 1.25 0 0 −0.5 1.5 0 x1 = 2
5 0 0 1 0 0 0 0 1 s4 = 5

and note that the tableau is indeed optimal! No need to continue table-dancing!

Finally, let us interpret the result: The liters of Aragon, Castile, and Catalonia
Manuel should produce are 2 , 0 , and 8 . With this decision Manuel’s revenue is
=C280 .

Let us then consider the Octave implementation of the improvement routine,
i.e. the function file new_simplex_tableau.m:

4.5 Tableau Improvement Algorithm 74

1 function [Tnew,BVnew,status] = new_simplex_tableau(T,BV)
2 ## Function [Tnew, BVnew, status] = new_simplex_tableau (T, BV) builds
3 ## a new, hopefully better, simplex tableau [Tnew, BVnew] from the
4 ## tableau [T, BV], or detects the solution to be unbounded.
5 ## This function is used by the function simplex_lp_solver.
6

The line 1 defines, as always, the output variables, the name, and the input
variables of the function. The input variables are the old simplex tableau [T,BV],
and the output variables are the new simplex tableau [Tnew,BVnew], and the
string status. The string status will be "unknown" by default, but may change
to "unbounded", if an unbounded solution is detected.

The lines 2–5 consist of a very brief comment block for the help-command,
and the empty line 6 terminates the comment block.

7 ## Variable initializations and short-hand notations.
8 status = "unknown"; # Paranoia!
9 Tnew = T; BVnew = BV; # New tableau is old tableau (for now).

10 [m,n] = size(T); # Almost the dimensions of A.
11

The line 8 should not be needed, as the status is unknown by default. But it’s
better to be paranoid than sorry. The line 9 sets the new simplex tableau to be
the old one at this point. Later changes are made to the new tableau. The line
10 is simply a short-hand notation.

12 ## Get the entering BV.
13 coeff = T(1,2:(n-1)); # Coeffs. of the decisions and slacks.
14 [tmp,in] = min(coeff); # Index of the entering coefficient.
15

The line 13 gets the coefficients of the decision and slack variables from the first
row of the simplex tableau. The line 14 finds the value and the place of the
minimal coefficient from the coefficient vector coeff. The value (for which we
have no need) is stored in tmp and the index (for which we are interested in) is
stored in in, which is the entering variable.

16 ## Get the leaving BV, or detect unboundedness and leave the function.
17 rhs = T(2:m,n); # RHS of the constraint rows.
18 cin = T(2:m,in+1); # Coeffs. of the entering variables.
19 ratio = rhs./cin; # Pointwise ratios.
20

4.5 Tableau Improvement Algorithm 75

21 ## Set all the "no-limit" ratios to -infinity
22 for i=1:length(ratio)
23 if (ratio(i)==Inf || ratio(i)<0)
24 ratio(i) = -Inf;
25 endif
26 endfor
27
28 ## Check boundedness. Exit if unbounded.
29 if (all(ratio<0))
30 status = "unbounded";
31 return;
32 endif
33
34 [tmp,out] = min(abs(ratio)); # Get the winner index.
35

Here we find the leaving variable out by using the ratio test, and detect possible
unboundedness.

In the line 17 the RHS of the constraint rows of the tableau are stored in
the vector rhs. In the line 18 the coefficients of the entering variable in in the
constraint rows are stored in the variable cin (coefficient of in). In the line 19 the
pointwise ratio vector ratio is build. Note that the pointwise division operator is
dot-slash (./), not slash (/).

The lines 22–26 are an ugly hack. Here we set the “no-limit” ratios to −∞ .
The for-loop in the lines 22–26 goes through all the elements of the vector ratio
and sets negative and +∞ elements to −∞ .

The if-block in the lines 29–32 checks if the problem is unbounded, which
happens if all the ratios are negative (actually −∞ because of our ugly hack). If
this happens the status of the problem is set unbounded in the line 30, and the
function exits in the line 31.

In the line 34 the leaving variable out is set to be the index of the minimal
(in absolute value) coefficient in the ratio vector. The variable tmp contains the
actual (absolute) value, for which we have absolutely no use at all.

36 ## Solve T the new BV.
37 BVnew(out) = in; # The new BV.
38 Tnew = pivot(T,out+1,in+1); # Solve T for the new BV by pivoting.
39 endfunction

The line 37 switches the entering and the leaving variable in the BV. The line 38
solves the new simplex tableau with respect to the new BV by using the auxiliary
function pivot defined below. Finally, the line 39 ends the function-block.

4.6 Exercises and Projects 76

40
41 ###
42 ## The auxiliary function pivot
43 ###
44
45 function Ap = pivot(A, r, c)
46 ## Function Ap = pivot (A, r, c) pivots A with row r and column c.
47
48 A(r,:) = A(r,:)/A(r,c); # Get 1 for the pivot in the pivot row.
49 for i = 1:rows(A) # Remove the pivot from other rows.
50 if (i != r)
51 A(i,:) = A(i,:) - A(i,c)*A(r,:);
52 endif
53 endfor
54 Ap = A; # Return the pivoted matrix Ap.
55 endfunction

The lines 41–55 define the internal auxiliary function pivot. Since pivoting should
be known by everyone from the elementary linear algebra courses, we do not
waste valuable paper by explaining how the function works.

4.6 Exercises and Projects

4.1. Solve the Giapetto’s problem 1.1.1 by using simplex_lp_solver.

4.2. Solve the LP
max z = x1 + 2x2
s.t. x1 + x2 ≤ 6

x1 + 4x2 ≤ 20
x1, x2 ≥ 0

(a) by using simplex_lp_solver,
(b) by using glpk.

4.3. Consider the LP

max z = 4x1 + 7x2
s.t. −x1 + 3x2 ≤ 5

−6x1 − 6x2 ≤ −3
x1, x2 ≥ 0

(a) Can this LP be solved by simplex_lp_solver?
(b) Solve the LP by using glpk. Note that you may have to switch of the glpk’s

presolver. Type help glpk to find out how to do this.

4.4. Don Guido has peculiar taste: He likes a mixture of Monte Conero and Pinot
Grigio (yuck). His “rosé” must have at least 20% of both grapes. Monte Conero

4.6 Exercises and Projects 77

costs =C2 per liter and Pinot Grigio costs =C3 per liter. Don Guido wants to mix
100 liters of his rosé for the upcoming wedding of his daughter (poor guests). He
has infinite supply of Monte Conero, but only 50 liters of Pinot Grigio at his
disposal. Also, he has promised to buy at least 10 liters of Monte Conero from
his cousin Don Luigi.

How should Don Guido mix his rosé to make it as cheap as possible?

You can find the answer any way you want, e.g. by using glpk or
simplex_lp_solver (if it works), or by simply deducing the obvious (and miss
the joy of modeling the problem as an LP).

4.5. simplex_lp_solver assumes that the LP is a maximization problem. Modify
it so that it takes an additional input value indicating whether the problem is
maximization or minimization, and then solves the problem.

4.6. Find out an LP that is in principle within the scope of the sim-
plex algorithm implemented in simplex_lp_solver, i.e. b ≥ 0 , but for
which simplex_lp_solver fails anyway. Can you find the problem with
simplex_lp_solver and fix it?

Note that there are many different solutions to this exercise. The main point
of this exercise is to show that the function simlplex_lp_solver does not meet
“industry standards”.

4.7. * The function simplex_lp_solver has no input-checking whatsoever.
Modify the function, and if necessary its auxiliary functions, to check that the
input parameters are correct. If the input parameters are not correct the function
should return informative error messages.

Chapter 5

Sensitivity and Duality

Measure with a micrometer. Mark with chalk. Cut with an axe.
— Ray’s rule of precision

In the physical world, one cannot increase the size or quantity of anything without
changing its quality. Similar figures exist only in pure geometry. — Paul Valéry

The qualitative vs. quantitative dichotomy is bollocks: Consider yourself in a cage
with a cat. The quantitative difference is that the cat weighs either 3kg or 300kg.

— Anonymous

5.1 Sensitivity Analysis

What and Why is Sensitivity Analysis

A significant problem with LPs (or with any other models, for that matter) is the
assumption that the parameters c , A , and b in

max z = c′x
s.t. Ax ≤ b

x ≥ 0

are known without any margin of error. In practice we only have a (good or
bad) guess about the true values of the parameters. Sensitivity analysis is a
systematic study of how, well, sensitive, the solutions of the LP are to small
changes in the data. The key questions are

1. If the objective function c changes in its parameter ci , how does the solution
change?

2. If the resources available change, i.e., the constraint vector b change in its
parameter bi , how does the solution change?

5.1 Sensitivity Analysis 79

Question 1 is related to the concept of reduced cost and question 2 is related
to the concept of shadow price.

The brute force approach to these questions is to solve lots and lots of LPs: One
LP for each change in the parameters. For example, in Giapetto’s problem 1.1.1
there might be uncertainty in what is the actual market demand for soldiers. It
was assumed to be 40 , but it could be anything between, say, 30 and 50 . We could
then solve the Giapetto’s LP separately for market demands 30, 31, . . . , 49, 50 . So,
we would solve 20 different LPs (21 , actually, but who’s counting). If it is also
assumed that the the profit for soldiers might not be exactly =C3 but could be
anything between =C2.5 and =C3.5 , then we could also solve the LP separately for
profits =C2.5,=C2.6, . . . ,=C3.4,=C3.5 . Combining this with the different LPs we got
from the uncertainty in the market demand we would then have 20×10 = 200
different LPs to solve (well, 21×11 = 231 if you count correctly). This “checking
the scenarios” method works, and it is indeed widely used in practice.

The brute force method explained above has at least three problems: (1) It is
inelegant, (2) it would involve a large amount of calculations, and (3) it is hard
to see what happens when more than two parameters change. These problems
are, however, not critical. Indeed, (3) understanding high-dimensional spaces is
always difficult, (2) solving hundreds of LPs is not that time-consuming with
modern computers and efficient algorithms like the simplex, and (1) who cares
about elegance these days? Nevertheless, we shall try to be at least a little bit
elegant in this chapter.

Shadow Prices

The shadow price πi of a constraint bi is the amount that the
objective function’s value z at the optimum would change if
the constraint bi is changed by one unit — given that the
optimal BV does not change.

Note the clause “given that the optimal BV does not change”. This means that
the shadow price is valid for small changes in the constraints. If the optimal corner
changes when a constraint is changed, then the interpretation of the shadow price
is no longer valid.

Shadow prices are sometimes called dual variables or marginal prices. The
name “marginal price” actually a much more informative name than the nebulous
shadow price (or dual variable). Indeed, suppose you have a constraint that limits,
say, the amount of labor available to 40 hours per week. Then the shadow price
will tell you how much you would be willing to pay for an additional hour of labor.
If your shadow price is =C10 for the labor constraint, for instance, you should pay
no more than =C10 an hour for additional labor. Labor costs of less than =C10 per
hour will increase the objective value; labor costs of more than =C10 per hour will

5.1 Sensitivity Analysis 80

decrease the objective value. Labor costs of exactly =C10 will cause the objective
function value to remain the same.

If you like mathematical formulas — and even if you don’t — the shadow prices
can be defined as follows: Consider the LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0

The optimal solution z∗ of this LP is a function of the objective vector c , the
technology matrix A , and the constraint vector b :

z∗ = z∗(c,A,b).

Then the shadow price πi associated to the constraint bi is the partial derivative

πi =
∂z∗

∂bi
,

or, in vector form,

π =
∂z∗

∂b
,

where

π =

 π1
...
πm

 and
∂z∗

∂b
=

∂z∗

∂b1
...
∂z∗

∂bm

 .
Suppose now that ε = [ε1 · · · εm]′ is a small vector, and

z∗ε = z∗(c,A,b + ε)

is the optimal value, when the constraints b are changed by ε . Then the first
order approximation for the new optimal value is

z∗ε = z∗ + ε′
∂z∗

∂b
= z∗ + ε′π.(5.1.1)

The equality (5.1.1) is valid as long as the elements εi of ε are small enough in
absolute value. If some of the elements of ε are too big, then the equality (5.1.1)
may fail to be true.

Let us see now how to use formula (5.1.1) in sensitivity analysis.

5.1.2 Example. Consider the LP

max z = 4x1 + 3x2
s.t. 2x1 + 3x2 ≤ 6 (1)

−3x1 + 2x2 ≤ 3 (2)
2x2 ≤ 5 (3)

2x1 + x2 ≤ 4 (4)
x1, x2 ≥ 0

5.1 Sensitivity Analysis 81

Here is a picture representing the LP:

0

1

2

3

4x2

0 1 2 3 4
x1

A
B

C

D

E

(1)

(2)

(3)

(4)

Feasible region

Optimum

From the picture we read — by moving the isoprofit line (the dashed lines) away
from the origin — that the optimal decision is at the point C = (1.5, 1). Therefore,
the optimal value is z = 4×1.5+3×1 = 9. We also see that the constraints (1) and
(4) are active at the optimum. So, changing them should change the optimal value.
Indeed, they should have positive shadow prices. In contrast, the constraints (2)
and (3) are not active at the optimum. So, changing them — slightly — should
have no effect on the optimum. So, both of them should have 0 as their shadow
price.

Let us calculate the shadow prices of Example 5.1.2 with glpk. For this we use
the output structure extra and its field lambda (for some reason glpk call shadow
prices λ instead of π):

5.1 Sensitivity Analysis 82

octave:1> c=[4;3]; A=[2 3;-3 2;0 2;2 1]; b=[6;3;5;4];
octave:2> [x_max,z_max,status,extra]=glpk(c,A,b,[0;0],[],"UUUU","CC",-1)
x_max =

1.5000
1.0000

z_max = 9
status = 180
extra =
{

lambda =

0.50000
0.00000

-0.00000
1.50000

redcosts =

0
0

time = 0
mem = 0

}

So, the shadow prices for the constraints (1) and (4) are 0.5 and 1.5 , respectively.
All other shadow prices are 0 . So, the shadow price vector is

π =

0.5

0
0

1.5

 .
Let us then try to use formula (5.1.1) to see what happens if the constraints

(1)–(4) change. Suppose each constraint is relaxed by 0.5 . That means that in
formula (5.1.1) we have ε = [0.5 0.5 0.5 0.5]′ . So, the new optimum should be

z∗ε = z∗ + ε′π

= 9 + 0.5×0.5 + 0.5×0 + 0.5×0 + 0.5×1.5

= 10.

Is this correct? Let us see:

5.1 Sensitivity Analysis 83

octave:1> c=[4;3]; A=[2 3;-3 2;0 2;2 1]; b=[6;3;5;4]+0.5;
octave:2> [x_max,z_max,status,extra]=glpk(c,A,b,[0;0],[],"UUUU","CC",-1)
x_max =

1.7500
1.0000

z_max = 10
status = 180
extra =
{

lambda =

0.50000
0.00000

-0.00000
1.50000

redcosts =

0
0

time = 0
mem = 0

}

So, we see that formula (5.1.1) is correct, when ε ≤ [0.5 0.5 0.5 0.5]′ .

Let us then consider a big change. Let ε = [10 10 10 0]′ . Then formula (5.1.1)
would give us

z∗ε = z∗ + ε′π

= 9 + 10×0.5 + 10×0 + 10×0 + 0×1.5

= 14.

Let’s see what really happens:

5.1 Sensitivity Analysis 84

octave:1> c=[4;3]; A=[2 3;-3 2;0 2;2 1];
octave:2> b=[6;3;5;4]+[10;10;10;0];
octave:3> [x_max,z_max,status,extra]=glpk(c,A,b,[0;0],[],"UUUU","CC",-1)
x_max =

0
4

z_max = 12
status = 180
extra =
{

lambda =

0
0

-0
3

redcosts =

-2
0

time = 0
mem = 0

}

We see that glpk gives 12 a the optimum. The formula (5.1.1) gave us the
optimum 14 . So, the change [10 10 10 0]′ is not small enough for the formula
(5.1.1) to be valid. What actually happened here was that the optimal point
jumped corners.

Reduced Costs

Let us then consider the reduced costs. Remember that the shadow prices were
associated to the constraints, or — if you like simplex language — to the slacks.
The reduced costs are associated to the decision variables.

The reduced cost ui for a (NBV) decision variable xi is the
amount the objective value z at the optimum would decrease
if xi would be forced to be 1, and thus a BV — given that
the change from xi = 0 to xi = 1 is small.

Here are some interpretations and remarks of reduced costs that should help
you to understand the concept:

• The clause “given that the change from xi = 0 to xi = 1 is small” is a
similar clause that the clause “given that the optimal BVs don’t change” was

5.1 Sensitivity Analysis 85

in the definition of the shadow price. Indeed, it may be, e.g., that forcing
xi ≥ 1 will make the LP infeasible. Remember: In sensitivity analysis we
are talking about small changes — whatever that means. The analysis
may, and most often will, fail for big changes.
• Decision variables that are BV have zero reduced costs.
• The reduced cost is also known as opportunity cost. Indeed, suppose we

are given the forced opportunity (there are no problems — only opportu-
nities) to produce one unit of xi that we would not otherwise manufacture
at all. This opportunity would cost us, since our optimized objective would
decrease to a suboptimal value. Indeed, we have now one more constraint
— the forced opportunity — in our optimization problem. So, the opti-
mal solution can only get worse. The decrease of the objective value is the
opportunity cost.
• The reduced cost ui of xi is the amount by which the objective coefficient
ci for xi needs to change before xi will become non-zero at the optimum.
• As an example of the point above, consider that you are producing x1, . . . , xn

that will give you profits c1, . . . , cn . You have some constraints, but the
actual form of them does not matter here. Now, you form the LP to optimize
your profit, and you solve it. You get optimal solution for productions:
x∗1, x

∗
2, . . . , x

∗
n , and you get your optimal profit z∗ . You notice that, say,

x∗2 = 0 . So, obviously the profit c2 for x2 is not big enough. Then you ask
yourself: How big should the profit c2 for x2 be so that it becomes more
profitable to produce x2 , at least a little, rather than not to produce x2 at
all? The answer is c2 − u2 (or c2 + u2 , depending on how you interpret
the sign). This means that the profit must increase at least by the reduced
cost before it becomes more profitable to produce a product you would not
produce otherwise.

Let us now consider the reduced cost with glpk with:

5.1.3 Example.

max z = 4x1 + 3x2
s.t. 2x1 + 3x2 ≤ 16 (1)

−3x1 + 2x2 ≤ 13 (2)
2x2 ≤ 15 (3)

2x1 + x2 ≤ 4 (4)
x1, x2 ≥ 0

glpk returns the reduced costs in the output structure extra in its field
redcosts:

5.1 Sensitivity Analysis 86

octave:1> c=[4 3]’; A=[2 3; -3 2; 0 2; 2 1]; b=[16 13 15 4]’;
octave:2> [x_max,z_max,status,extra]=glpk(c,A,b,[0 0]’,[],"UUUU","CC",-1)
x_max =

0
4

z_max = 12
status = 180
extra =
{

lambda =

0
0

-0
3

redcosts =

-2
0

time = 0
mem = 0

}

So, we see that the redcosts are u1 = −2 for the NBV decision x1 and u2 = 0 for
the BV decision x2

Let us then test the interpretation

“reduced cost is the decrease in the value of the objective if we are
forced to produce one unit where we otherwise would produce none”.

We test the interpretation with the following LP:

max z = 4x1 + 3x2
s.t. 2x1 + 3x2 ≤ 16 (1)

−3x1 + 2x2 ≤ 13 (2)
2x2 ≤ 15 (3)

2x1 + x2 ≤ 4 (4)
x1 ≥ 1 (5)

x1, x2 ≥ 0

So, we have added to the LP of Example 5.1.3 the requirement that we must have
at least one x1 in the solution. This is the constraint (5) . Remember that without
this requirement we would have zero x1 ’s in the solution.

So, here is the Octave code for this problem:

5.1 Sensitivity Analysis 87

octave:1> c=[4 3]’; A=[2 3; -3 2; 0 2; 2 1; 0 1]; b=[16 13 15 4 1]’;
octave:2> [x_max,z_max,status,extra]=glpk(c,A,b,[0 0]’,[],"UUUUL","CC",-1)
x_max =

1
2

z_max = 10
status = 180
extra =
{

lambda =

0
-0
-0
3

-2

redcosts =

-0
0

time = 0
mem = 0

}

We see that the interpretation is indeed correct: The previous optimal value 12
dropped by 2 into 10 .

Sensitivity Analysis with Simplex with Matrices

We have learned how to perform sensitivity analysis with glpk. Let us then
consider how sensitivity analysis works with the simplex tableaux. The short
answer is

The shadow prices are the coefficients of the slacks in the first
row of the optimal simplex tableau and the reduced costs are
(minus) the coefficients of the decision variables in the first
for of the optimal simplex tableau.

Consider the Giapetto’s LP 1.1.1 as an example. In the slack form Giapetto’s
LP (1.1.3) reads

(5.1.4)

max z = 3x1 + 2x2
s.t. 2x1 + x2 + s1 = 100

x1 + x2 + s2 = 80
x1 + s3 = 40

x1, x2, s1, s2, s3 ≥ 0

5.1 Sensitivity Analysis 88

So, the first Simplex tableau for (5.1.4) is

Row z x1 x2 s1 s2 s3 BV RHS
1 1 −3 −2 0 0 0 z = 0

2 0 2 1 1 0 0 s1 = 100
3 0 1 1 0 1 0 s2 = 80
4 0 1 0 0 0 1 s3 = 40

and the last (optimal) simplex tableau is

Row z x1 x2 s1 s2 s3 BV RHS
0 1 0 0 1 1 0 z = 180

1 0 0 1 −1 2 0 x2 = 60
2 0 0 0 −1 1 1 s3 = 20
3 0 1 0 0 −1 0 x1 = 20

Let u denote the vector of reduced costs and π the vector of shadow prices. From
the 1st row we read that

u =

[
0
0

]
and π =

 1
1
0

 .
So, the shadow prices for the NBV slacks s1 and s2 are 1 for both. So, additional
carpentry and finishing hours are both worth =C1 per hour for Giapetto. Since
s3 is BV additional unit of market demand for soldiers is worthless to Giapetto.
Finally, we see that the reduced costs are zero, since all the decision variables are
BV.

Here is another example:

5.1.5 Example.

max z = 60x1 + 30x2 + 20x3
s.t. 8x1 + 6x2 + x3 ≤ 48

4x1 + 2x2 + 1.5x3 ≤ 20
2x1 + 3x2 + 0.5x3 ≤ 8

x1, x2, s1, s2, s3 ≥ 0

Our first simplex tableau is

Row z x1 x2 x3 s1 s2 s3 BV RHS
1 1 −60 −30 −20 0 0 0 z = 0

2 0 8 6 1 1 0 0 s1 = 48
3 0 4 2 1.5 0 1 0 s2 = 20
4 0 2 3 0.5 0 0 1 s3 = 8

5.2 Dual Problem 89

and after long and tedious table-dancing we get the optimal simplex tableau

Row z x1 x2 x3 s1 s2 s3 BV RHS
1 1 0 5 0 0 10 10 z = 280

2 0 0 −2 0 1 2 −8 s1 = 24
3 0 0 −2 1 0 2 −4 x3 = 8
4 0 1 1.25 0 0 −0.5 1.5 x1 = 2

Now we can read sensitivity information from the 1st row:

u =

 0
− 5

0

 and π =

 0
10
10

 .
We see that the reduced cost for x2 is −5 . This means that the profit for x2
should increase at least by 5 before it makes sense to produce them. Or, if you
like, producing one x1 would decrease the optimal profit 280 by 5 . The reduced
costs for x1 and x3 are zero, since they are BV. The shadow prices are: 0 for the
slack s1 , since it is not active, and 10 for both the active constraints s2 and s3 .
So, additional resources for the second and the third constraints are both worth
10 , and additional resources for the first constraint are worthless.

5.2 Dual Problem

Finding Dual

Associated with any LP there is another LP, called the dual — and then the
original LP is called the primal. In general, if the primal LP is a maximization
problem, the dual is a minimization problem — and vice versa. Also, the con-
straints of the primal LP are the coefficients of the objective of the dual problem
— and vice versa. If the constraints of the primal LP are of type ≤ then the
constraints of the dual LP are of type ≥ — and vice versa.

Let us now give the formal definition of the dual. We assume that the primal
LP is in standard form. Since all LPs can be transformed into a standard form
this assumption does not restrict the generality of the duality. The assumption is
made only for the sake of convenience.

The (linear) dual of the LP

max z = c′x
s.t. Ax ≤ b

x ≥ 0

5.2 Dual Problem 90

is
min w = b′y
s.t. A′y ≥ c

y ≥ 0

5.2.1 Example. Consider the LP

max z = [1 2 3]

 x1
x2
x3

s.t.

[
4 5 6
7 8 9

] x1
x2
x3

 ≤
[

10
11

]
.

The dual LP is

minw = [10 11]

[
y1
y2

]

s.t.

 4 7
5 8
6 9

[y1
y2

]
≥

 1
2
3

 .
Let us discuss briefly concept of duality in general and the linear duality in

particular.

• In general, dual is a transformation with the following property: trans-
forming twice you get back. This is the abstract definition of duality. In
mathematics a function is f is called involution if it is its own inverse, i.e.,
f−1 = f . So, duality is a meta-mathematical involution.
• Looking at the definition of the linear dual one sees the dual is LP itself. So,

it can be transformed into a standard form, and the one can construct the
dual of the dual. When one does so one gets back to the original primal LP,
i.e., the dual of the dual is primal. So, the linear dual deserves its name.
• We have already seen one duality between LPs before: A minimization prob-

lem is in duality with a maximization problem with the transform where the
objective function is multiplied by −1 . The usefulness of this simple duality
was that we only need to consider maximization problems, and the solution
of the minimization problem is −1 times the solution of the corresponding
maximization problem. Also, the optimal decisions in the maximization and
minimization problems are the same.
• The linear duality is more complicated than the simple “multiply by −1 dual-

ity” of the previous point. This makes the linear duality in some sense more
useful. Indeed, since the transformation is more complicated, our change

5.2 Dual Problem 91

of perspective is more radical, and thus this transformation gives us better
intuition of the original problem.
• The linear duality is very useful because of the following theorems: The
weak duality theorem states that the objective function value w of the
dual at any feasible solution y is always greater than or equal to the objective
function value z of the primal at any feasible solution x :

w = b′y ≥ c′x = z.

The weak duality theorem can be used to get upper bounds to the primal
LP. The strong duality theorem states that if the primal has an optimal
solution, x∗ , then the dual also has an optimal solution, y∗ , such that

z∗ = c′x∗ = b′y∗ = w∗.

The strong duality theorem can be used to solve the primal LP. Finally, the
complementary slackness theorem states that if a constraint in either
the primal or the dual is non-active, then the corresponding variable in the
other — complementary — problem must be zero.

Let us find a dual of an LP that is not in standard form.

5.2.2 Example. Consider the LP

min z = 50x1 + 20x2 + 30x3
s.t. 2x1 + 3x2 + 4x3 ≥ 11

12x1 + 13x2 + 14x3 ≤ 111
x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

The LP of Example 5.2.2 is not in standard form. So, before constructing its
dual, we transform it into standard form. This is not necessary. Sometimes we can
be clever, and find the dual without first transforming the primal into standard
form. But we don’t feel clever now. So, here is the standard form:

max −z = −50x1 − 20x2 − 30x3
s.t. −2x1 − 3x2 − 4x3 ≤ −11

12x1 + 13x2 + 14x3 ≤ 111
x1 + x2 + x3 ≤ 1
−x1 − x2 − x3 ≤ −1

x1, x2, x3 ≥ 0

Now we are ready to present the dual:

(5.2.3)

min −w = −11y1 + 111y2 + y3 − y4
s.t. −2y1 + 12y2 + y3 − y4 ≥ −50

−3y1 + 13y2 + y3 − y4 ≥ −20
−4y1 + 14y2 + y3 − y4 ≥ −30

y1, y2, y3, y4 ≥ 0

5.2 Dual Problem 92

(we used variable −w in the dual because there was variable −z in the standard
form primal). Note now that the dual LP (5.2.3) in in “dual standard form”: It is a
minimization problem with only inequalities of type ≥ . The original primal LP was
a minimization problem. So, it is natural to express the dual LP as a maximization
problem. Also, inequalities of type ≤ are more natural to maximization problems
than the opposite type inequalities ≥ . So, let us transform the dual LP (5.2.3)
into a maximization problem with ≤ type inequalities. In fact, let us transform
the dual LP (5.2.3) into a standard form. We obtain

max w = 11y1 − 111y2 − y3 + y4
s.t. 2y1 − 12y2 − y3 + y4 ≤ 50

3y1 − 13y2 − y3 + y4 ≤ 20
4y1 − 14y2 − y3 + y4 ≤ 30

y1, y2, y3, y4 ≥ 0

Economic Interpretation of Dual

5.2.4 Example (Dakota’s fractional furniture). The Dakota Furniture Company
manufactures desks, tables, and chairs. The manufacture of each type of furniture
requires lumber and two types of skilled labor: finishing labor and carpentry labor.
The amount of each resource needed to make each type of furniture is given in the
table below:

Product
Resource Desk Table Chair
Lumber 8 units 6 units 1 unit
Finishing 4 hours 2 hours 1.5 hours
Carpentry 2 hours 1.5 hours 0.5 hours

At present, 48 units of lumber, 20 finishing hours, and 8 carpentry hours are
available. A desk sells for =C60 , a table for =C30 , and a chair for =C20 .

Since the available resources have already been purchased, Dakota wants to max-
imize total revenue.

Dakota’s fractional furniture problem is, given that it is O.K. to produce frac-
tional amount of desks, tables, and chairs, a typical product selection problem.
So, following Algorithm 1.1.2 in the same way as in the Giapetto’s problem 1.1.1,
we find that the LP for Dakota’s fractional furniture example 5.2.4 is

max z = 60x1 + 30x2 + 20x3
s.t. 8x1 + 6x2 + x3 ≤ 48 (lumber)

4x1 + 2x2 + 1.5x3 ≤ 20 (finishing)
2x1 + 1.5x2 + 0.5x3 ≤ 8 (carpentry)

x1, x2, x3 ≥ 0

5.2 Dual Problem 93

where

x1 = number of desks manufactured
x2 = number of tables manufactured
x3 = number of chairs manufactured

Now, the dual of this problem is

(5.2.5)

min w = 48y1 + 20y2 + 8y3
s.t. 8y1 + 4y2 + 2y3 ≥ 60 (desk)

6y1 + 2y2 + 1.5y3 ≥ 30 (table)
x1 + 1.5y2 + 0.5y3 ≥ 20 (chair)

y1, y2, y3 ≥ 0

We have given the constraints the names (desk), (table), and (chair). Those were
the decision variables x1 , x2 and x3 in the primal LP. By symmetry, or duality,
we could say that y1 is associated with lumber, y2 with finishing, and y3 with
carpentry. What is going on here? It is instructive to represent all the data of the
Dakota’s problem in a single table:

Product
Resource Desk Table Chair Availability
Lumber 8 units 6 units 1 unit 48 units
Finishing 4 hours 2 hours 1.5 hours 20 hours
Carpentry 2 hours 1.5 hours 0.5 hours 8 hours
Price =C60 =C30 =C20

Now, the table above can be read either horizontally or vertically. You should
already know how the read the table above horizontally. That is the Dakota’s
point of view. But what does it mean to read the table vertically? Here is the
explanation, that is also the economic interpretation of the dual LP:

Suppose you are an entrepreneur who wants to purchase all of Dakota’s re-
sources — maybe you are a competing furniture manufacturer, or maybe you need
the resources to produce soldiers and trains like Giapetto. Then you must deter-
mine the price you are willing to pay for a unit of each of Dakota’s resources. But
what are the Dakota’s resources? Well they are lumber, finishing hours, and car-
pentry hours, that Dakota uses to make its products. So, the decision variables
for the entrepreneur who wants to buy Dakota’s resources are:

y1 = price to pay for one unit of lumber,
y2 = price to pay for one hour of finishing labor,
y3 = price to pay for one hour of carpentry labor.

5.2 Dual Problem 94

Now we argue that the resource prices y1 , y2 , y3 should be determined by solving
the Dakota’s dual (5.2.5).

First note that you are buying all of Dakota’s resources. Also, note that this is
a minimization problem: You want to pay as little as possible. So, the objective
function is

minw = 48y1 + 20y2 + 8y3.

Indeed, Dakota has 48 units of lumber, 20 hours of finishing labor, and 8 hours
of carpentry labor.

Now we have the decision variables and the objective. How about the con-
straints? In setting the resource prices y1 , y2 , and y3 , what kind of constraints
do you face? You must set the resource prices high enough so that Dakota would
sell them to you. Now Dakota can either use the resources itself, or sell them to
you. How is Dakota using its resources? Dakota manufactures desks, tables, and
chair. Take desks first. With 8 units of lumber, 4 hours of finishing labor, and 2
hours of carpentry labor Dakota can make a desk that will sell for =C60 . So, you
have to offer more than =C60 for this particular combination of resources. So, you
have the constraint

8y1 + 4y2 + 2y3 ≥ 60.

But this is just the first constraint in the Dakota’s dual, denoted by (desk). Similar
reasoning shows that you must pay at least =C30 for the resources Dakota uses to
produce one table. So, you get the second constraint, denoted by (table), of the
Dakota’s dual:

6y1 + 2y2 + 1.5y3 ≥ 30.

Similarly, you must offer more than =C20 for the resources Dakota can use itself
to produce one chair. That way you get the last constraint, labeled as (chair), of
the Dakota’s dual:

y1 + 1.5y2 + 0.5y3 ≥ 20.

We have just interpreted economically the dual of a maximization problem.
Let us then change our point of view to the opposite and interpret economically
the dual of a minimization problem.

5.2 Dual Problem 95

5.2.6 Example (Ursus Maritimus’s diet). My diet requires that I only eat brown-
ies, chocolate ice cream, cola, and pineapple cheesecake. The costs of the foods (in
Cents) and my daily nutritional requirements together with their calorie, choco-
late, sugar, and fat contents are

Nutrient
Product Calories Chocolate Sugar Fat Price
Brownie 400 3 2 2 50
Chocolate ice cream 200 2 2 4 20
Cola 150 0 4 1 30
Pineapple cheesecake 500 0 4 5 80
Requirement 500 6 10 8

I want to minimize the cost of my diet. How should I eat?

Let us then find the LP for the Diet problem of Example 5.2.6. As always, we
use Algorithm 1.1.2. So, first we determine the decision variables. The decision
to be made is: how much each type of food should be eaten daily. So, I have the
decision variables

x1 = number of brownies eaten daily,
x2 = number (of scoops) of chocolate ice creams eaten daily,
x3 = number (of bottles) of cola drunk daily,
x4 = number (of pieces) of pineapple cheesecake eaten daily.

I want to minimize the cost of the diet. So, the objective function is

min z = 50x1 + 20x2 + 30x3 + 80x4.

Finally, we define the constraints. The daily calorie intake requirement gives

400x1 + 200x2 + 150x3 + 500x4 ≥ 500.

The daily chocolate requirement gives

3x1 + 2x2 ≥ 6.

The daily sugar requirement gives

2x1 + 2x2 + 4x3 + 4x4 ≥ 10,

and the daily fat requirement gives

2x1 + 4x2 + x3 + 5x4 ≥ 8.

5.2 Dual Problem 96

So, we see that the Diet problem of Example 5.2.6 is the LP

(5.2.7)

min z = 50x1 + 20x2 + 30x3 + 80x4
s.t. 400x1 + 200x2 + 150x3 + 500x4 ≥ 500 (calorie)

3x1 + 2x2 ≥ 6 (chocolate)
2x1 + 2x2 + 4x3 + 4x4 ≥ 10 (sugar)
2x1 + 4x2 + x3 + 5x4 ≥ 8 (fat)

x1, x2, x3, x4 ≥ 0

What about the dual of (5.2.7) then. Now, the LP (5.2.7) is not in standard
form. So, in principle we should first transform it into standard form, and then
construct the dual. We shall not do that, however. Instead, we remember that
the dual of the dual is primal. So, we read the definition of the dual backwards,
and obtain immediately the dual of (5.2.7):

(5.2.8)

maxw = 500y1 + 6y2 + 10y3 + 8y4
s.t. 400y1 + 3y2 + 2y3 + 2y4 ≤ 50 (brownie)

200y1 + 2y2 + 2y3 + 4y4 ≤ 20 (ice cream)
150y1 + 4y3 + y4 ≤ 30 (soda)
500y1 + 4y3 + 5y4 ≤ 80 (cheesecake)

y1, y2, y3, y4 ≥ 0

What is then the economic interpretation of this dual? Well, reading the table

Nutrient
Product Calories Chocolate Sugar Fat Price
Brownie 400 3 2 2 50
Chocolate ice cream 200 2 2 4 20
Cola 150 0 4 1 30
Pineapple cheesecake 500 0 4 5 80
Requirement 500 6 10 8

vertically, instead of horizontally, we see that we can consider a “nutrient” salesper-
son who sells calories, chocolate, sugar, and fat. The salesperson wishes to ensure
that a dieter will meet all of his daily requirements by purchasing calories, sugar,
fat, and chocolate from the the salesperson. So, the salesperson must determine
the prices of her products:

y1 = price of a calorie,
y2 = price of a unit of chocolate,
y3 = price of a unit of sugar,
y4 = price of a unit of fat.

5.3 Duality Theorems* 97

The salesperson wants to maximize her profit. So, what is the salesperson selling?
She is selling daily diets. So, the objective is

maxw = 500y1 + 6y2 + 10y3 + 8y4.

What are the constraints for the salesperson? In setting the nutrient prices she
must set the prices low enough so that it will be in the dieter’s economic interest
to purchase all his nutrients from her. For example, by purchasing a brownie for
=C0.50 , the dieter can obtain 400 calories, 3 units of chocolate, 2 units of sugar,
and 2 units of fat. So, the salesperson cannot charge more than =C0.50 for this
combination of nutrients. This gives her the brownie constraint

400y1 + 3y2 + 2y3 + 2y4 ≤ 50

(remember, we counted in Cents). In the similar way the salesperson will have the
ice cream, soda, and cheesecake constraints listed in the dual LP (5.2.8).

5.3 Duality Theorems*

Weak Duality Theorem

5.3.1 Theorem (Weak duality theorem). Let x be any BFS of the primal LP
and let y be any BFS of the dual LP. Then

z = c′x ≤ b′y = w.

Proof. Consider any of the dual decision variable yi , i = 1, . . . ,m . Since yi ≥ 0
we can multiply the ith primal constraint by yi without changing the direction
of the constraint number i . (Moreover, the system remains equivalent, but that’s
not important here). We obtain

(5.3.2) yiAi1x1 + · · ·+ yiAinxn ≤ biyi for all i = 1, . . . ,m.

Adding up all the m inequalities (5.3.2), we find that

(5.3.3)
m∑
i=1

n∑
j=1

yiAijxj ≤
m∑
i=1

biyi.

Similarly, if we consider any of the primal decision variables xj , j = 1, . . . , n , we
have that xj ≥ 0 . So, we can multiply the j th dual constraint by the decision xj
without changing the direction of the constraint. We obtain

(5.3.4) xjA1jy1 + · · ·+ xjAmjym ≥ cjxj .

5.3 Duality Theorems* 98

Adding up all the n inequalities (5.3.4), we find that

(5.3.5)
m∑
i=1

n∑
j=1

yiAijxj ≥
n∑
j=1

cjxj .

Combining (5.3.3) and (5.3.5), we obtain double-inequality

n∑
j=1

cjxj ≤
m∑
i=1

n∑
j=1

yiAijxj ≤
m∑
i=1

biyi.

But, that’s it!

Let us then consider the consequences — or corollaries — of the weak duality
theorem 5.3.1.

5.3.6 Corollary. If the primal LP and dual LP both are feasible, then their optimal
solutions are bounded.

Proof. Let y be a BFS for the dual problem. Then the weak duality theorem 5.3.1
shows that b′y is an upper bound for any objective value c′x associated with any
BFS x of the primal LP:

c′x ≤ b′y.

Since this is true for any primal decision x , we have that

z∗ = max
{
c′x ; Ax ≤ b,x ≥ 0

}
≤ max

{
b′y ; Ax ≤ b,x ≥ 0

}
= b′y

< ∞

is bounded. Now, change the rôles of the primal and the dual, and you see that
the claim of Corollary 5.3.6 is true.

5.3.7 Corollary. Suppose x∗ is a BFS for the primal and y∗ is a BFS for the
dual. Suppose further that c′x∗ = b′y∗ . Then both x∗ and y∗ are optimal for
their respective problems.

Proof. If x is any BFS for the primal, then the weak duality theorem 5.3.1 tells
us that

c′x ≤ b′y∗ = c′x∗.

But this means that x∗ is primal optimal. Now, change the rôles of the primal
and dual, and you see that the claim of the Corollary 5.3.7 is true.

5.3 Duality Theorems* 99

Strong Duality Theorem

Here is the duality theorem, or the strong duality theorem:

5.3.8 Theorem (Duality theorem). Let

xBV = B−1b

be the BV-part of an optimal BFS to the primal with the corresponding optimal
objective value

z∗ = c′BVB−1b = π′b.

Then π is the decision part of an optimal BFS for the dual. Also, the values of
the objectives at the optimum are the same:

w∗ = π′b = c′BVxBV.

We shall not prove Theorem 5.3.8 in these notes. Instead, we leave it as an
exercise. The author is well aware that this is a very demanding exercise, but not
all of the exercises have to be easy!

Complementary Slackness

It is possible to obtain an optimal solution to the dual when only an optimal
solution to the primal is known using the complementary slackness theo-
rem. To state this theorem, we assume that the primal is in standard form with
non-negative RHSs and objective coefficients. The primal decision variables are
x = [x1 · · · xn]′ and the primal slacks are s = [s1 · · · sm]′ . The dual is then a
minimization problem with decision variables y = [y1 · · · ym]′ , and with n con-
straints of type ≥ with non-negative RHSs. Let e = [e1 · · · en]′ be the excesses
of the dual problem associated with the constraints.

So, in slack form the primal LP is

max z = c1x1 + · · ·+ cnxn
s.t. A11x1 + · · ·+ A1nxn +s1 = b1

A21x1 + · · ·+ A2nxn +s2 = b2
...

...
...

. . .
...

Am1x1 + · · ·+ Amnxn +sm = bm
x1, . . . , xn, s1, . . . , sm ≥ 0

Similarly, the dual LP in slack — or rather excess — form is

minw = b1y1 + · · ·+ bmym
s.t. A11y1 + · · ·+ Am1ym −e1 = c1

A12y1 + · · ·+ Am2ym −e2 = c2
...

...
...

. . .
...

A1ny1 + · · ·+ Amnym −en = cn
y1, . . . , ym, e1, . . . , en ≥ 0

5.3 Duality Theorems* 100

5.3.9 Theorem (Complementary slackness theorem). Let x be a primal BFS,
and let y be a dual BFS. Then x is primal optimal and y is dual optimal if and
only if

siyi = 0 for all i = 1, . . . ,m,

ejxj = 0 for all j = 1, . . . , n.

Before going into the proof of the Complementary Slackness Theorem 5.3.9 let
us note that it actually says that if a constraint in either the primal or the dual
is non-active, then the corresponding variable in the other — complementary —
problem must be zero. Hence the name complementary slackness.

Proof. The theorem 5.3.9 is of the type “if and only if”. So, there are two parts in
the proof: the “if part” and the “only if part”. Before going to those parts let us
note that

si = 0 if and only if
m∑
j=1

Aijx
∗
j = bi,(5.3.10)

ej = 0 if and only if
n∑
i=1

Aijy
∗
i = cj .(5.3.11)

Proof of the if part: By (5.3.10) we see that
m∑
i=1

biy
∗
i =

m∑
i=1

y∗i

n∑
j=1

Aijx
∗
j

=

m∑
i=1

n∑
j=1

y∗iAijx
∗
j

In the same way, by using (5.3.11) we see that
n∑
j=1

cjx
∗
j =

m∑
i=1

n∑
j=1

y∗iAijx
∗
j .

So, the conclusion is that
n∑
j=1

cjx
∗
j =

m∑
i=1

biy
∗
i ,

and the “if part” follows from the Weak Duality Theorem 5.3.1.

Proof of the only if part: Like in the proof of the Weak Duality Theorem 5.3.1 we
obtain

(5.3.12)
n∑
j=1

cjx
∗
j ≤

m∑
i=1

n∑
j=1

y∗iAijx
∗
j ≤

m∑
i=1

biy
∗
i .

5.3 Duality Theorems* 101

Now, by the Strong Duality Theorem 5.3.8, if x∗ and y∗ are optimal, then the
LHS of (5.3.12) is equal to the RHS of (5.3.12). But this means that

(5.3.13)
n∑
j=1

(
cj −

m∑
i=1

y∗iAij

)
x∗j = 0.

Now, both x∗ and y∗ are feasible. This means that the terms in (5.3.13) are all
non-negative. This implies that the terms are all zeros. But this means that that
ejxj = 0 . The validity of siyi = 0 can be seen in the same way by considering the
equality

m∑
i=1

bi − m∑
j=1

Aijx
∗
j

 y∗i = 0.

This finishes the proof of the complementary slackness theorem 5.3.9.

As an example of the use of the complementary slackness theorem 5.3.9, let us
consider solving the following LP:

5.3.14 Example. You want to solve the LP

min w = 4y1 + 12y2 + y3
s.t. y1 + 4y2 − y3 ≥ 1

2y1 + 2y2 + y3 ≥ 1
y1, y2, y3 ≥ 0

Now, suppose you have already solved, e.g. graphically — which is challenging
for the LP in 5.3.14 — the much easier LP

max z = x1 + x2
s.t. x1 + 2x2 ≤ 4

4x1 + 2x2 ≤ 12
−x1 + x2 ≤ 1

x1, x2 ≥ 0

The solution to this dual is

x∗1 = 8/3

x∗2 = 2/3

with the optimal value

z∗ = x∗1 + x∗2

= 10/3.

5.4 Primal and Dual Sensitivity 102

This means that you have already solved the dual — or primal, if you take the
opposite point of view — of the Example 5.3.14.

Now, how can the solution above, combined with the Complementary Slackness
Theorem 5.3.9, help you to solve the LP of Example 5.3.14?

Here is how: First note that x∗1 > 0 and x∗2 > 0 . So, the Complementary
Slackness Theorem 5.3.9 tells us that the optimal solution y∗ = [y∗1 y

∗
2 y
∗
3]′ of the

LP in Example 5.3.14 must have zero excesses. So, the inequalities in 5.3.14 are
actually equalities at the optimum. Also, if we check the optimum x∗ in the first
three constraints of the maximum problem, we find equalities in the first two of
them, and a strict inequality in the third one. So, the Complementary Slackness
Theorem 5.3.9 tells us that y∗3 = 0 . So, in the optimum y∗ of the LP in Example
5.3.14 we must have

y∗1 + 4y∗2 = 1
2y∗1 + 2y∗2 = 1

y∗3 = 0

But this is a very easy system to solve. We obtain

y∗1 = 1/3,

y∗2 = 1/6,

y∗3 = 0

with the optimal value

w∗ = 4y∗1 + 12y∗2 + y3

= 10/3.

5.4 Primal and Dual Sensitivity

For a standard form LP and its dual we have:

x∗primal = πdual,

πprimal = y∗dual,

s∗primal = udual,

uprimal = e∗dual,

z∗primal = w∗dual.

Here uprimal and udual denote the vectors of reduced costs in the primal and dual,
respectively. Also, s∗primal and e∗dual denote the slacks and excesses of the primal
and dual at optimum, respectively. All the other notations should be clear.

5.5 Exercises and Projects 103

Note that the equality
πprimal = y∗dual

explains the name “shadow prices”. Indeed, the dual is a “shadow problem”. So, the
shadow prices of the constraints at the primal optimum are the prices of the dual
variables (that are related to the constraints) at the dual optimum. Sometimes
the shadow prices are called the dual prices.

5.5 Exercises and Projects

5.1. Consider the parameters c , A , and b of the Giapetto’s problem 1.1.1. Which
of them are reasonably certain, and which of them contain a lot of uncertainty?
Can any of the parameters be taken to be absolutely certain?

5.2. Consider Manuel Eixample’s 4.0.1 optimal simplex tableau from section 4.5
and answer to the following questions

(a) What are the shadow prices and reduced costs in Manuel’s problem?
(b) Suppose Manuel had 21 instead of 20 liters of milk. What would be Manuel’s

new optimal revenue?
(c) Suppose Manuel had promised to sell at least one liter of Castile to José.

How much will Manuel’s optimal revenue decrease?
(d) How much should Manuel ask for a liter of Castile so that producing it would

make sense for him (assuming that the demand remains unchanged)?

5.3. The function simplex_lp_solver does not provide shadow prices or reduced
costs as outputs. Modify the function so that it does.

5.4. Find the duals for the following LPs, and solve them with your favorite
method.

(a)
max z = 2x1 + x2
s.t. −x1 + x2 ≤ 1

x1 + x2 ≤ 3
x1 − 2x2 ≤ 4

x1, x2 ≥ 0

(b)
minw = y1 − y2
s.t. 2y1 + y2 ≥ 4

y1 + y2 ≥ 1
y1 + 2y2 ≥ 3

y1, y2 ≥ 0

5.5 Exercises and Projects 104

5.5. A student is deciding what to purchase from a bakery for a tasty afternoon
snack after a long and tedious lecture of Operations Research. There are two
choices of food: Brownies, which cost 50 cents each, and mini-cheesecakes, which
cost 80 cents. The bakery is service-oriented and is happy to let the student
purchase a fraction of an item if she wishes. The bakery requires 30 g chocolate
to make each brownie (no chocolate is needed in the cheesecakes). 20 g of sugar
are needed for each brownie and 40 g of sugar for each cheesecake. Finally, 20 g
of cream cheese are needed for each brownie and 50 g for each cheesecake. Being
health-conscious, the student has decided that she needs at least 60 g of chocolate
in her snack, along with 100 g of sugar and 80 g of cream cheese. She wishes to
optimize her purchase by finding the least expensive combination of brownies and
cheesecakes that meet these requirements.

(a) Model the problem as an LP,
(b) find the dual of the LP,
(c) interpret the dual LP economically, and finally
(d) solve the dual LP (by any method you like).

5.6. Prove the strong duality theorem 5.3.8.

5.7. * Make Octave function(s) that

(a) Visualizes the changes in the optimal value of an LP when any one or two
parameters a varied.

(b) For an LP with two decision variables visualizes the changes of the location
of an optimal decision when any one of its parameters are varied.

Here Octave functions surf and plot may turn out to be useful.

Part III

Linear Models

Chapter 6

Data Envelopment Analysis

Efficiency is doing things right; effectiveness is doing the right things.
— Peter F. Drucker

In theory there is no difference between theory and practice, but in practice there
is. — Anonymous

We discuss how to apply LP in the problem of evaluating the relative efficiency
of different units, relative only to themselves. This is a nice application
because of three reasons:

1. it is not at all obvious that LP can be used in this problem,
2. the application gives valuable insight to the LP duality,
3. the application itself is extremely useful.

Data envelopment analysis (DEA), occasionally called frontier analysis,
was introduced by Charnes, Cooper and Rhodes in 1978. DEA is a performance
measurement technique which can be used for evaluating the relative efficiency
of decision-making units (DMUs). Here DMU is an abstract term for an entity
that transforms inputs into outputs. The term is abstract on purpose: Typically
one thinks of DMUs as manufacturers of some goods (outputs) who use some
resources (inputs). This way of thinking, while correct, is very narrow-minded:
DMU is a much more general concept, and DEA can be applied in very diverse
situations. Indeed, basically the DMUs can be pretty much anything. The only
restrictions are:

1. the DMUs have the same inputs and outputs,
2. the DMUs’ inputs and outputs can be measured numerically.

There is one point of DEA that must be emphasized: DEA is a data oriented
extreme point method. This means that it will only use the data related to
the inputs and outputs of the DMUs under consideration. It does not use any

6.1 Graphical Introduction* 107

extra theoretical — or practical, or philosophical — knowledge. In this respect,
it differs from classical comparison methods where DMUs are compared either to
a “representative” DMU or to some “theoretically best” DMU. DEA compares the
DMUs to the “best” DMUs under consideration.

6.1 Graphical Introduction*

One Input — One Output

6.1.1 Example (Kaupþing I). Consider a number of Kaupþing Bank’s branches.
For each branch we have a single output measure: Number of personal transactions
completed per week. Also, we have a single input measure: number of staff. The
data we have is:

Outputs and inputs
Branch Personal Number of

transactions staff
Reykjavík 125 18
Akureyri 44 16
Kópavogur 80 17
Hafnarfjörður 23 11

How then can we compare these branches — or DMUs — and measure their
performance using this data? A commonly used method is ratios, which means
that we will compare efficiencies.

For our Kaupþing Bank branch example 6.1.1 we have a single input mea-
sure, the number of staff, and a single output measure, the number of personal
transactions. Hence the meta-mathematical formula

efficiency =
outputs
inputs

=
output
input

is a well-defined mathematical formula — no metas involved. We have:

Branch Personal transactions
per staff member

Reykjavík 6.94
Akureyri 2.75
Kópavogur 4.71
Hafnarfjörður 2.09

6.1 Graphical Introduction* 108

Here we can see that Reykjavík has the highest ratio of personal transactions per
staff member, whereas Hafnarfjörður has the lowest ratio of personal transactions
per staff member. So, relative to each others, Reykjavík branch is the best (most
efficient), and the Hafnarfjörður branch is the worst (least efficient).

As Reykjavík branch is the most efficient branch with the highest ratio of 6.94 ,
it makes sense to compare all the other branches to it. To do this we calculate
their relative efficiency with respect to Reykjavík branch: We divide the ratio
for any branch by the Reykjavík’s efficiency 6.94 , and multiply by 100% (which
is one) to convert to a percentage. This gives:

Branch Relative Efficiency
Reykjavík 100%× (6.94/6.94) = 100%
Akureyri 100%× (2.75/6.94) = 40%
Kópavogur 100%× (4.71/6.94) = 68%
Hafnarfjörður 100%× (2.09/6.94) = 30%

The other branches do not compare well with Reykjavík. That is, they are rela-
tively less efficient at using their given input resource (staff members) to produce
output (number of personal transactions).

One Input — Two Outputs

Typically we have more than one input and one output. In this subsection we
consider the case of one input and two outputs. While the case of one input and
one output was almost trivial, the case of two outputs and one input is still simple
enough to allow for graphical analysis. The analog with LPs would be: LPs with
one decision variable are trivial, and LPs with two decision variables are still simple
enough to allow for graphical analysis.

Let us extend the Kaupþing Bank branch example 6.1.1:

6.1.2 Example (Kaupþing II). Consider a number of Kaupþing Bank’s branches.
For each branch we have a two output measures: Number of personal transactions
completed per week, and number of business transaction completed per week. We
have a single input measure: number of staff. The data is:

Outputs and inputs
Branch Personal Business Number of

transactions transactions staff
Reykjavík 125 50 18
Akureyri 44 20 16
Kópavogur 80 55 17
Hafnarfjörður 23 12 11

6.1 Graphical Introduction* 109

How now can we compare these branches and measure their performance using
this data? As before, a commonly used method is ratios, just as in the case
considered before of a single output and a single input. Typically we take one of
the output measures and divide it by one of the input measures.

For our bank branch example 6.1.2 the input measure is plainly the number of
staff (as before) and the two output measures are number of personal transactions
and number of business transactions. Hence we have the two ratios:

Ratios
Branch Personal transactions Business transactions

per staff member per staff member
Reykjavík 6.94 2.78
Akureyri 2.75 1.25
Kópavogur 4.71 3.24
Hafnarfjörður 2.09 1.09

Here we can see that Reykjavík has the highest ratio of personal transactions per
staff member, whereas Kópavogur has the highest ratio of business transactions per
staff member. So, it seems that Reykjavík and Kópavogur are the best performers.
Akureyri and Hafnarfjörður do not compare so well with Reykjavík and Kópavogur.
That is, they are relatively less efficient at using their given input resource (staff
members) to produce outputs (personal and business transactions).

One problem with comparison via ratios is that different ratios can give a
different picture and it is difficult to combine the entire set of ratios into a single
numeric judgment. For example, consider Akureyri and Hafnarfjörður:

• Akureyri is 2.75/2.09 = 1.32 times as efficient as Hafnarfjörður at personal
transactions,
• Akureyri is 1.25/1.09 = 1.15 times as efficient as Hafnarfjöður at business

transactions.

How would you combine these figures — 1.32 and 1.15 — into a single judgment?
This problem of different ratios giving different pictures would be especially true
if we were to increase the number of branches or increase the number of inputs or
outputs.

6.1 Graphical Introduction* 110

6.1.3 Example (Kaupþing III). We ad five extra branches, Sellfoss, Hveragerði,
Akranes, Borgarnes, and Keflavík, to Example 6.1.2. The data is now:

Ratios
Branch Personal transactions Business transactions

per staff member per staff member
Reykjavík 6.94 2.78
Akureyri 2.75 1.25
Kópavogur 4.71 3.24
Hafnarfjörður 2.09 1.09
Sellfoss 1.23 2.92
Hveragerði 4.43 2.23
Akranes 3.32 2.81
Borgarnes 3.70 2.68
Keflavík 3.34 2.96

What can be now said about the efficiencies of the branches?

One way around the problem of interpreting different ratios, at least for prob-
lems involving just two outputs and a single input, is a simple graphical analysis.
Suppose we plot the two ratios for each branch as shown below. In the picture
we have no ticks to express the scale. The ticks are left out on purpose: DEA is
about relative efficiency. So, the scales do not matter.

PT/S

B
T

/S

Reykjavik

Akureyri

Kopavogur

Hafnarfjordur

Sellfoss

Hveragerdi

Akranes Borgarnes

Keflavik

The positions of Reykjavík and Kópavogur in the graph demonstrate that they
are superior to all other branches: They are the extreme points, other DMUs are
inferior to them. The line drawn in the picture is called the efficient frontier. It
was drawn by taking the extreme points, and then connecting them to each others
and to the axes. That was a very vague drawing algorithm, but I hope you got the
picture. The name “data envelopment Analysis” arises from the efficient frontier
that envelopes, or encloses, all the data we have.

Any DMU on the efficient frontier is 100% DEA efficient.

6.1 Graphical Introduction* 111

In our Kaupþing Bank branch examples 6.1.2 and 6.1.3, Reykjavík and Kó-
pavogur branches are 100% efficient. This is not to say that the performance of
Reykjavík or Kópavogur could not be improved. It may, or may not, be possible
to do that. However, we can say that, based on the evidence provided by the
different branches, we have no idea of the extent to which their performance can
be improved. Also it is important to note here that:

• DEA only gives relative efficiencies, i.e., efficiencies relative to the data con-
sidered. It does not — and cannot — give absolute efficiencies.
• No extra information or theory was used in determining the relative effi-

ciencies of the DMUs. What happened was that we merely took data on
inputs and outputs of the DMUs we considered, and presented the data in
a particular way.
• The statement that a DMU is 100% efficient simply means that we have no

other DMU that can be said to be better than it.

Now we know when a DMU is 100% efficient: A DMU is 100% efficient if it
is on the efficient frontier. How about the non-efficient DMUs? Can we associate
the DMUs that are not in the efficient frontier with a number representing their
efficiency? We can. How to do this, is explained below. So, we will now discuss
about quantifying efficiency scores for inefficient DMUs.

Let us take Hafnarfjörður as an example of a non-efficient branch. We can
see that, with respect to both of the ratios Reykjavík — and Kópavogur, too —
dominates Hafnarfjörður. Plainly, Hafnarfjörður is less than 100% efficient. But
how much? Now, for Hafnarfjörður we have the ratio

personal transactions
business transactions

=
23

12
= 1.92.

This means that there are 1.92 personal transactions for every business transac-
tion. This figure of 1.92 is also the ratio

personal transactions per staff member
business transactions per staff member

.

This number, 1.92 , is the business mix of the Hafnarfjörður branch. It can be
also be interpreted that Hafnarfjörður branch weighs its outputs, personal trans-
actions and business transactions, so that personal transactions get weight 1.92
and business transactions get weight 1 .

Consider now the diagram below. In the diagram we have removed all the
inefficient branches, except Hafnarfjörður. The line with the percentage ruler
attached drawn through Hafnarfjörður represent all the possible — or virtual, if
you like — branches having the same business mix, 1.92 , as Hafnarfjörður.

6.1 Graphical Introduction* 112

PT/S

B
T
/
S

Reykjavik

Kopavogur

Hafnarfjordur

Best

36%

Note the virtual branch Best in the picture above. Best represents a branch that,
were it to exist, would have the same business mix as Hafnarfjörður and would
have an efficiency of 100% . Now, since Best and Hafnarfjörður have the same
business mix, it makes sense to compare them numerically. Here is how to do
it: Hafnarfjörður’s relative position in the ruler line from the worst branch with
the same business mix (the origin) to the best branch with the same business
mix (Best) is 36% . In other words, 36% of the ruler line is before Hafnarfjörður,
and 64% of the ruler line is after Hafnarfjörður. So, it makes sense to say that
Hafnarfjörður is, relative to the best branches, 36% efficient — or 64% inefficient,
if you like.

So, given the graphical consideration above we have the following definition
for the (relative) efficiency of a DMU with two outputs and one input:

Draw a line segment from the origin through the DMU in question
until you hit the efficient frontier. The DEA efficiency of the DMU
is

length of the line segment from the origin to the DMU
total length of the line segment

× 100%.

The picture — and the definition — above is relative: You can change the scale
of either the PT/S or the BT/S axis, or even switch the axes, but the relative
efficiency of the Hafnarfjörður branch — or any other branch — won’t change.

Let us ten illustrate the relative nature of the DEA efficiencies. We shall ad two
extra branches to Example 6.1.3 — Surtsey and Flatey — and see what happens.

6.1.4 Example (Kaupþing IV). Suppose we have an extra branch, Surtsey, added
to the branches of Example 6.1.3. Assume that Surtsey has 1 personal transactions
per staff member, and 6 business transactions per staff member. What changes
in the efficiency analysis as a result of including the extra branch Surtsey?

6.1 Graphical Introduction* 113

(There are actually no Kaupþing Bank branches in Surtsey. There are no people
in Surtsey: People are not allowed in the Fire-Demon’s island. There are only
puffins is Surtsey.) The effect of including Surtsey to the graphical DEA can be
seen in the next picture:

PT/S

B
T

/
S

Reykjavik

Akureyri

Kopavogur

Hafnarfjordur

Sellfoss

Hveragerdi

Akranes Borgarnes

Keflavik

Surtsey

Note that the efficient frontier now excludes Kópavogur. Also, note that the
relative efficiencies of most (if not all) of the inefficient branches have changed.

In the above it is clear why Reykjavík and Surtsey have a relative efficiency of
100% (i.e. are efficient): Both are the top performers with respect to one of the
two ratios we are considering. The example below, where we have added the Flatey
branch, illustrates that a branch can be efficient even if it is not a top performer.
In the diagram below Flatey is efficient since under DEA it is judged to have
“strength with respect to both ratios”, even though it is not the top performer in
either.

6.1.5 Example (Kaupþing V). Suppose we have an extra branch, Flatey, added
to the branches of Example 6.1.3. Assume that Flatey has 5 personal transactions
per staff member, and 5 business transactions per staff member. What changes
as a result of this extra branch being included in the analysis?

Here is the new picture with Flatey added. Note that Flatey is on the efficient
frontier, i.e., 100% efficient, but it is not at top performer in either of the cri-
teria “personal transactions per staff” (PT/S) or “business transactions per staff”
(BT/S).

6.2 Graphical Introduction* 114

PT/S

B
T

/
S

Reykjavik

Akureyri

Kopavogur

Hafnarfjordur

Sellfoss

Hveragerdi

Akranes Borgarnes

Keflavik

Surtsey

Flatey

Multiple Input — Multiple Output

In our simple examples 6.1.2, 6.1.3, 6.1.4, and 6.1.5 of the Kaupþing Bank branches
we had just one input and two outputs. This is ideal for a simple graphical analysis.
If we have more inputs or outputs then drawing simple pictures is not possible
without sculptures. However, it is still possible to carry out exactly the same
analysis as before, but using mathematics rather than pictures.

In words DEA, in evaluating any number of DMUs, with any number of inputs
and outputs:

1. requires the inputs and outputs for each DMU to be specified,
2. defines efficiency for each DMU as a weighted sum of outputs divided by a

weighted sum of inputs, where
3. all efficiencies are restricted to lie between zero and one (i.e. between 0%

and 100%),
4. in calculating the numerical value for the efficiency of a particular DMU

weights are chosen so as to maximize its efficiency, thereby presenting the
DMU in the best possible light.

How to carry out the vague four-point list presented above is the topic of the
next section 6.2.

6.2 Charnes–Cooper–Rhodes Model 115

6.2 Charnes–Cooper–Rhodes Model

Now we consider mathematically what we have considered graphically in Section
6.1. We consider n Decision Making Units (DMUs). We call them unimaginatively
as DMU1 , DMU2 , DMU3 , and so on upto DMUn . We are interested in assigning
a measure of relative efficiency for each DMU without resorting to any other data
than the one provided by the inputs and output of the DMUs themselves.

Data Envelopment Analysis with Matrices

We assume that each DMU has m inputs and s outputs. So, the m inputs of the
DMUk are

X•k =

 X1k
...

Xmk

 .
In the same way the s outputs of the DMUk are

Y•k =

 Y1k
...
Ysk

 .
If we collect the inputs and the outputs into single matrices we have the input

matrix

X = [Xjk] = [X•1 · · ·X•n] =

 X11 · · · X1n
...

. . .
...

Xm1 · · · Xmn,

and the output matrix

Y = [Yik] = [Y•1 · · ·Y•n] =

 Y11 · · · Y1n
...

. . .
...

Ys1 · · · Ysn

 .
So,

Xjk = the input j of the DMUk,

Yik = the output i of the DMUk.

Charnes–Cooper–Rhodes Fractional Program

Given what we have learned it seems reasonable to measure the (relative) efficiency
of the DMUs as weighted sums. So, let

u =

 u1
...
us

6.2 Charnes–Cooper–Rhodes Model 116

be the weights associated with the s outputs of the DMUs. Similarly, let

v =

 v1
...
vm

be the weights associated with the inputs of the DMUs. Then the weighted
efficiency, with weights u and v , of any DMU, say DMUo (o for DMU under
observation) is

ho(u,v) = the (u,v) weighted efficiency of DMUo

=
u weighted outputs of DMUo

v weighted inputs of DMUo

=

∑s
j=1 ujYjo∑m
i=1 viXio

=
u′Y•o
v′X•o

.(6.2.1)

6.2.2 Example. Consider the Kaupþing Bank’s branches of Example 6.1.2 of the
previous section:

Outputs and inputs
Branch Personal Business Number of

transactions transactions staff
Reykjavík 125 50 18
Akureyri 44 20 16
Kópavogur 80 55 17
Hafnarfjörður 23 12 11

Denote the data of Example 6.2.2 by

X1• = number of staff,
Y1• = number of personal transactions,
Y2• = number of business transactions.

So, e.g., X1• is the 4-dimensional row vector consisting of the number of staff data
for the DMUs Reykjavík, Akureyri, Kópavogur, and Hafnarfjörður. Similarly, Y1•
and Y2• are the 4-dimensional row vectors indicating the number of personal and
business transactions for each of the four DMUs: Reykjavík (1), Akureyri (2),

6.2 Charnes–Cooper–Rhodes Model 117

Kópavogur (3), and Hafnarfjörður (4). The output matrix for this example is:

Y =

[
Y1•
Y2•

]
=

[
Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24

]
=

[
125 44 80 23
50 20 55 12

]
.

The input matrix is

X = X1•

= [X11 X12 X13 X14]

= [18 16 17 11] .

Let us then take the Hafnarfjörður branch under consideration. So, DMUo =
DMU4 is Hafnarfjörður. With our vector notation Hafnarfjörður would have the
(weighted) efficiency

ho(u,v) =
u1Y1o + u2Y2o

v1X1o
=

u1×23 + u2×12

v1×11
.

Now there is the problem of fixing the weight u and v of the outputs and
the inputs. Each DMU would — of course — want to fix the weights u and v
in such a way that they would look best in comparison with the other DMUs.
So, it is in the interests of each and every one of the DMUs to maximize the
weighted efficiency ho(u,v) . In particular, this means that Hafnarfjörður faces an
optimization problem

(6.2.3) max
u,v

ho(u,v) = max
u1,u2,v1

u1×23 + u2×12

v1×11
.

Obviously there must be constraints to the decision variables u and v . Indeed,
otherwise the optimization problem (6.2.3) would yield an unbounded optimum.
So, what are the constraints? Well, obviously we have the sign constraints

u,v ≥ 0.

This does not help too much yet, though. The optimum of (6.2.3) is still un-
bounded. Now, we remember that we are dealing with efficiencies. But, an effi-
ciency is a number between 0% and 100% . So, we have the constraint

0 ≤ ho(u,v) ≤ 1.

This does not help too much either. Indeed, now the optimum for (6.2.3) would
be 1 , or 100% . But we are close now. Remember that the efficiency is always a

6.2 Charnes–Cooper–Rhodes Model 118

number between 0% and 100% . So, the efficiencies of the other DMUs must also
be between 0% and 100% . So, we let Hafnarfjörður set the weights u and v , and
the other DMUs are then measured in the same way. So, the constraints are

0 ≤ hk(u,v) ≤ 1 for all DMUk, k = 1, . . . , n.

Collecting what we have found above we have found the fractional form of
the Charnes–Cooper–Rhodes (CCR) model:

TheCCR fractional program for DMUo relative to DMU1, . . . ,DMUn

is

max θ =
u′Y•o
v′X•o

(6.2.4)

s.t.
u′Y•k
v′X•k

≤ 1 for all k = 1, . . . , n

u,v ≥ 0.

The figure θ is the DMUo ’s DEA efficiency.

We have dropped the zero lower bounds for the efficiencies in (6.2.4). The reason
is, that they are not necessarily needed. It would not, however, be wrong to keep
them.

Charnes–Cooper–Rhodes Linear Program

Consider the CCR fractional program (6.2.4) in the previous subsection. This is
not an LP. But the name of this part of the chapters is “Linear Models”. So, it
seems that we have a misnomer! Also, we do not know how to solve fractional
programs like (6.2.4). Fortunately there is a way of transforming the fractional
program (6.2.4) into an LP.

Before going to the LP let us note that while the efficiency score θ of the CCR
fractional program (6.2.4) is unique, there are many different weights u,v that
give the same efficiency. Indeed, if the weights u,v give the optimal efficiency,
then so do the weights αu, αv for any α > 0 . This is due to the fact that we are
dealing with ratios. Indeed, for any α > 0

ho(u,v) =
u′Y•o
v′X•o

=
αu′Y•o
αv′X•o

= ho(αu, αv).

There is an easy way out, however. We just normalize the denominator in the
ratio, i.e., we insist that

v′X•o = 1.

Now we are ready to give the LP formulation of the fractional program 6.2.4:

6.2 Charnes–Cooper–Rhodes Model 119

The CCR LP for DMUo relative to DMU1, . . . ,DMUn is

max θ = u′Y•o(6.2.5)
s.t. v′X•o = 1,

u′Y ≤ v′X

u,v ≥ 0.

The figure θ is the DMUo ’s DEA efficiency.

It may not be immediately clear why the LP (6.2.5) is the same optimization
problem as the fractional program (6.2.4). So, we explain a little why this is so.
Consider the fractional program (6.2.4). First, note that the extra assumption
v′X•o = 1 does not change the optimal value of θ in the fractional program.
Indeed, we have already seen that this restriction merely chooses one optimal
choice among many. Next note that in the LP (6.2.5) we have

θ = u′Y•o,

while in the fractional program (6.2.4) we have

θ =
u′Y•o
v′X•o

.

Remember, that we have now the normalizing assumption v′X0 = 1 . So, we see
that the fractional and linear objectives are actually the same. Finally, let us look
the constraints

u′Y•k
v′X•k

≤ 1

of the fractional program (6.2.4) and compare them to the constraints

u′Y•k ≤ v′X•k

of the linear program (6.2.5) (written in the matrix form there). If you multiply
both sides of the fractional programs constraints by v′X•k you notice that these
constraints are actually the same. So, we see that the fractional program (6.2.4)
and the linear program (6.2.5) are the same.

DEA Efficiency for Hafnarfjörður

Let us calculate mathematically, as opposed to graphically, Hafnarfjörður’s DEA
efficiency in Example 6.2.2 by using the CCR LP (6.2.5). Recall the data

Outputs and inputs
Branch Personal Business Number of

transactions transactions staff
Reykjavík 125 50 18
Akureyri 44 20 16
Kópavogur 80 55 17
Hafnarfjörður 23 12 11

6.2 Charnes–Cooper–Rhodes Model 120

and the notation

X1• = number of staff,
Y1• = number of personal transactions,
Y2• = number of business transactions.

Note that X1•,Y1•,Y2• are not the decision variables. They are the data.
The decision variables are the weights v1, u1, u2 .

Here is the CCR LP for Hafnarfjörður

max θ = 23u1 + 12u2 (DEA Efficiency)
s.t. 11v1 = 1 (Normalization)

125u1 + 50u2 ≤ 18v1 (DMU Reykjavik)
44u1 + 20u2 ≤ 16v1 (DMU Akureyri)
80u1 + 55u2 ≤ 17v1 (DMU Kopavogur)
23u1 + 12u2 ≤ 11v1 (DMU Hafnarfjordur)

u1, u2, v1 ≥ 0

Now, this LP is certainly not in standard form. To use glpk we need at least to
remove the variables v1 from the RHSs. But this is easy enough: We just subtract
them and we obtain the LP

max θ = 23u1 + 12u2 (DEA Efficiency)
s.t. 11v1 = 1 (Normalization)

125u1 + 50u2 − 18v1 ≤ 0 (DMU Reykjavik)
44u1 + 20u2 − 16v1 ≤ 0 (DMU Akureyri)
80u1 + 55u2 − 17v1 ≤ 0 (DMU Kopavogur)
23u1 + 12u2 − 11v1 ≤ 0 (DMU Hafnarfjordur)

u1, u2, v1 ≥ 0

This LP is pretty close to standard form and the following Octave code solves it:

octave:1> theta=[23 12 0]’;
octave:2> A=[
> 0 0 11;
> 125 50 -18;
> 44 20 -16;
> 80 55 -17;
> 23 12 -11];
octave:3> b=[1 0 0 0 0]’;
octave:4> [coeff_max,theta_max]=glpk(theta,A,b,[0 0 0]’,[],"SUUUU","CCC",-1)
coeff_max =

0.0044269
0.0216601
0.0909091

theta_max = 0.36174

6.3 Charnes–Cooper–Rhodes Model’s Dual 121

So, we see that Hafnarfjörðurs DEA efficiency is 36% . Also, we see that Hafnar-
fjörður weighs the personal transactions with 4.4% , business transactions with
2.2% (the outputs) and the number of staff with 0.9% (the input). Sometimes
these weights may be interesting, but in general they are not.

6.3 Charnes–Cooper–Rhodes Model’s Dual

Finding the DEA efficiency of a DMUo in the CCR model is an LP (6.2.5). So, it
must have a dual LP associated with it. In this section we explain how to construct
the dual, and how to interpret it. Also, in the last subsection we illustrate how
to find the DEA efficiency for Hafnarfjörður branch in Example 6.2.2 by using the
the dual of the CCR model.

Finding Dual

In this subsection we will find the dual of the CCR LP (6.2.5) by using brute
force matrix calculus. We throw all intuition to the wind, and simply follow
mathematical algorithms. In the next subsection we shall interpret the dual we
find in this subsection.

Recall the LP form of the CCR model:

max θ = u′Y•o(6.3.1)
s.t. v′X•o = 1,

u′Y ≤ v′X

u,v ≥ 0.

To find the dual, we write the LP (6.3.1) in standard form. We could use the block
matrix notation, but the derivation is probably easier to understand if we do not
use the concise matrix notation. So, we abandon matrices in the derivation.

Without matrices the CCR LP (6.3.1) can be written as

(6.3.2)

max θ = u1Y1o + · · ·+ usYso
s.t. v1X1o + · · ·+ vmXmo = 1

u1Y11 + · · ·+ usYs1 ≤ v1X11 + · · ·+ vmXmo
...

...
...

u1Y1n + · · ·+ usYsn ≤ v1X1n + · · ·+ vmXmn

u1, . . . , us, v1, . . . , vm ≥ 0.

The LP (6.3.2) is certainly not in standard form. Actually, it is pretty far from
it. As a first step in transforming (6.3.2) into a standard form let us write it
so that the decision variables u = [u1 · · · us]′ and v = [v1 · · · vm]′ are in the
right places, i.e., coefficients are in front of the decision variables, all the decision

6.3 Charnes–Cooper–Rhodes Model’s Dual 122

variables are represented everywhere, and there are no decision variables in the
RHSs. We obtain:

(6.3.3)

max θ = Y1ou1 + · · ·+ Ysous +0v1 + · · ·+ 0vm
s.t. 0u1 + · · ·+ 0us +X1ov1 + · · ·+ Xmovm = 1

Y11u1 + · · ·+ Ys1us −X11v1 − · · ·− Xm1vm ≤ 0
...

...
...

...
...

...
...

Y1nu1 + · · ·+ Ysnus −X1nv1 − · · ·− Xmnvm ≤ 0
u1 . . . us v1 . . . vm ≥ 0

Next, we split the equality constraint in (6.3.3) into two ≤ inequalities. We obtain:
(6.3.4)

max θ = Y1ou1 + · · ·+ Ysous +0v1 + · · ·+ 0vm
s.t. 0u1 + · · ·+ 0us +X1ov1 + · · ·+ Xmovm ≤ 1

−0u1 − · · ·− −0us −X1ov1 − · · ·− −Xmovm ≤ −1
Y11u1 + · · ·+ Ys1us −X11v1 − · · ·− Xm1vm ≤ 0

...
...

...
...

...
...

...
Y1nu1 + · · ·+ Ysnus −X1nv1 − · · ·− Xmnvm ≤ 0

u1 . . . us v1 . . . vm ≥ 0

Now it is pretty straightforward to transform the LP (6.3.3) into the dual. Let
ϑ be the objective, and let µ = [µ1 µ2 µ3 · · ·µn+2]

′ be the decision variables. We
obtain:

(6.3.5)

minϑ = µ1 − µ2
s.t. 0µ1 − 0µ2 +Y11µ3 + · · ·+ Y1nµn+2 ≥ Y1o

...
...

...
...

0µ1 − 0µ2 +Ys1µ3 + · · ·+ Ysnµn+2 ≥ Yso
X1oµ1 −X1oµ2 −X11µ3 − · · ·− X1nµn+2 ≥ 0

...
...

...
...

Xmoµ1 −Xmoµ2 −Xm1µ3 − · · ·− Xmnµn+2 ≥ 0
µ1, . . . , µn+2 ≥ 0

We have found the dual (6.3.5) of the CCR LP (6.2.5). Unfortunately, this
dual is not easy to interpret. So, we have to transform it slightly in order to
understand what is going on. This is what we do in the next subsection.

Interpreting Dual

Let us substitute the objective

ϑ = µ1 − µ2

6.3 Charnes–Cooper–Rhodes Model’s Dual 123

into the constraints of (6.3.5). In doing so, we actually eliminate all the occurrences
on µ1 and µ2 in the system. We obtain:

(6.3.6)

minϑ
s.t. Y11µ3 + · · ·+ Y1nµn+2 ≥ Y1o

...
...

...
Ys1µ3 + · · ·+ Ysnµn+2 ≥ Yso

X1oϑ −X11µ3 − · · ·− X1nµn+2 ≥ 0
...

...
...

...
Xmoϑ −Xm1µ3 − · · ·− Xmnµn+2 ≥ 0

ϑ, µ3, . . . , µn+2 ≥ 0

Next, we shall renumber the remaining decision variables. The new decision vari-
ables will be ϑ and λ = [λ1 · · · λn]′ , where λ1 = µ3 , λ2 = µ4 , . . . , λn = µn+2 .
So, the LP (6.3.6) becomes

(6.3.7)

minϑ
s.t. +Y11λ1 + · · ·+ Y1nλn ≥ Y1o

...
...

...
+Ys1λ1 + · · ·+ Ysnλn ≥ Yso

X1oϑ −X11λ1 − · · ·− X1nλn ≥ 0
...

...
...

...
Xmoϑ −Xm1λ1 − · · ·− Xmnλn ≥ 0

ϑ, λ1, . . . , λn ≥ 0

Finally, we reorganize the ≥ inequalities, for a reason that will become apparent
later when we get to the interpretation. We obtain:

(6.3.8)

minϑ
s.t. Y11λ1 + · · ·+ Y1nλn ≥ Y1o

...
...

...
Ys1λ1 + · · ·+ Ysnλn ≥ Yso
X11λ1 + · · ·+ X1nλn ≤ X1oϑ

...
...

...
Xm1λ1 + · · ·+ Xmnλn ≤ Xmoϑ

ϑ, λ1, . . . , λn ≥ 0

We have found out a formulation of the dual of the CCR LP (6.2.5) that we
can understand in a meaningful way: The dual variables

λ =

 λ1
...
λn

6.3 Charnes–Cooper–Rhodes Model’s Dual 124

are the weights for a virtual DMU, denoted by DMUvirtual . The virtual DMU
is the reference point for the DMUo , the DMU under observation. Indeed, the
virtual DMU will have the same business mix as DMUo , but the virtual DMU
is 100% DEA efficient. The virtual DMU is constructed from the actual DMUs
by weighting them with the vector λ :

DMUvirtual =
n∑
k=1

λkDMUk.

Note that the virtual DMU depends on the DMU under observation. Different
DMUs have different virtual DMUs associated with them.

Now, the restrictions

Y11λ1 + · · ·+ Y1nλn ≥ Y1o
...

...
...

Ys1λ1 + · · ·+ Ysnλn ≥ Yso

can be interpreted as

All the outputs of the associated virtual DMU are at least as great as
the corresponding outputs of the DMU under observation,

and the restrictions

X11λ1 + · · ·+ X1nλn ≤ X1oϑ
...

...
...

Xm1λ1 + · · ·+ Xmnλn ≤ Xmoϑ

can be interpreted as

If the inputs of the DMU under observation are scaled down by ϑ ,
then all the inputs are at least as great as the corresponding inputs of
the associated virtual DMU.

Finally, here is the CCR dual LP (6.3.8) in matrix form:

The CCR dual LP for DMUo relative to DMU1, . . . ,DMUn is

minϑ(6.3.9)
s.t. ϑX•o ≥ Xλ,

Yλ ≥ Y•o

ϑ, λ ≥ 0.

The figure ϑ is the DMUo ’s DEA efficiency. The decision variables
λ are the coefficients of the virtual DMU associated with DMUo .

6.3 Charnes–Cooper–Rhodes Model’s Dual 125

Dual DEA Efficiency for Hafnarfjörður

Let us see what are the (dual) DEA efficiencies for the Hafnarfjörður in Example
6.2.2. We have already found out the solution to be 36% in the previous sections
by using the graphical approach and the primal CCR approach. So, we shall now
check if this third approach, the dual CCR approach, will give the same results,
as it should.

The CCR dual LP for Hafnarfjörður is

(6.3.10)

minϑ
s.t. 18λ1 +16λ2 +17λ3 +11λ4 ≤ 11ϑ

125λ1 +44λ2 +80λ3 +23λ4 ≥ 23
50λ1 +20λ2 +55λ3 +12λ4 ≥ 12

ϑ, λ1, λ2, λ3, λ4 ≥ 0

Once again, the LP (6.3.10) is pretty far from a standard form. So, we transform
it into a more standard from. Only thing that needs to be done, is to move the
variable ϑ to the LHS of the first inequality, and to note that we may well assume
that ϑ ≥ 0 :

minϑ
s.t. −11ϑ +18λ1 +16λ2 +17λ3 +11λ4 ≤ 0

125λ1 +44λ2 +80λ3 +23λ4 ≥ 23
50λ1 +20λ2 +55λ3 +12λ4 ≥ 12

ϑ, λ1, λ2, λ3, λ4 ≥ 0

Now the LP in in a form that can be fed to Octave’s glpk. Here is the code:

octave:1> c=[1 0 0 0 0]’;
octave:2> b=[0 23 12]’;
octave:3> A=[
> -11 18 16 17 11;
> 0 125 44 80 23;
> 0 50 20 55 12;
>];
octave:4> [x_max,z_max]=glpk(c,A,b,[0 0 0 0 0]’,[],"ULL","CCCCC",1)
x_max =

0.36174
0.10609
0.00000
0.12174
0.00000

z_max = 0.36174

We see that the (dual) DEA efficiency for Hafnarfjörður is 36% , as it should. We

6.4 Strengths and Weaknesses of Data Envelopment Analysis 126

can also read the composition of the virtual DMU associated with Hafnarfjörður:

DMUvirtual = λ1DMU1 + λ2DMU2 + λ3DMU3 + λ4DMU4

= 10.6%×DMUReykjavik + 12.2%×DMUKopavogur.

So, one way to interpret the result is:

Consider the virtual DMU that is composed of 10.6% of Reykjavík and
12.2% of Kópavogur. This virtual DMU has the same business mix as
Hafnarfjörður, it uses only 36% of the inputs Hafnarfjörður uses.

6.4 Strengths and Weaknesses of Data Envelopment
Analysis

Data Envelopment Analysis is a very general framework that draws conclusions
from the data available and makes very few, if any, assumptions of the context
where the data came from. This is its main strength and this its main weakness.

Strengths

1. DEA is simple enough to be modeled with LPs.
2. DEA can handle multiple input and multiple outputs.
3. DEA does not require an assumption of a functional form relating inputs

to outputs. In particular, one does not have to think that the outputs are
consequences of the inputs.

4. DMUs are directly compared against a peer or (virtual) combination of peers.
5. Inputs and outputs can have very different units. For example, output Y1

could be in units of lives saved and input X1 could be in units of Euros
without requiring an a priori trade-off between the two.

Weaknesses

1. Since a standard formulation of DEA creates a separate LP for each DMU,
large problems can be computationally intensive.

2. Since DEA is an extreme point technique, noise (even symmetrical noise
with zero mean) such as measurement error can cause significant problems.

3. DEA is good at estimating relative efficiency of a DMU but it converges
very slowly to “absolute” efficiency. In other words, it can tell you how well
you are doing compared to your peers but not compared to a “theoretical
maximum”.

4. Since DEA is a nonparametric technique, statistical hypothesis tests are
difficult to apply in the DEA context.

6.5 Exercises and Projects 127

5. DEA is very generous: If a DMU excels in just one output (or input) it is
likely to get 100% efficiency, even if it performs very badly in all the other
outputs (or inputs). So, if there are many outputs (or inputs) one is likely
to get 100% efficiency for all the DMUs, which means that DEA cannot
differentiate between the DMUs (it does not mean that all the DMUs are
doing well in any absolute sense).

6.5 Exercises and Projects

6.1. Calculate the DEA efficiencies for all the branches in the examples

(a) 6.1.2,
(b) 6.1.3,
(c) 6.1.4,
(d) 6.1.5.

6.2. The S faculty of SFU University has four departments: MS, P, C, and CS.
We have the following data indicating the number of professors (P), lecturers (L),
and assistants (A) for each department together with the number of bachelor (B),
master (M), and doctor (D) degrees granted by each of the departments last year,
and the number of refereed journal articles (J) produced by the staff of each of the
department last year

Inputs and outputs
Dept. P L A B M D J
MS 3 3 2 10 5 5 24
P 1 5 3 14 9 1 4
C 6 4 20 10 15 11 1
CS 7 6 4 21 11 10 7

Calculate the relative DEA efficiencies of the departments.

6.3. Consider the departments of the SFU University’s S faculty of Exercise 6.2.

(a) The SFU University wants to move the MS department from the S faculty
over to the B faculty. How would this change the relative DEA efficiencies
of the remaining S faculty departments?

(b) Suppose the SFU University decides it does not care about research. So, the
output refereed journal articles (J) becomes obsolete. How does this effect
the relative DEA efficiencies of the departments MS, P, C, and CS?

6.4. * Make an Octave function

6.5 Exercises and Projects 128

[eff, lambda] = dea_eff(X, Y)

that returns DEA efficiencies eff and the coefficients lambda of their corresponding
virtual best DEA. The input parameters for dea_eff are the input matrix X and
the output matrix Y.

Chapter 7

Transportation-Type Models

We willingly pay 30,000–40,000 fatalities per year for the advantages of individual
transportation by automobile. — John von Neumann

Bypasses are devices that allow some people to dash from point A to point B very
fast while other people dash from point B to point A very fast. People living at
point C, being a point directly in between, are often given to wonder what’s so
great about point A that so many people from point B are so keen to get there and
what’s so great about point B that so many people from point A are so keen to get
there. They often wish that people would just once and for all work out where the
hell they wanted to be. — Douglas Adams

We consider a set of so-called transportation problems that can be modeled as
LPs, and thus solved with, say, the glpk LP solver. There are also specialized
algorithms for solving these problems that work much faster than the general
simplex-type algorithms, but of course work only in the special type problems.

7.1 Transportation Problem

In a transportation problem one has to ship products from ports
to markets so that the total shipping cost is as small as possible while
still meeting the demands of each market.

7.1 Transportation Problem 130

7.1.1 Example (Frábært skyr). Frábært ehf. produces skyr in plants P1 and P2 .
Plant P1 produces 15 tons of skyr per day, and plant P2 produces 20 tons of skyr
per day. The skyr is shipped to the markets M1 , M2 , and M3 . The market M1

demands 17 tons of skyr, the market M2 demands 8 tons of skyr, and the market
M3 demands 10 tons of skyr.

To ship one ton of skyr from plant P1 to markets M1 , M2 , and M3 costs =C3 ,
=C4 , and =C6 , respectively. To ship one ton of skyr from plant P2 to markets M1 ,
M2 , and M3 costs =C5 , =C7 , and =C5 , respectively. Frábært ehf. wants to deliver
(all or some of) its skyr to the markets with the minimal possible shipping cost
while still meeting the demand of all the markets. How should Frábært ehf. ship
its skyr, i.e. what is the optimal transportation schedule for Frábært?

The shipping costs and the supplies and the demands of Frábært’s example
7.1.1 can be expressed in the tabular form as

Market
Port M1 M2 M3 Supply
P1 3 4 6 15
P2 5 7 5 20
Demand 17 8 10

Frábært ehf.’s problem can also be expressed as a diagram, or a network (which
the author finds a much more better way, but your taste may be different even
though the tabular form is somewhat more natural for the LP setting):

3

4

6

5

7

5

P1

15

P2

20

M1

17

M2

8

M3

10

7.1 Transportation Problem 131

Transportation Problems as Linear Programs

The Frábært’s problem is a typical transportation problem, and it, as all trans-
portation problems, can be modeled as an LP. Let us follow Algorithm 1.1.2 to
see how to do this:

First we set

Xij = tons of skyr shipped from plant i to market j.

These are obviously the decision variables for Frábært’s problem, or for any
transportation problem for that matter, save the skyr. Everything else is fixed,
and the only thing that is left open is the actual amounts transported from ports
to markets. (Note the clever use of indexes here: we consider the decision variables
in a matrix form. There is a small price we have to pay for this cleverness later,
however.)

The objective of any transportation problem is to minimize the total shipping
cost. So, Frábært’s objective is

min z =
∑
i

∑
j

CijXij(7.1.2)

where

Cij = the cost of shipping one ton of skyr from plant i to market j.

(Note again the clever use of indexes: the objective is also represented as a matrix.
Again, there is a small price we have to pay for this cleverness later.) The objective
(7.1.2) is a linear one. Indeed, sums are linear, and double-sums doubly so.

What about the constraints then? There are of course the sign constraints

Xij ≥ 0 for all plants i and markets j.

Indeed, it would be pretty hard to transport negative amounts of skyr. There are
also the supply and demand constraints: Each plant Pi has only so many tons
of skyr it can supply. So, if si is the supply limit for plant Pi then we have the
supply constraints ∑

j

Xij ≤ si for all plants i.

(Please, do not confuse si with a slack variable here. We are sorry for the clashing
notation!) Each market also demands so many tons of skyr, and according to the
problem we are committed to meet the market demands. So, if dj is the demand
for skyr in the market Mj then we have the demand constraints∑

i

Xij ≥ dj for all markets j.

7.1 Transportation Problem 132

Here is the LP for Frábært ehf.:

(7.1.3)

min z = 3X11 +4X12 +6X13 +5X21 +7X22 +5X23

s.t. X11 +X12 +X13 ≤ 15
X21 +X22 +X23 ≤ 20

X11 +X21 ≥ 17
X12 +X22 ≥ 8

X13 +X23 ≥ 10
Xij ≥ 0

Here is a quick and dirty Octave code that solves the LP (7.1.3):

octave:1> C = [3 4 6; 5 7 5];
octave:2> s = [15 20]’;
octave:3> d = [17 8 10]’;
octave:4> A = [
> 1 1 1 0 0 0;
> 0 0 0 1 1 1;
> 1 0 0 1 0 0;
> 0 1 0 0 1 0;
> 0 0 1 0 0 1];
octave:5> c = C’(:);
octave:10> [schedule,cost] = glpk(
c,A,[s;d],[0 0 0 0 0 0]’,[],"UULLL","CCCCCC",1);
octave:11> schedule = reshape(schedule,3,2)’;
octave:12> cost
cost = 153
octave:13> schedule
schedule =

7 8 0
10 0 10

The author guesses that at least the command lines 5 and 11 require some expla-
nation. These lines are related to the small price we have to pay for our clever
indexing, i.e. using matrices instead of vectors: In the command line 5 the vector
c is constructed from the matrix C by gluing its rows together. The command
C(:) would do this, except that it glues columns. This is why we first transpose
the matrix C . The command line 11 works the other way around: the command
reshape forms a matrix out of a vector by splitting the vectors column-wise.
Since we want to make the splitting row-wise, we reshape it “the wrong way
around” and then transpose the result.

The Octave code above tells us that the minimal cost for Frábært ehf. is =C153
and the optimal shipping schedule that obtains this cost is

X =

[
7 8 0

10 0 10

]
.

With a diagram, the optimal shipping schedule can be represented as follows. Here

7.1 Transportation Problem 133

the optimal shippings are in the parenthesis after their shipping costs per unit and
the shipping routes that are not used are dotted to emphasize the fact.

3 (7)

4 (8)

6 (0)

5 (10)

7 (0)

5 (10)

P1

15

P2

20

M1

17

M2

8

M3

10

Balancing Transportation Problems

Example 7.1.1 is balanced: Total supply equals total demand, i.e.,∑
i

si =
∑
j

dj .

In balanced problems all the products will be shipped and the market demands will
be met exactly. So, the supply and demand constraints will realize as equalities
rather than inequalities:

The balanced transportation problem is the LP

min z =
∑
i

∑
j

CijXij (total shipping cost)

subject to ∑
j

Xij = si (supply)

∑
i

Xij = dj (demand)

Xij ≥ 0

Here i is the index for ports and j is the index for markets.

7.1 Transportation Problem 134

What about non-balanced transportation problems then? There are two pos-
sible cases:

More supply than demand In this case we can introduce an imaginary
market called the dump. The dump has just enough demand so that
you can dump you excess supply there. Shipping to dump is costless (no
matter what the Greens may say). This solution may seem silly to you, but
remember that the objective was to minimize the transportation cost while
meeting the market demands. So, you are allowed to lose your shipments, if
it helps.

More demand than supply In this case the problem is infeasible: you can-
not possibly meet the market demands if you do not have enough
to supply. One can of course generalize the transportation problem so
that if the supply does not meet the demand there is a (linear) penalty
associated with each market whose demand is not satisfied. This can be
accomplished by using negative supply: introduce an imaginary port
called the shortage. The shortage supply has the supply of the total de-
mand minus the total supply. The cost of shipping shortage to the markets
is the penalty for not meeting the respective markets demands. Now the
problem is balanced.

Transportation Solver trans_solver

To further illustrate the LP nature of transportation problems we consider an
Octave function trans_solver that solves transportation problems by using the
LP solver glpk.

The function trans_solver assumes that the transportation problem is bal-
anced, i.e., the supply and the demand are the same. If you want to use the
function trans_solver for unbalanced problems, you have to introduce the dump
or the shortage and shortage penalties manually.

As always, the line numbers are here for reference purposes only, and the
function is written in the file trans_solver.m.

1 function [cost,schedule] = trans_solver(C,s,d)

The file trans_solver.m starts as all m-files defining a function should: by the
keyword function following the definition of the output variables, name, and the
input variables of the said function.

7.1 Transportation Problem 135

2 ## Function [cost, schedule] = trans_solver(C, s, d) solves the
3 ## balanced transportation problem
4 ##
5 ## ----- -----
6 ## \ \
7 ## min > > C(i,j)*X(i,j)
8 ## / /
9 ## ----- -----

10 ## i j
11 ##
12 ## -----
13 ## \
14 ## s.t. > X(i,j) = s(i) for all ports i
15 ## /
16 ## -----
17 ## j
18 ##
19 ## -----
20 ## \
21 ## > X(i,j) = d(j) for all markets j
22 ## /
23 ## -----
24 ## i
25 ##
26 ## Input:
27 ##
28 ## C, s, d
29 ## The matrix of the transportation costs, the column vector
30 ## of the supplies, and the column vector of the demands.
31 ##
32 ## Output:
33 ##
34 ## cost, schedule
35 ## The minimal transportation cost and schedule.
36 ##
37 ## See also: glpk.
38

The lines 2–37 consist of the comment block that is printed out if you ask help
for the function. The empty line 38 terminates the comment block.

39 ## Some short-hands.
40 m1 = length(s); # Number of ports.
41 m2 = length(d); # Number of markets.
42 n = m1*m2; # Number of decisions.
43 o = zeros(n,1); # For glpk lower bounds.
44

The lines 39–44 simply set up some short-hand notations: nothing complicated
here.

7.1 Transportation Problem 136

45 ## Build the technology matrix A
46 A = zeros(m1+m2,n); # Initialization.
47 for i = 1:m1
48 A(i, (1:m2)+(i-1)*m2) = ones(1,m2); # Supply side.
49 A((1:m2)+m1, (1:m2)+(i-1)*m2) = eye(m2); # Demand side.
50 endfor
51

Here a lot happens and fast! The technology matrix of any transportation LP is
of the form

(7.1.4) A =

1 1 1 0 0 0
0 0 0 1 1 1

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

supply: P1 with bound s1
supply: P2 with bound s2
demand: M1 with bound d1
demand: M2 with bound d2
demand: M3 with bound d3

,

where we first have blocks of ones going to the right (the supply side) and then
blocks of identity matrices going to the right (the demand side). (The particular
matrix (7.1.4) is the technology matrix for Frábært ehf. of Example 7.1.1, by the
way.) The lines 46–50 build this kind of zero-one matrices by using the Octave’s
block-indexing feature. (This is pretty advanced Octave programming: the author
apologizes!) To understand the Octave’s block-indexing concept, consider the
following code:

octave:1> A = zeros(4,16)
A =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

octave:2> rw = 2:4
rw =

2 3 4

octave:3> clmn = [1 10 11 12]
clmn =

1 10 11 12

octave:4> A(rw,clmn) = ones(3,4)
A =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

7.1 Transportation Problem 137

Now, play around with this code, e.g., by changing the vectors clmn and rw. Then
remember that for Octave the vector 1:m2 is the vector [1 2 · · · m2] . After this
the lines 46–50 should start make sense to you.

52 ## Set the sense of bounds (equality for balanced).
53 ctype = "";
54 for i=1:(m1+m2)
55 ctype = [ctype, "S"];
56 endfor
57
58 ## Set the type of each decision variable as continuous.
59 vtype = "";
60 for i=1:n
61 vtype = [vtype, "C"];
62 endfor
63

The lines 52–63 set the ctype and vtype strings for the function glpk pretty
much the same way as the lines 56–66 of the function stu_lp_solver did. Note
here that we use the identifier "S" for the bounds, since we are dealing with a
balanced transportation problem here.

64 ## Solve the system by calling glpk.
65 [schedule, cost] = glpk(C’(:), A, [s; d], o, [], ctype, vtype, 1);
66

Now that we have all the parameters right, we call the glpk LP solve. The
first parameter C’(:) is the vector defining the objective function. We use the
“total colon”, as opposed to the colon-notation that only operates on rows or
columns, here. This way the matrix C is transformed into a vector. The transpose
is needed, since the total colon operator works column-wise, and wee need a
row-wise gluing of the matrix C. The technology matrix A was set in the lines
46–40. The bounds are twofold: first we have the supply side s and then we have
the demand side d. We combine them together as the (column) vector [s; d].
Then we have the lower bounds of zeros: o. There are no a priori upper bounds
for the decisions: hence the empty matrix []. Then we have the ctype and vtype
vectors for the types of the bounds and the variables. These were set in the lines
53–62. Finally, we have the sense parameter set as 1 indicating that this is a
minimization problem. (We could have omitted the 1 for the sense, since it is the
default value.)

67 ## Reshape the schedule vector to a matrix.
68 schedule = reshape(schedule, m2, m1)’;
69 endfunction

Finally, in the line 68 we reshape the vector schedule into the appropriate matrix

7.1 Transportation Problem 138

form. The best way to understand what is happening here is to read the help for
the reshape function and then play around. A good playmate is the matrix A =
[11 12 13; 21 22 23].

Transportation Algorithm*

The transportation algorithm is a specialized algorithm for solving transportation
LPs. It is a cousin of the simplex algorithm: it is a tableau-dance with trans-
portation tableaux. The first transportation tableau is an empty transportation
tableau that is a tabular representation of the transportation problem’s data:

M1 M2 · · · Mn

P1
C11 C12 C1n s1

P2
C21 C22 C2n s2

...
...

Pm
Cm1 Cm2 Cmn sm

d1 d2 · · · dn

The Frábært’s transportation problem’s 7.1.1 tabular representation is

M1 M2 M3

P1
3 4 6

15

P2
5 7 5

20

17 8 10

The transportation algorithm fills the empty transportation tableau with the
shipping schedule Xij :

M1 M2 · · · Mn

P1
C11

X11

C12

X12

C1n

X1n
s1

P2
C21

X21

C22

X22

C2n

X2n
s2

...
...

Pm
Cm1

Xm1

Cm2

Xm2

Cmn
Xmn

sm

d1 d2 · · · dn

7.1 Transportation Problem 139

The general idea of the transportation algorithm is the same as in the
simplex algorithm, viz.

7.1.5 Algorithm (Transportation meta-algorithm). To solve a transportation
problem, take the following steps:

Meta-step 1 Find a BFS.
Meta-step 2 Check for optimality. If solution is optimal, the algorithm termi-

nates. Otherwise move to step 3.
Meta-step 3 Find a new, improved, BFS. Go back to Meta-step 2.

Next we explain the metas away from the Algorithm 7.1.5 above.

Finding a BFS The first BFS can be found, e.g., by using the so-called NW
corner method. The method is called such since the traditional way of choosing
available squares goes from NW to SE. The method goes as follows:

1. Choose any available square, say (i0, j0) . Specify the shipment Xi0,j0 as
large as possible subject to the supply and demand constraints, and mark
this variable.

2. Delete from consideration whichever row or column has its constraint satis-
fied, but not both. If there is a choice, do not delete a row (column) if it is
the last row (resp. column) undeleted.

3. Repeat 1. and 2. until the last available square is filled with a marked
variable, and then delete from consideration both row and column.

Now we construct the first BFS for Example 7.1.1. The marked variables will
be in parentheses, and the deleted squares will have 0 .

We start with the NW corner. So (i0, j0) = (1, 1) . We put there as a big
number as possible. This means that we ship all the plant P1 ’s supply to market
M1 , i.e., X11 = 15 . Now there is nothing left in P1 . So, we must have X12 =
X13 = 0 . So, squares (1, 2) and (1, 3) get deleted — or, if you like — row 1 gets
deleted.

M1 M2 M3

P1
3

(15)
4

0
6

0
15

P2
5 7 5

20

17 8 10

Next we move south, since east is deleted. The biggest number we can now put
to square (2, 1) is X21 = 2 , since there is already 15 tons of skyr shipped to the
market M1 that demands 17 tons. No rows or columns will get deleted because
of this operation.

7.1 Transportation Problem 140

M1 M2 M3

P1
3

(15)
4

0
6

0
15

P2
5

(2)
7 5

20

17 8 10

Next we move east to square (2, 2) . There the biggest number we can put is
X22 = 8 since that is the market demand for M2 . No rows or columns will be
deleted because of this operation.

M1 M2 M3

P1
3

(15)
4

0
6

0
15

P2
5

(2)
7

(8)
5

20

17 8 10

Finally, we move to the last free square (2, 3) . It is obvious that X23 = 10 . We
get the first BFS:

M1 M2 M3

P1
3

(15)
4

0
6

0
15

P2
5

(2)
7

(8)
5

(10)
20

17 8 10

Checking Optimality Given a BFS, i.e., a feasible shipping schedule Xij , we
shall use the complementary slackness theorem 5.3.9 to check whether the BFS is
optimal. This means finding dual variables ui and vj that satisfy

Xij > 0 implies that vj − ui = Cij .

One method of finding the dual variables ui and vj is to solve the equations

vj − ui = Cij

for all (i, j)-squares containing marked variables. There are m + n − 1 marked
variables, and so we have m+n−1 equations with m+n unknowns. This means
that one of the variables ui , vj can be fixed to 0 , say. Some of the ui or vj may

7.1 Transportation Problem 141

turn out to be negative, which as such is not allowed in the dual problem, but this
is not a problem. Indeed, one can always add a big enough constant to all the ui s
and vj s without changing the values of vj − ui .

Once the dual variables ui and vj are found we can check the optimality of
the BFS by using the following algorithm:

1. Set one of the vj or ui to zero, and use the condition

vj − ui = Cij

for squares containing marked variables to find all the vj and ui .
2. Check feasibility,

vj − ui ≤ Cij ,

for the remaining squares. If the BFS is feasible, it is optimal for the
problem and its dual, due to the Complementary Slackness Theorem 5.3.9

Let us then find the dual variables ui and vj for the BFS Frábært’s problem
7.1.1. The next tableau is the BFS we found with the, yet unknown, dual variables
in their appropriate places.

v1 v2 v3

u1
3

(15)
4

0
6

0
15

u2
5

(2)
7

(8)
5

(10)
20

17 8 10

To solve ui and vj for the marked variables we put u2 = 0 . Remember we
can choose any one of the ui or vj be zero. We chose u2 because then we see
immediately thatv1 = 5 , v2 = 7 , and v3 = 5 . As for the last unknown u1 , we
have

u1 = v1 − C11 = 5− 3 = 2.

So, we have the following BFS with the duals

5 7 5

2
3

(15)
4

0
6

0
15

0
5

(2)
7

(8)
5

(10)
20

17 8 10

7.1 Transportation Problem 142

Now we check the remaining squares. For the BFS to be optimal we must have
vj − ui ≤ Cij . We see that this is not the case. The culprit is the square (1, 2) :

v2 − u1 = 7− 2 = 5 > 4 = C12.

This means that we must improve our BFS.

Improvement Routine Now we have a BFS that is not optimal. So, we must
have a square (i0, j0) , say, for which

vj0 − ui0 > Ci0j0 .

We would like to ship some amount of skyr, say, from the port Pi0 to the market
Mj0 . The current amount Xi0j0 = 0 will be changed to a new amount denoted by
∆ . But if we change Xi0j0 to ∆ we must subtract and add ∆ to other squares
containing marked variables. This means that we are looking forward to a new
BFS

M1 M2 M3

P1
3

−∆ (15)
4

+∆ 0
6

0
15

P2
5

+∆ (2)
7

−∆ (8)
5

(10)
20

17 8 10

Now we choose the change ∆ to be as big as possible bearing in mind that the
shipments cannot be negative. This means that ∆ will be the minimum of the
Xij s in the squares we are subtracting ∆ . We see that the biggest possible change
is ∆ = 8 , which makes the the shipment X22 zero.

Note that it may turn out that that we have ∆ = 0 . This means that the value
of the objective won’t change. However, the shipping schedule and the marked
variables will change. While the new shipping schedule is no better than the old
one, one can hope that from this new shipping schedule one can improve to a
better one.

Now we have the new BFS

M1 M2 M3

P1
3

(7)
4

(8)
6

0
15

P2
5

(10)
7

0
5

(10)
20

17 8 10

7.2 Transportation Problem 143

We have to go back to the previous step and check optimality for this BFS. So,
we have to solve the dual variables ui and vj . We set now u2 = 0 which gives us
immediately that v1 = 5 and v3 = 5 . So, we find out that

u1 = v1 − C11 = 2,

and that
v2 = u1 + C12 = 6.

So, we have the BFS with dual variables

5 6 5

2
3

(7)
4

(8)
6

0
15

0
5

(10)
7

0
5

(10)
20

17 8 10

This solutions passes the optimality test:

vj − ui ≤ Cij

for all i and j . So, we have found an optimal shipping schedule. The cost
associated with this shipping schedule can now be easily read from the tableau
above:

z =

2∑
i=1

3∑
j=1

CijX
∗
ij

= 3×7 + 4×8 + 5×10 + 5×10

= 153.

The improvement algorithm can now be stated as

1. Choose any square (i, j) with vj − ui > Cij . Set Xij = ∆ , but keep the
constraints satisfied by subtracting and adding ∆ to appropriate marked
variables.

2. Choose ∆ to be the minimum of the variables in the squares in which ∆ is
subtracted.

3. Mark the new variable Xij and remove from the marked variables one of the
variables from which ∆ was subtracted that is now zero.

7.2 Assignment Problem 144

7.2 Assignment Problem

In this section we consider assignment problems that are — although it may not
seem so at first sight — special cases of transportation problems. In an assignment
problem one has to assign each worker to each task in a most efficient way.

A typical assignment problem is:

7.2.1 Example (Machines-to-jobs assignment). Machineco has four machines and
four jobs to be completed. Each machine must be assigned to complete one job.
The times required to set up each machine for completing each job are:

Jobs
Machines Job 1 Job 2 Job 3 Job 4
Machine 1 14 5 8 7
Machine 2 2 12 6 5
Machine 3 7 8 3 9
Machine 4 2 4 6 10

Machineco want to minimize the total setup time.

If you think about it a while, you see that:

An assignment problem is a transportation problem with equal
amount of ports and markets, where the demands and supplies for
each port and market are equal to one.

Assignment Problem as Linear Program

Let us build the LP representing Example 7.2.1.

The key point in modeling the Machineco’s problem 7.2.1 is to find out the
decision variables — everything else is easy after that. So what are the decisions
Machineco must make? Machineco must choose which machine is assigned to
which job. Now, how could we write this analytically with variables? A common
trick here is to use binary variables, i.e., variables that can take only two possible
values: 0 or 1 . So, we set binary variables Xij , i = 1, . . . , 4 , j = 1, . . . , 4 , for
each machine and each job to be

Xij =

{
1 if machine i is assigned to meet the demands of job j,
0 if machine i is not assigned to meet the demands of job j.

In other words, the variable Xij is an indicator of the claim

“Machine i is assigned to job j ”.

7.2 Assignment Problem 145

Now it is fairly easy to formulate a program, i.e., an optimization problem, for
Machineco’s problem 7.2.1. Indeed, the objective is to minimize the total setup
time. With our binary variables we can write the total setup time as

z = 14X11 + 5X12 + 8X13 + 7X14

+2X21 + 12X22 + 6X23 + 5X24

+7X31 + 8X32 + 3X33 + 9X34

+2X41 + 4X42 + 6X43 + 10X44

Note that there will be a lot of zeros in the objective function above.

What about the constraints for Machineco? First, we have to ensure that each
machine is assigned to a job. This will give us the supply constraints

X11 + X12 + X13 + X14 = 1
X21 + X22 + X23 + X24 = 1
X31 + X32 + X33 + X34 = 1
X41 + X42 + X43 + X44 = 1

Second, we have to ensure that each job is completed, i.e., each job has a machine
assigned to it. This will give us the demand constraints

X11 + X21 + X31 + X41 = 1
X12 + X22 + X32 + X42 = 1
X13 + X23 + X33 + X43 = 1
X14 + X24 + X34 + X44 = 1

So, putting the objective and the constraints we have just found together, and
not forgetting the binary nature of the decisions, we have obtained the following
program for Machineco’s problem 7.2.1:

(7.2.2)

min z = 14X11 + 5X12 + 8X13 + 7X14

+2X21 + 12X22 + 6X23 + 5X24

+7X31 + 8X32 + 3X33 + 9X34

+2X41 + 4X42 + 6X43 + 10X44

s.t. X11 + X12 + X13 + X14 = 1 (Machine)
X21 + X22 + X23 + X24 = 1
X31 + X32 + X33 + X34 = 1
X41 + X42 + X43 + X44 = 1
X11 + X21 + X31 + X41 = 1 (Job)
X11 + X21 + X31 + X41 = 1
X12 + X22 + X32 + X42 = 1
X13 + X23 + X33 + X43 = 1
X14 + X24 + X34 + X44 = 1

Xij = 0 or Xij = 1

7.2 Assignment Problem 146

In (7.2.2) we have binary constraints Xij = 0 or Xij = 1 for the decision
variables. So, at first sight it seems that the program (7.2.2) is not a linear one.
Indeed, it is a special case of an IP called binary integer program (BIP).
However, the structure of the assignment problems is such that if one omits the
assumption Xij = 0 or Xij = 1 , and simply assumes that Xij ≥ 0 , one will get on
optimal solution where the decisions X∗ij are either 0 or 1 . Hence, the program
(7.2.2) is a linear one, i.e., it is an LP. Or, to be more precise, the program (7.2.2)
and its linear relaxation, or LP relaxation,

(7.2.3)

min z = 14X11 + 5X12 + 8X13 + 7X14

+2X21 + 12X22 + 6X23 + 5X24

+7X31 + 8X32 + 3X33 + 9X34

+2X41 + 4X42 + 6X43 + 10X44

s.t. X11 + X12 + X13 + X14 = 1 (Machine)
X21 + X22 + X23 + X24 = 1
X31 + X32 + X33 + X34 = 1
X41 + X42 + X43 + X44 = 1
X11 + X21 + X31 + X41 = 1 (Job)
X11 + X21 + X31 + X41 = 1
X12 + X22 + X32 + X42 = 1
X13 + X23 + X33 + X43 = 1
X14 + X24 + X34 + X44 = 1

Xij ≥ 0

are equivalent. Equivalence of programs means that they have the same optimal
decision and the same optimal objective value.

Assignment Problem as Transportation Problem

Recall that

An assignment problem is a transportation problem with equal
amount of ports and markets, where the demands and supplies for
each port and market are equal to one.

The next code solves Example 7.2.1 by using the function trans_solver de-
signed to solve transportation LPs:

7.2 Assignment Problem 147

octave:1> C = [
> 14 5 8 7;
> 2 12 6 5;
> 7 8 3 8;
> 2 4 6 10];
octave:2> s = [1 1 1 1]’; d = [1 1 1 1]’;
octave:3> [cost, schedule] = trans_solver(C, s, d)
cost = 15
schedule =

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

So, the minimal setup cost is 15 and it is achieved by assigning machine 1 to job
2, machine 2 to job 4, machine 3 to job 3, and machine 4 to job 1.

Hungarian Method*

Assignment problems, being both transportation problems and LPs, can be solved
with the general simplex method or with the specialized transportation algorithm.
There is, however, an even more specialized algorithm for solving assignment prob-
lems: the Hungarian method.

In the Hungarian method, the data of the assignment problem is presented
in an (n×n)-table, where n is the number of ports, or markets, which is the same.
For Example 7.2.1 the “Hungarian tableau” is

14 5 8 7

2 12 6 5

7 8 3 9

2 4 6 10

The Hungarian method is based on the following two observation:

1. The problem is solved if we can choose n squares from the “Hungarian
tableau” so that:

(a) Exactly one square is chosen from each row.
(b) Exactly one square is chosen from each column.
(c) The sum of the costs in the chosen n squares is the smallest possible.

2. If a same number is subtracted from all squares in a row, then the optimal
selection of squares does not change. The same is true, if a same number is
subtracted from all squares in a column.

7.2 Assignment Problem 148

7.2.4 Algorithm (Hungarian method).

Step 1 For each row, subtract the row minimum from each element in the row.
Step 2 For each column, subtract the column minimum from each element in the

column.
Step 3 Draw the minimum number of lines — horizontal, vertical, or both —

that are needed to cover all the zeros in the tableau. If n lines were required
then the optimal assignment can be found among the covered zeros in the
tableau, and the optimal cost can be read from the first tableau by summing
up the number in the squares corresponding to the lined-out zeros.

Step 4 Find the smallest non-zero element that is uncovered by lines. Subtract
this element from each uncovered element, and add this element to each
square that is covered with two lines. Return to Step 3.

Here are steps 1 and 2 for Example 7.2.1 starting from the initial table:

14 5 8 7

2 12 6 5

7 8 3 9

2 4 6 10

9 0 3 2

0 10 4 3

4 5 0 6

0 2 4 8

9 0 3 0

0 10 4 1

4 5 0 4

0 2 4 6

Here are the remaining steps 3 and 4 for Example 7.2.1:

9 0 3 0

0 10 4 1

4 5 0 4

0 2 4 6

10 0 4 0

0 9 4 0

4 4 0 3

0 1 4 5

Now, we go back to Step 3, and line-out the zeros:

10 0 4 0

0 9 4 0

4 4 0 3

0 1 4 5

7.3 Transshipment Problem 149

Now we can read the optimal assignment from the covered zeros. First we note
that the only covered zero in column 3 is in square (3, 3) . So, we must have
assignment X33 = 1 . Also, in column 2 the only available zero is in square (1, 2) .
Consequently, X12 = 1 . Now, as we can no longer use row 1 the only available
zero in column 4 is in square (2, 4) . So, X24 = 1 . Finally, we choose X41 = 1 .
Next we read the corresponding setup cost from the first Hungarian tableau. We
obtain

setup cost = 5 + 5 + 3 + 2 = 15.

7.3 Transshipment Problem

In a transshipment problem one has to ship products from ports to
markets as in a transportation problem, but in addition to the ports
and the markets one has transshipment points at one’s disposal. So,
one can ship products directly from ports to markets, or one can use
transshipment points in the shipping.

At first sight the transshipment problems are network problems. At least, they
seem to be much more complicated than transportation problems. It turns out,
however, that we can express transshipment problems as transportation problems.
So the generalization from transportation problems to transshipment problems is
mathematically no generalization at all.

Transshipment Problems as Transportation Problems

7.3.1 Example (Generic transshipment). The Generic Company produces generic
products and ships them to the markets M1 and M2 from the ports P1 and
P2 . The products can be either shipped directly to the markets, or the Generic
Company can use a transshipment point T1 .

The ports P1 and P2 supply 150 and 200 units, respectively. The markets M1

and M2 demand both 130 units. The shipment costs from P1 to M1 is 25 ,
from P1 to M2 it is 28 , from P2 to M1 it is 26 , and from P2 to M2 it is 22 .
The shipping cost from P1 to the transshipment point T1 is 8 and the shipping
cost from P2 to the transshipment point T1 is 15 . The shipping costs from the
transshipment point T1 to the markets M1 and M2 are 16 and 17 , respectively.

The Generic Company wants to minimize its shipping costs while meeting the
market demands. How should the Generic Company ship its products, if

(a) the transshipment point T1 has infinite capacity,
(b) only 100 products can be transshipped through T1?

Here is the data of Example 7.3.1 in a graph form.

7.3 Transshipment Problem 150

25

28

26

22

8

15

16

17

P1

150

P2

200

M1

130

M2

130

T1

∞/100

The general idea in modeling transshipment problems is to model them as
transportation problems where the transshipment points are both ports and mar-
kets. To be more precise:

• A transshipment problem is a transportation problem, where each trans-
shipment point is both a port and a market. The shipping cost from a
transshipment point to itself is, of course, zero.
• If a transshipment point has capacity N , then N will be both demand and

supply for that transshipment point. If the capacity is unlimited set the de-
mand and supply to be the total supply of the system for that transshipment
point.
• Cost for shipping from transshipment points to the balancing dump is a very

very very very big number M . This ensures that the excess supply to be
dumped is dumped immediately.

Here is the tabular expression of the transshipment problems of Example 7.3.1
as transportation problems (D denotes the dump):

Market
Port M1 M2 T1 D Supply
P1 25 28 8 0 150
P2 26 22 15 0 200
T1 16 17 0 M 350/100
Demand 130 130 350/100 90

7.3 Transshipment Problem 151

Solving Transshipment Problems with Transportation Algorithm*

Solution to Variant (a) of Example 7.3.1

In Example 7.3.1 the total supply is 350 and the total demand is 260 . So, in
order to balance the problem we need the dump market with demand 90 . Let us
denote the dump by D . The supply and demand for the transshipment point will
be 350 , so that everything can be, if necessary, transported via T1 . We also do
not want to transship anything to the dump via the transshipment point T1 . So,
we make the cost of shipping from T1 to D a very very very very very big number
M . The direct dumping from P1 or P2 to D of costless, of course. So, we have
the following initial transportation tableau

T1 M1 M2 D

P1
8 25 28 0

150

P2
15 26 22 0

200

T1
0 16 17 M

350

350 130 130 90

Now we can apply the transportation algorithm to this tableau. Here is a
(greedy minimal cost) initial BFS

T1 M1 M2 D

P1
8

(150)
25

0
28

0
0

0
150

P2
15

(110)
26

0
22

0
0

(90)
200

T1
0

(90)
16

(130)
17

(130)
M

0
350

350 130 130 90

We leave it as an exercise to carry out the transportation algorithm for this BFS.
We note the optimal transportation tableau:

T1 M1 M2 D

P1
8

(130)
25

0
28

0
0

(20)
150

P2
15

0
26

0
22

(130)
0

(70)
200

T1
0

(220)
16

(130)
17

0
M

0
350

350 130 130 90

7.3 Transshipment Problem 152

Here is a graphical representation of the optimal transportation tableau above (the
transportation schedule is in the parentheses):

25 (0)

28 (0)

26 (0)

22 (130)

8 (130)

15 (0)

16 (130)

17 (0)

P1

150

P2

200

M1

130

M2

130

T1

∞

From the picture we see that the total shipping cost is

130× 8 + 130× 16 + 130× 22 = 5980.

We cannot read the transshipment and dump data of the last Transportation
Tableau from the picture above, but that data was auxiliary anyway, i.e. we
might well not be interested in it.

Solution to Variant (b) of Example 7.3.1

In Example 7.3.1 the total supply is 350 and the total demand is 260 . So, in
order to balance the problem we need the dump market with demand 90 . Let us
denote the dump by D . The supply and demand for the transshipment point will
be 100 , so that at most 100 units can be transported via T1 . We also do not
want to transship anything to the dump via the transshipment point T1 . So, we
make the cost of shipping from T1 to D a very very very very very big number
M . The direct dumping from P1 or P2 to D of costless, of course. So, we have
the following initial transportation tableau

7.3 Transshipment Problem 153

T1 M1 M2 D

P1
8 25 28 0

150

P2
15 26 22 0

200

T1
0 16 17 M

100

100 130 130 90

We leave it for the students to carry out the transportation algorithm, and
simply note the solution:

T1 M1 M2 D

P1
8

(100)
25

(30)
28

0
0

(20)
150

P2
15

0
26

0
22

(130)
0

(70)
200

T1
0

0
16

(100)
17

0
M

0
100

100 130 130 90

Here is a graphical representation of the optimal transportation tableau above:

25 (30)

28 (0)

26 (0)

22 (130)

8 (100)

15 (0)

16 (100)

17 (0)

P1

150

P2

200

M1

130

M2

130

T1

100

From the picture we see that the total shipping cost is

100× 8 + 100× 16 + 30× 25 + 130× 22 = 6010.

7.4 Exercises and Projects 154

We cannot read the transshipment and dump data of the last Transportation
Tableau from the picture above, but that data was auxiliary anyway, i.e. we
might well not be interested in it.

7.4 Exercises and Projects

7.1. Powerco has three electric power plants that supply the needs of four cities.
The power plants can supply 35 GWh, 50 GWh, and 40 GWh, respectively. The
demands (peak power) of the four cities are 40 GWh, 20 GWh, 30 GWh, and 30
GWh, respectively.

The transportation costs of 1 GWh from power plant 1 to the cities 1, 2, 3,
and 4, are =C8 , =C6 , =C10 , and =C9 , respectively. The transportation costs of 1
GWh from power plant 2 to the cities 1, 2, 3, and 4, are =C9 , =C12 , =C13 , and =C7 ,
respectively. The transportation costs of 1 GWh from power plant 2 to the cities
1, 2, 3, and 4, are =C14 , =C9 , =C16 , and =C5 , respectively.

Powerco wants to minimize the total transportation cost while meeting the
peak power demands of the cities. How should Powerco transport its power from
the plants to the cities?

7.2. * The function [cost, schedule] = trans_solver(C, s, d) works only
for balanced transportation problems. Make a function

[cost, schedule, dump] = transu_solver(C, s, d, p)

that works for unbalanced transportation problems also. Here the new output
parameter dump tells the amount each port dumps and the new input parameter
p tells how much each market penalizes the short-fall in meeting the demand.

7.3. The city of Vaasa is taking bids on four construction jobs. Three companies
have placed bids on the jobs. Their bids in millions of Euros are

Jobs
Company Job 1 Job 2 Job 3 Job 4
AAA 50 46 42 40
AAB 51 48 44 −
ABB − 47 45 45

In the above ‘− ’ means that there was no bid.

Company AAA can do only one job. Companies AAB and ABB can do as
many as two jobs. The city of Vaasa wants to settle the matter all at once, i.e.,
all the construction jobs are to be distributed between the companies AAA, AAB,
and ABB immediately.

7.4 Exercises and Projects 155

(a) How should the city of Vaasa distribute the construction jobs between the
companies?

(b) Suppose that the companies that have bid for a construction job are willing to
share the said job. How should the city of Vaasa distribute the construction
jobs between the companies AAA, AAB and ABB now?

7.4. Solve the transshipment problems of Example 7.3.1 by using the function
trans_solver.

7.5. General Ford produces road-boats at L.A. and Detroit and has a warehouse
in Atlanta. The customers are in Houston and Tampa. The costs of shipping a
road-boat are in Dollars

City
City L.A. Detroit Atlanta Houston Tampa
L.A. 0 140 100 90 225
Detroit 145 0 111 110 119
Atlanta 105 115 0 113 78
Houston 89 109 121 0 −
Tampa 210 117 82 − 0

In the above ‘− ’ means that shipping is not allowed.

L.A. can produce 1,100 road-boats, and Detroit can produce 2,900 road-boats.
Houston must receive 2,400 road-boats and Tampa must receive 1,500 road-boats.
There is no limit in the Atlanta warehouse.

(a) Solve the General Ford’s transshipment problem, i.e., find the transshipment
schedule with the minimum cost.

(b) General Ford’s grandfather Major Nepotist is a senator who can make the
transportation between Houston and Tampa cost 10 Dollars both ways. How
much should General Ford pay for his grandfather to make the transportation
between Houston and Tampa possible?

7.6. * Implement the specialized transportation algorithm with Octave.

7.7. * Implement the Hungarian method with Octave.

Part IV

Mixed Integer Linear
Programming and Models

Chapter 8

Mixed Integer Linear
Programming

God is Real, unless declared Integer. — J. Allan Toogood

In this chapter we lift the divisibility assumption of LPs. This means that we
are looking at LPs where some (or all) of the decision variables are required to be
integers.

8.1 Mixed Integer Linear Programming Terminology

Although the name integer program does not state it explicitly, it is assumed that

Integer and mixed integer programs are LPs with the additional re-
quirement that all (or some) of the decision variables are integers.

If the additional requirement that some of the decision variables are integers is
lifted, then the resulting LP is called the LP relaxation of the prgram in question.

Pure Integer Program

An IP in which all the decision variables are required to be integers is called a
pure integer program, or simply an integer program (IP).

For example,

(8.1.1)
max z = 3x1 + 2x2
s.t. x1 + x2 ≤ 6

x1, x2 ≥ 0, integer

is a pure integer program.

8.2 Branch-And-Bound Method 158

Binary Integer Program

A binary integer program (BIP) is a IP where all the decision variables a
required to be either 0 or 1 .

For example,

(8.1.2)

max z = 3.2x1 + 2.4x2 + 1.5x3
s.t. 0.1x1 + 0.9x2 − 0.5x3 ≤ 2.5

−1.7x2 + 9.5x3 ≥ 1.5
x1, x2, x3 = 0 or 1.

Assignment problems are BIPs, although they can be solved as LPs.

Any BIP can be transformed into an IP by simply noting that the constraint

xi = 0 or 1

is the same as the constraints

xi ≤ 1

xi ≥ 0, integer

Mixed Integer Program

An LP in which some but not all of the decision variables are required to be
integers is called amixed integer linear program (MILP). Sometimes the name
mixed integer program (MIP) is also used.

For example,

(8.1.3)
max z = 3x1 + 2x2
s.t. x1 + x2 ≤ 6

x1, x2 ≥ 0, x1 integer

is a MILP, since x1 is required to be an integer, but x2 is not.

8.2 Branch-And-Bound Method

In this section we provide a relatively fast algorithm for solving IPs and MILPs.
The general idea of the algorithm is to solve LP relaxations of the IP or MILP
and to look for an integer solution by branching and bounding on the decision
variables provided by the the LP relaxations.

8.2 Branch-And-Bound Method 159

Branch-And-Bound by Example

8.2.1 Example (Furniture with integrity). The Integrity Furniture Corporation
manufactures tables and chairs. A table requires 1 hour of labor and 9 units of
wood. A chair requires 1 hour of labor and 5 units of wood. Currently 6 hours
of labor and 45 units of wood are available. Each table contributes =C8 to profit,
and each chair contributes =C5 to profit.

Integrity Furniture’s want to maximize its profit.

This problem would be a classical product selection problem, but we insist that
only integral furniture is produced. So, the problem is no longer an LP but an IP.

Let us formulate and solve the (pure) IP for Example 8.2.1. Let

x1 = number of tables manufactured,
x2 = number of chairs manufactured.

Since x1 and x2 must be integers, Integrity Furniture wishes to solve the following
(pure) IP:

(8.2.2)

max z = 8x1 + 5x2
s.t. x1 + x2 ≤ 6 (labor)

9x1 + 5x2 ≤ 45 (wood)
x1, x2 ≥ 0, integer

The first step in the branch-and-bound method is to solve the LP relaxation
of the IP (8.2.2):

(8.2.3)

max z = 8x1 + 5x2
s.t. x1 + x2 ≤ 6 (labor)

9x1 + 5x2 ≤ 45 (wood)
x1, x2 ≥ 0

If we are lucky, all the decision variables (x1 for tables and x2 for chairs in
the example we are considering) in the LP relaxation’s optimum turn out to be
integers. In this lucky case the optimal solution of the LP relaxation is also the
optimal solution to the original IP.

In the branch-and-bound algorithm we use next, we call the LP relaxation
(8.2.3) of the IP (8.2.2) subproblem 1 (SP 1). After solving SP 1 we find the
solution to be

z = 165/4

x1 = 15/4

x2 = 9/4

8.2 Branch-And-Bound Method 160

This means that we were not lucky: the decision variables turned out to be frac-
tional. So, the LP relaxation (8.2.3) has (possibly) a better optimum than the
original IP (8.2.2). In any case, we have found an upper bound to the original
IP: Integrity Furniture Corporation of Example 8.2.1 cannot possibly have better
profit than =C165/4 .

0

1

2

3

4

5

6
x2

0 1 2 3 4 5 6 7
x1

Isoprofit line

LP relaxation’s optimum

IP feasible point
LP relaxation’s feasible region

Next we split the feasible region (painted light green in the picture above) of
the LP relaxation (8.2.3) in hope to find a solution that is an integer one. We
arbitrarily choose a variable that is fractional at the optimal solution of the LP SP
1 (the first LP relaxation). We choose x1 . Now, x1 was 15/4 = 3.75 . Obviously,
at the optimal solution to the IP we have either x1 ≥ 4 or x1 ≤ 3 , since the
third alternative 3 < x1 < 4 is out of the question for IPs. So, we consider the
two possible cases x1 ≥ 4 and x1 ≤ 3 as separate subproblems. We denote these
subproblems as SP 2 and SP 3. So,

SP 2 = SP 1 + ”x1 ≥ 4”,

SP 3 = SP 1 + ”x1 ≤ 3”.

In the next picture we see that every possible feasible solution of the Integrity
Furniture’s IP (8.2.2) (the bullet points) is included in the feasible region of either
SP 2 or SP 3. Since SP 2 and SP 3 were created by adding constraints involving
the fractional solution x1 , we say that SP 2 and SP 3 were created by branching
on x1 .

8.2 Branch-And-Bound Method 161

0

1

2

3

4

5

6
x2

0 1 2 3 4 5 6
x1

Isoprofit line

IP feasible point
SP 3 feasible region
SP 2 feasible region

Below we have a tree-representation of of the picture above, and of our branching-
and-bounding so far. The color coding refer to the two previous pictures.

SP 1
z = 165/4
x1 = 15/4
x2 = 9/4

x1 ≥ 4 x1 ≤ 3

SP 2
z = 41
x1 = 4
x2 = 9/5

SP 3
z = 39
x1 = 3
x2 = 3

We see that SP 3 has an integer solution. So, we do not have to branch SP 2 any
more. Unfortunately, the integer solution of SP 3, z = 39 , is suboptimal when
compared to the non-integer solution, z = 41 , of SP 2. So, it may turn out that
the SP 2 has a further subproblem that has better integer solution than SP 3. So,
we have to branch SP 2 to find out what happens. Since x1 = 4 is an integer, we
branch on x2 = 9/5 = 1.8 . So, we have the new subproblems of SP 2:

SP 4 = SP 2 + ”x2 ≥ 2”,

SP 5 = SP 2 + ”x2 ≤ 1”.

8.2 Branch-And-Bound Method 162

When the solutions to these subproblems are added to the tree above we get the
following tree. There is no color coding in the boxes in the tree. There is border
coding, however. A thick borderline expresses a feasible IP solution, and a dashing
red borderline expresses an infeasible case.

(the color coding is dropped):

SP 1
z = 165/4
x1 = 15/4
x2 = 9/4

x1 ≥ 4 x1 ≤ 3

SP 2
z = 41
x1 = 4
x2 = 9/5

x2 ≥ 2 x2 ≤ 1

SP 3
z = 39
x1 = 3
x2 = 3

SP 4

Infeasible

SP 5
z = 365/9
x1 = 40/9
x2 = 1

We see that SP 4 is infeasible. So, the optimal solution is not there. However, SP
5 gives us a non-integer solution that is better than the integer solution of SP 3.
So, we have to branch on SP 5. Since x2 = 1 is already an integer, we branch on
x1 = 40/9 = 4.444 . So, we get two new subproblems of SP 5:

SP 6 = SP 5 + ”x1 ≥ 5”,

SP 7 = SP 5 + ”x1 ≤ 4”.

After this branching we finally arrive at the final solution where all the subproblems
are either infeasible, have integer solutions, or are suboptimal to some subproblem
that have integer solution, i.e. we have integer bounds for the subproblems. This
is the bound part of the branch–and–bound.

8.2 Branch-And-Bound Method 163

SP 1
z = 165/4
x1 = 15/4
x2 = 9/4

x1 ≥ 4 x1 ≤ 3

SP 2
z = 41
x1 = 4
x2 = 9/5

x2 ≥ 2 x2 ≤ 1

SP 3
z = 39
x1 = 3
x2 = 3

SP 4

Infeasible

SP 5
z = 365/9
x1 = 40/9
x2 = 1

x1 ≥ 5 x1 ≤ 4

SP 6
z = 40
x1 = 5
x2 = 0

SP 7
z = 37
x1 = 4
x2 = 1

From the tree above can read the solution to the IP: The SP 6 is the optimal
subproblem with integer solution. So, the solution to the IP (8.2.2) is

z = 40,

x1 = 5,

x2 = 0.

General Branch-And-Bound Algorithm

We have solved a pure IP with branch and bound. To solve MILP with branch-
and-bound one follows the same steps as in the pure IP case except one only
branches on decision variables that are required to be integers. So, solving MILPs
is actually somewhat easier than solving pure IPs!

8.2.4 Algorithm (Branch-and-bound algorithm).

Step 1 Solve the LP relaxation of the problem. If the solution is integer where re-
quired, then we are done. Otherwise create two new subproblems by branch-
ing any fractional variable that is required to be integer.

8.3 Exercises and Projects 164

Step 2 A subproblem is not active when any of the following occurs:

(a) You used the subproblem to branch on, i.e., the subproblem is not a
leaf in the tree.

(b) All variables in the solution that are required to be integers, are integers.
(c) The subproblem is infeasible.
(d) You can fathom the subproblem by a bounding argument.

Choose an active subproblem and branch on a fractional variable that should
be integer in the final solution. Repeat until there are no active subproblems.

Step 3 Solution to the IP/MILP is the best IP/MILP solution of the subproblems
you have created. It is found in one of the leaves of the tree representing the
subproblems.

8.3 Exercises and Projects

8.1. Solve the optimization problems (8.1.1), (8.1.2), and (8.1.3) and their corre-
sponding LP relaxations.

8.2. How can MILP be used to ensure that a variable, x1 , say, can assume only
values 1 , 2 , 3 , 4?

8.3. How can MILP be used to ensure that a variable, x1 , say, can assume only
values from a given finite set of values?

8.4. * Make an Octave function

[zmax, xmax, status] = rlp_solver(c,A,b, rvar, rvarsets)

(restricted LP solver) that solves a given standard form LP, given by the input
variables c, A, and b, with the additional restrictions that the decision variables
indicated by the input variable rvar belong to the sets defined by the input variable
rvarsets.

8.5. * Implement the branch-and-bound algorithm with Octave.

Chapter 9

Mixed Integer Linear Models

An approximate answer to the right problem is worth a good deal more
than an exact answer to an approximate problem. — John Tukey

9.1 Traveling Salesman Problem

MILPs can be use to model and solve many combinatorial problems. Arguably,
the most famous, or notorious, combinatorial problem is the traveling salesman
problem. Many ways of solving it are known. Here we present the MILP way.
Unfortunately, no-one knows any fast ways to solve the traveling salesman problem.

In the traveling salesman problem one has to find a tour around
N points so that the the total distance traveled is as short as possible.

An example of the traveling salesman problem is:

9.1.1 Example (Maya travels). Maya the Traveler wants to take a Kyiv–Paris–
Rome–Vaasa tour (in some order). The distances (in kilometers) between the cities
are

City
City Kyiv Paris Rome Vaasa
Kyiv 0 2,023 1,674 1,497
Paris 2,023 0 1,105 1,967
Rome 1,674 1,105 0 2,429
Vaasa 1,497 1,967 2,429 0

In which order should Maya take her tour?

9.1 Traveling Salesman Problem 166

An obvious brute force method to solve the traveling salesman problem is to
check all the possible routes and pick the shortest one. The obvious problem with
this obvious method is that with N cities we have to check N ! routes. E.g., with
20 cities we would have 20! = 2, 432, 902, 008, 176, 640, 000 routes to check. So we
should check over 2 quintillion routes if we are Americans. The Europeans have
to check over 2 trillion routes ,. This is our old Nemesis, the combinatorial
curse.

Here is a MILP formulation of the traveling salesman problem. It will work
much faster than the brute force method. (I wouldn’t call it fast, though.)

First we consider the data associated with the problem. The data is the cities
and their distances. Let Cij be the distance between cities i and j . We can
generalize the problem right away by not assuming that Cij = Cji . So, can we
allow that, for some strange reason, the distance from the city i to the city j
can be different than the distance from the city j to the city i . However, the
distance from the city i to itself is set to be a very very very very big number Mi :
Cii = Mi . This may look silly (shouldn’t it be 0?), but this is to ensure that the
traveling salesman does not go to the city i immediately after visiting the same
city i (that would be silly).

Now the data of the problem is formulated as the matrix C = [Cij] . Then we
can start the LP, or MILP, modeling by using Algorithm 1.1.2.

First, we have to find the decision variables. We use indicator decisions:

Xij =

{
1, if the salesman goes from the city i to the city j
0, otherwise

Second, we have to find the objective function. But this is to minimize the
total traveling distance:

min z =
∑
i

∑
j

CijXij .

Third, we have to find the constraints. Now, we have to arrive once at every
city. So, for all cities j we must have∑

i

Xij = 1.

Also, we must leave every city i once. So, for all cities i we must have∑
j

Xij = 1.

Finally, there is a very tricky set of constraints. We must visit all the cities by
a single continuous path going from one city to another. This is ensured by the
constraints: For all i, j ≥ 2 , i 6= j , and for some ui, uj ≥ 0 ,

ui − uj +NXij ≤ N − 1.

9.1 Traveling Salesman Problem 167

These constraints are a bit difficult to understand. What they do is that they
prevent subtours, i.e., tours that form a loop that do not contain all the cities.
Indeed, suppose that there is a subtour starting from the city 1, say, that does
not visit all the cities. Then there must be another subtour that does not visit
the city 1. Then the number of cities of this subtour is R < N . If we now add
together the constraint above corresponding to the Xij s of the latter subtour we
get NR ≤ (N−1)R , since all the ui s cancel. So, the constraint set is violated. On
the other hand, interpreting the variables ui as the first time the city i is visited,
we see (at least after some tedious case-checking) that a complete tour will satisfy
the constraints above.

Putting what we have found out together we find that the traveling salesman
problem with N cities is the MILP

(9.1.2)

min z =
∑

i

∑
j CijXij ,

s.t.
∑

iXij = 1, for all j∑
j Xij = 1, for all i

ui − uj +NXij ≤ N−1 for all i 6= j ≥ 2,
Xij = 0 or 1 for all i and j,
ui ≥ 0 for all i ≥ 2.

Note that, in addition to the actual decision variables Xij determining the optimal
route, we have the auxiliary variables ui also.

The following script file solves Maya’s problem 9.1.1 with Octaves’s glpk. It
should also be useful in solving any traveling salesman problem with Octave. You
might want to copy–paste it to your editor and save it as maya_travels.m. To
make the copy–pasting easier, we have not included line numbers here. Conse-
quently, we do not explain the script in detail here. Anyway, the in-script com-
ments should help to understand the code.

9.1 Traveling Salesman Problem 168

###
SCRIPT FILE: Maya the Traveler: Kyiv, Paris, Rome, Vaasa.
###

The distance matrix C, and its vector form c augmented with u:
M = 10000;
C = [M 2023 1674 1497;

2023 M 1105 1967;
1674 1105 M 2429;
1497 1967 2429 M];

c = [C’(:); 0; 0; 0];

The first 4*4 columns are for the tour matrix X in the vector form
and the last 3 columns are for the auxiliary vector u:
A = [1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0;

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0;
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0;
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0;

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0;

0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 1 -1 0;
0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 0 -1;
0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 -1 1 0;
0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 1 -1;
0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 -1 0 1;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 -1 1];

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

The bounds and other glpk parameters, and finally call glpk:
L = 50; # For u upper bounds.
b = [1 1 1 1 1 1 1 1 3 3 3 3 3 3]’;
lb = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]’;
ub = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L L L]’;
ctype = "SSSSSSSSUUUUUU";
vtype = "IIIIIIIIIIIIIIIICCC";
param.msglev=0; # Suppress glpk messages.
[x_min,tot_cost,stat] = glpk(c,A,b,lb,ub,ctype,vtype,1,param);

Get tour. A tour always starts from the city 1 (why not?).
X = reshape(x_min(1:16),4,4); # x_min to matrix form.
tour = [1]; # Start from city 1.
for k=1:3 # Find the next 3 cities.

tour = [tour; find(X(tour(k),:))]; # Append city from row k.
endfor

Print the outputs
tot_cost
tour

9.2 Fixed-Charge Problem 169

If you call the script maya_travels you get

maya_travels
tot_cost = 6243
tour =

1
4
2
3

So, the optimal tour is Kyiv→Vaasa→Paris→Rome(→Kyiv).

9.2 Fixed-Charge Problem

A fixed-charge problem is a product selection problem where there
are an additional fixed charge to be paid for each product produced.

The examples 9.2.1 and 9.2.3 below illustrate what is going on with the defi-
nition above.

9.2.1 Example (Dr. Strangelove’s handmade fluids). Dr. Strangelove produces
handmade fluids A, B, and C. To manufacture the fluids, he needs labor and raw
fluid. Dr. Strangelove wants to maximize his total profit, when the product-wise
profits and available resources per week are

Resource
Fluid Labor (hours) Raw fluid (liters) Profit (Euros)
A 30 4 6
B 20 3 4
C 60 4 7
Availability 150 160

Dr. Strangelove’s problem is a classical product selection problem. Indeed, set

x1 = the amount of fluid A produced
x2 = the amount of fluid B produced
x3 = the amount of fluid C produced

Then the LP for Example 9.2.1 is

(9.2.2)

max z = 6x1 + 4x2 + 7x3
s.t. 30x1 + 20x2 + 60x3 ≤ 150 (labor)

4x1 + 3x2 + 4x3 ≤ 160 (raw fluid)
x1, x2, x3 ≥ 0

9.2 Fixed-Charge Problem 170

and here is how you solve it with Octave’s glpk:

octave:1> c=[6 4 7]’; A=[30 20 60; 4 3 4]; b=[150 160]’;
octave:2> [x_max,z_max]=glpk(c,A,b,[0 0 0]’,[],"UU","CCC",-1)
x_max =

5
0
0

z_max = 30

Now we introduce fluid machines. This turns Example 9.2.1 into a fixed-
charge problem.

9.2.3 Example (Dr. Strangelove’s mass-produced fluids). Dr. Strangelove de-
cided to upgrade from handmade fluids to mass produced ones, and the labor
hours needed in production dropped to 10% . So, the business data is:

Resource
Fluid Labor (hours) Raw fluid (liters) Profit (Euros)
A 3 4 6
B 2 3 4
C 6 4 7
Availability 150 160

But now Dr. Strangelove needs to rent machinery to manufacture his fluids. The
renting costs per week are

Machinery Rent (Euros)
Fluid A machine 200
Fluid B machine 150
Fluid C machine 100

What should Dr. Strangelove do now in order to maximize his profit?

Dr. Strangelove’s mass-production example 9.2.3 can no longer be modeled as
an LP because of the fixed machinery charges. It can, however, be modeled as an
MILP. First we use the indicator trick: we introduce binary indicator variables

9.2 Fixed-Charge Problem 171

indicating the use of the machineries:

y1 =

{
1, if fluid A is produced,
0, if fluid A is not produced,

y2 =

{
1, if fluid B is produced,
0, if fluid B is not produced,

y3 =

{
1, if fluid C is produced,
0, if fluid C is not produced.

Then the objective function becomes

(9.2.4) z = 6x1 + 4x2 + 7x3 (linear profit)
−200y1 − 150y2 − 100y3 (fixed charge)

What about the constraints then? First, of course, we have the constraints for
labor and raw fluid as in the no-fixed-charge case (9.2.2):

(9.2.5) 3x1 + 2x2 + 6x3 ≤ 150 (labor)
4x1 + 3x2 + 4x3 ≤ 160 (raw fluid)

Then comes the big M trick (and this is really ingenious): in order to ensure that
the binary variables yi are 1 whenever the corresponding production variables xi
are non-zero, we impose

(9.2.6)
x1 ≤ M1y1
x2 ≤ M2y2
x3 ≤ M3y3

where M1 , M2 , and M3 are very, very, very, very big numbers. Indeed, if yi is
not 1 , then it is 0 , and, consequently, by the constraint xi ≤ M1yi , xi must be
zero also. On the other hand, if Mi is big enough, the constraint xi ≤Miyi does
not unnecessarily restrict the size of xi when yi = 1 . In practice, one should take
Mi to be at least the maximum value that xi may attain. Finally, we have the
sign and the binarity constraints

(9.2.7) x1, x2, x3 ≥ 0
y1, y2, y3 = 0 or 1

Putting (9.2.4), (9.2.5), (9.2.6), and (9.2.7) together we obtain, by using Algo-
rithm 3.1.2, the following MILP for Example 9.2.3:

(9.2.8)

max z = 6x1 +4x2 +7x3 −200y1 −150y2 −100y3
s.t. 3x1 +2x2 +6x3 ≤ 150

4x1 +3x2 +4x3 ≤ 160
x1 −M1y1 ≤ 0

x2 −M2y2 ≤ 0
x3 −M3y3 ≤ 0

x1, x2, x3 ≥ 0
y1, y2, y3 = 0 or 1

9.3 Fixed-Charge Problem 172

There is still a slight problem with LP (9.2.8): glpk does not understand binary
variables. The problem is easily solved by noting that the constraints yi = 0 or 1
is the same as the constraints yi ≥ 0 , yi ≤ 1 , yi integer. So, we get the form that
glpk can understand:

(9.2.9)

max z = 6x1 +4x2 +7x3 −200y1 −150y2 −100y3
s.t. 3x1 +2x2 +6x3 ≤ 150

4x1 +3x2 +4x3 ≤ 160
x1 −M1y1 ≤ 0

x2 −M2y2 ≤ 0
x3 −M3y3 ≤ 0

y1 ≤ 1
y2 ≤ 1

y3 ≤ 1
x1, x2, x3, y1, y2, y3 ≥ 0

y1, y2, y3 integer

Now, the LP (9.2.9) of Dr. Strangelove’s mass-production Example (9.2.3) can
be solved, e.g., with the Octave’s function glpk. In the code we set all the Mi s to
be 100 . Of course, 100 is not a very very very very big number, but a very very
very very big number may cause problems rounding errors in Octave. In any case,
100 is big enough.

octave:1> M = 100;
octave:2> c = [6 4 7 -200 -150 -100]’;
octave:3> A = [
> 3 2 6 0 0 0;
> 4 3 4 0 0 0;
> 1 0 0 -M 0 0;
> 0 1 0 0 -M 0;
> 0 0 1 0 0 -M;
> 0 0 0 1 0 0;
> 0 0 0 0 1 0;
> 0 0 0 0 0 1];
octave:4> b = [150 160 0 0 0 1 1 1]’;
octave:7> [x_max,z_max] = glpk(c,A,b,[0 0 0 0 0 0]’,[],"UUUUUUUU","CCCIII",-1)
x_max =

0
0

25
0
0
1

z_max = 75

So, Dr. Strangelove should produce only fluid C.

9.3 Set-Covering Problem 173

9.3 Set-Covering Problem

In a set-covering problem, each element of a given set must be
covered by elements from, possibly, another set. The objective is to
use as few elements from the other set as possible.

The following rather typical example of a set-covering problem illustrates the
rather nebulous definition above.

9.3.1 Example (Count the time). There are six villages in the county of Brutopia.
The count has to decide where to place knights in order to keep the peasants from
revolting. If the peasants in a village are revolting a knight should get there in at
least 15 hours: otherwise the count’s liege-lord, The Holy Emperor, gets angry.
The knights must be placed into villages. The time (in hours) it takes a knight to
travel from one village to another are:

To
From 1 2 3 4 5 6
1 0 10 20 30 30 20
2 10 0 25 35 20 10
3 20 25 0 15 30 20
4 30 35 15 0 15 25
5 30 20 30 15 0 14
6 20 10 20 25 14 0

The count wants to hire as few knight as possible. What should the count do?

In Example 9.3.1 the set to be covered is the villages and the covering set is
the villages, also. Since there is the 15 hour limit we have the following table for
the coverage:

Village Covers villages
1 1,2
2 1,2,6
3 3,4
4 3,4,5
5 4,5,6
6 2,5,6

Let us now turn into the LP formulation of the set-covering problem 9.3.1.
According to Algorithm 1.1.2 we first decide the decision variables. So, what

9.4 Set-Covering Problem 174

does the count has to decide? He has to decide whether to place a knight in a
given village or not. So, the decision variables are indicators

xi =

{
1, if a knight is placed in the Village i,
0, otherwise.

Now the objective function to be minimized is the total number of knights
placed in the villages. Since the decision variables are indicators, this is simply
the sum of the decision variables:

z = x1 + x2 + x3 + x4 + x5 + x6.

What about the constraints then? For each village we have the constraint that
there must be a knight within 15 hours. So, for example, Village 1 constraint is

x1 + x2 ≥ 1,

i.e., there must be a knight either in Village 1 or in Village 2 (or in both). This
is because Village 2 covers Village 1 and Village 2. (Actually, we should think
the other way around: Village 1 is covered by Village 1 and Village 2. There is
symmetry here, however. So, it does not matter which way you think. Be careful,
though! In some set-covering problems it may matter.) Now, from the coverage
table above we get the constraints for all the 6 villages as

x1 + x2 ≥ 1
x1 + x2 + x6 ≥ 1

x3 + x4 ≥ 1
x3 + x4 + x5 ≥ 1

x4 + x5 + x6 ≥ 1
x2 + x5 + x6 ≥ 1

Finally, remember that we have binarity constraints: xi = 0 or 1 . (Actually,
integrity constraints would be enough.)

Putting it all together we have the following BILP for Example 9.3.1:

min z = x1 + x2 + x3 + x4 + x5 + x6
s.t. x1 + x2 ≥ 1

x1 + x2 + x6 ≥ 1
x3 + x4 ≥ 1
x3 + x4 + x5 ≥ 1

x4 + x5 + x6 ≥ 1
x2 + x5 + x6 ≥ 1

x1, x2, x3, x4, x5, x6 = 0 or 1

9.4 Exercises and Projects 175

9.4 Exercises and Projects

9.1. Mr. Kulukumulukku is a traveling salesman selling kalakukkos. Each week
he travels to the five biggest cities of Finland to sell his kalakukkos. Mr. Kuluku-
mulukku wants to minimize his total traveling distance. What is his optimal tour,
when

(a) he just wants to make the tour,
(b) he starts and ends his tour from his home town of Kuopio?

(If you don’t know the five biggest cities of Finland or their distances to each
others and to Kuopio, you might want to consult Google.)

9.2. * Make an Octave function

[tot_dist, tour] = tsp_solver(C)

that solves the traveling salesman problem. The input parameter C is the distance
matrix. The output parameters are tot_dist for the total distance traveled and
tour for the optimal tour: e.g., if tour = [1 3 2 4]’, then the optimal tour
connecting the cities 1, 2, 3, 4 is 1→ 3→ 2→ 4(→ 1) .

The script maya_travels can be helpful here.

9.3. How low should the rent for the fluid A machine in Example 9.2.3 be so that
it makes sense for Dr. Strangelove to produce fluid A? What about fluid B?

9.4. Consider examples 9.2.1 and 9.2.3. Suppose Dr. Strangelove has an option
to rent (some of) the fluid machines. What should he do?

Here, the following a big M trick for the “logical or” and the “logical if–then”
could be helpful: The logical constraint

f(x1, . . . , xn) ≤ 0 or g(x1, . . . , xn) ≤ 0

can be written as

f(x1, . . . , xn) ≤ My,

g(x1, . . . , xn) ≤ M(1− y),

where y = 0 or 1 and M is a very very very very very big number. In a similar
way, since “if A then B” is “(not A) or B”, the logical constraint

if f(x1, . . . , xn) > 0 then g(x1, . . . , xn) ≥ 0

can be written as

−g(x1, . . . , xn) ≤ My,

f(x1, . . . , xn) ≤ M(1− y),

where y = 0 or 1 and M is a very very very very very big number.

http://justfuckinggoogleit.com/

.0 Exercises and Projects 176

9.5. Solve the set-covering problem of Example 9.3.1.

9.6. Consider the set-covering example 9.3.1. Suppose Village 2 is such a dreadful
place that no knight would want to live there. What should the count do now?

9.7. * Make an Octave function

cover_points = scp_solver(C)

That solves a general set-covering problem. The output variable cover_points
are the points in the minimal covering and the input variable C is the covering
matrix: Cij = 1 if the point i covers the point j , Cij = 0 otherwise.

9.8. The Holy Emperor is waging a desperate war against The Supreme Sultan.
The count of Brutopia, who is a vassal of The Holy Emperor, fathoms that the
war will be lost in exactly 3 years, and after the war there will be no county, nor
count, of Brutopia. So, the count decides to capitalize his possessions. After the
capitalization, the count intends to disappear into the New World. The count’s
income comes from the 6 villages under his yoke. The average monthly income of
the villages are (in Holy Imperial Ducats):

Village Taxes
1 8
2 19
3 18
4 18
5 19
6 102

To collect the taxes, the count must hire imperial tax-collectors. The imperial
tax-collectors are placed in the villages and their salary is 2 Holy Imperial Ducats
per week. The time it takes for a tax-collector based in the village i to collect the
taxes from the village j , and then to deliver them to the count are (in days):

Taxed village
Tax-collectors village 1 2 3 4 5 6 Delivery
1 0 100 100 107 101 192 12
2 100 0 128 135 197 197 71
3 100 128 0 115 130 189 87
4 107 135 115 0 192 185 88
5 101 197 130 192 0 184 89
6 192 197 189 185 184 0 97

Now, the Holy Emperor finances his war by diluting the gold content of the
Holy Roman Ducats by 1% each day.

How much should The Supreme Sultan offer to the count of Brutopia to dis-
appear immediately?

Appendix A

Octave Codes

Infinite loop See: Loop, infinite
Loop, infinite See: Infinite loop
Recursion See: Recursion

—The Contradictionary

The contents of the function m-files used in these notes are listed here. The m-
files are also available from www.uwasa.fi/∼tsottine/or_with_octave/. The
line numbers are not a part of the code: they are for reference purposes only. The
functions are listed here in the alphabetical order, since the author was unable to
decide what would be the logical order.

A.1 first_simplex_tableau

1 function [T,BV] = first_simplex_tableau(c,A,b)
2 ## Function [T, BV] = first_simplex_tableau (c, A, b) builds the first
3 ## simplex tableau for the function simplex_lp_solver. T is the tableau,
4 ## BV are the indexes of the basic variables (the slacks in this case).
5
6 ## n is the number of decision variables, m is the number of constraints.
7 [m,n] = size(A);
8
9 ## The simplex tableau without the BV information.

10 T = [1 -c’ zeros(1,m) 0;
11 zeros(m,1) A eye(m) b];
12
13 ## The indexes of the BV’s (the slacks in this case).
14 BV = ((n+1):(n+m))’;
15 endfunction

A.2 is_optimal_simplex_tableau

1 function optimal = is_optimal_simplex_tableau(T,BV)

http://www.uwasa.fi/~tsottine/or_with_octave/

A.3 new_simplex_tableau 178

2 ## Function optimal = is_optimal_simplex_tableau (T,BV) tells (to the
3 ## function simplex_lp_solver) if the simplex tableau [T, BV] is optimal.
4
5 ## The tableau [T,BV] is optimal if in the first row all the
6 ## coefficients are non-negative for all Non-Basic Variables (NBV).
7 NBV = get_NBV(BV,columns(T)-2); # Get NBV (cf. the function below).
8 optimal = 0; # A priori assume non-optimality.
9 NBVval = T(1,NBV+1); # First column is for z, hence NBV+1.

10 if (all(NBVval>=0)) # Check for optimality.
11 optimal = 1;
12 endif
13 endfunction
14
15 ###
16 ## Auxiliary function to get NBV indexes from BV indexes.
17 ###
18
19 function NBV = get_NBV(BV,nvar)
20 vars = ones(nvar,1); # Set "true" to all indexes.
21 vars(BV) = 0; # Set "false" to BV indexes.
22 NBV = find(vars); # Get the "true" indexes.
23 endfunction

A.3 new_simplex_tableau

1 function [Tnew,BVnew,status] = new_simplex_tableau(T,BV)
2 ## Function [Tnew, BVnew, status] = new_simplex_tableau (T, BV) builds
3 ## a new, hopefully better, simplex tableau [Tnew, BVnew] from the
4 ## tableau [T, BV], or detects the solution to be unbounded.
5 ## This function is used by the function simplex_lp_solver.
6
7 ## Variable initializations and short-hand notations.
8 status = "unknown"; # Paranoia!
9 Tnew = T; BVnew = BV; # New tableau is old tableau (for now).

10 [m,n] = size(T); # Almost the dimensions of A.
11
12 ## Get the entering BV.
13 coeff = T(1,2:(n-1)); # Coeffs. of the decisions and slacks.
14 [tmp,in] = min(coeff); # Index of the entering coefficient.
15
16 ## Get the leaving BV, or detect unboundedness and leave the function.
17 rhs = T(2:m,n); # RHS of the constraint rows.
18 cin = T(2:m,in+1); # Coeffs. of the entering variables.
19 ratio = rhs./cin; # Pointwise ratios.
20
21 ## Set all the "no-limit" ratios to -infinity
22 for i=1:length(ratio)
23 if (ratio(i)==Inf || ratio(i)<0)
24 ratio(i) = -Inf;
25 endif
26 endfor
27

A.5 npv 179

28 ## Check boundedness. Exit if unbounded.
29 if (all(ratio<0))
30 status = "unbounded";
31 return;
32 endif
33
34 [tmp,out] = min(abs(ratio)); # Get the winner index.
35
36 ## Solve T the new BV.
37 BVnew(out) = in; # The new BV.
38 Tnew = pivot(T,out+1,in+1); # Solve T for the new BV by pivoting.
39 endfunction
40
41 ###
42 ## The auxiliary function pivot
43 ###
44
45 function Ap = pivot(A, r, c)
46 ## Function Ap = pivot (A, r, c) pivots A with row r and column c.
47
48 A(r,:) = A(r,:)/A(r,c); # Get 1 for the pivot in the pivot row.
49 for i = 1:rows(A) # Remove the pivot from other rows.
50 if (i != r)
51 A(i,:) = A(i,:) - A(i,c)*A(r,:);
52 endif
53 endfor
54 Ap = A; # Return the pivoted matrix Ap.
55 endfunction

A.4 npv

1 function v = npv(cf,r)
2 ## Function v = npv(cf,r) returns the Net Present Value (npv) of the
3 ## cash flow cf. The cash flow cf is received at the end of each
4 ## period. The rate of return over the period is r. The parameter r
5 ## is scalar. The cash flow cf is a (column) vector.
6
7 T = length(cf); # The number of periods.
8 pv = zeros(T,1); # Initialize present values (pv) at zero.
9 for t=1:T

10 pv(t) = cf(t) / (1+r)^t; # Set the pv’s.
11 endfor
12 v = sum(pv); # npv is the sum of pv’s.
13 endfunction

A.5 simplex_lp_solver

1 function [z_max, x_max, status] = simplex_lp_solver(c, A, b, maxiter=100)
2 ## Function [z_max, x_max, status] =
3 ## simplex_lp_solver (c, A, b, maxiter=100) solves the LP

A.5 simplex_lp_solver 180

4 ##
5 ## max c’*x
6 ## s.t. A*x <= b
7 ## x >= 0,
8 ##
9 ## where b>=0, by using the standard simplex algorithm.

10 ##
11 ## Input:
12 ##
13 ## c, A, b
14 ## The (column) vector defining the objective function, the
15 ## technology matrix, and the (column) vector of the constraints.
16 ##
17 ## maxiter
18 ## The maximum iterations used in finding a solution (default: 100).
19 ##
20 ## Output:
21 ##
22 ## z_max, x_max
23 ## The maximal value of the objective and an optimal decision.
24 ##
25 ## status
26 ## A string indicating the status of the solution:
27 ## "bounded"
28 ## A bounded solution was found.
29 ## "unbounded"
30 ## The solution is known to be unbounded.
31 ## "infeasible"
32 ## Solutions are known not to exist (not applicable for b>=0).
33 ## "unknown"
34 ## The algorithm failed.
35 ##
36 ## simplex_lp_solver uses the functions first_simplex_tableau,
37 ## new_simplex_tableau, and is_best_simplex_tableau.
38 ##
39 ## See also: glpk.
40
41 ## Get the first simplex tableau.
42 [T,BV] = first_simplex_tableau(c,A,b);
43
44 ## Look for better simplex tableaux, but avoid the infinite loop.
45 status = "unknown"; # Status still unknown :)
46 iter = 0; # No iterations yet.
47 while (iter<maxiter && ...
48 !is_optimal_simplex_tableau(T,BV) && ...
49 !strcmp(status,"unbounded"))
50 [T,BV,status] = new_simplex_tableau(T,BV); # New [T,BV], unbounded (?).
51 iter = iter + 1; # We just had an iteration.
52 endwhile
53
54 ## Exit (with zeroes), if a solution was not found or found unbounded.
55 if (iter>=maxiter || strcmp(status,"unbounded"))
56 z_max = 0;
57 x_max = zeros(length(c),1);

A.6 stu_lp_solver 181

58 return;
59 endif
60
61 ## Collect the results from the last simplex tableau.
62 status = "bounded"; # We know this now.
63 z_max = T(1,columns(T)); # z_max is in the NE corner.
64 x_max = zeros(length(c)+length(b),1); # Zeros for now.
65 x_max(BV) = T(2:(length(b)+1),columns(T)); # Put BV values to x_max.
66 x_max = x_max(1:length(c)); # Cut the slacks away.
67 endfunction

A.6 stu_lp_solver

1 function [z_max, x_max, status] = stu_lp_solver(c, A, b)
2 ## Function [z_max, x_max, status] = stu_lp_solver(c, A, b) solves the LP
3 ##
4 ## max c’*x
5 ## s.t. A*x <= b
6 ## x >= 0,
7 ##
8 ## by using glpk.
9 ##

10 ## Input:
11 ##
12 ## c, A, b
13 ## The (column) vector defining the objective function, the
14 ## technology matrix, and the (column) vector of the constraints.
15 ##
16 ## Output:
17 ##
18 ## z_max, x_max
19 ## The maximal value of the objective and an optimal decision.
20 ##
21 ## status
22 ## A string indicating the status of the solution:
23 ## "bounded"
24 ## A bounded solution was found.
25 ## "unbounded"
26 ## The solution is known to be unbounded.
27 ## "infeasible"
28 ## Solutions are known not to exist.
29 ## "unknown"
30 ## The algorithm failed.
31 ##
32 ## See also: glpk.
33
34 ## Get m, the number of constraints (excluding the sign constraints), and
35 ## n, is the number of decision variables, from the technology matrix A.
36 [m,n] = size(A);
37
38 ## Some input-checking:
39 if (nargin!=3)

A.7 trans_solver 182

40 error("stu_lp_solver: The number of input arguments must be 3.\n");
41 elseif (columns(c)>1)
42 error("stu_lp_solver: Objective c must be a column vector.\n");
43 elseif (columns(b)>1)
44 error("stu_lp_solver: Upper bounds b must be a column vector.\n");
45 elseif (rows(c)!=n || rows(b)!=m)
46 error("stu_lp_solver: The dimensions of c, A, and b do not match.\n");
47 endif
48
49 ## Set the parameters for glpk:
50
51 ## Set the decision-wise lower bounds all to zero, i.e. build a zero
52 ## column vector with n zeros.
53 o = zeros(n,1);
54
55 ## Set the sense of each constraint as an upper bound.
56 ctype = ""; # Start with an empty string.
57 for i=1:m # Loop m times.
58 ctype = [ctype, "U"]; # Append "U" to the string.
59 endfor
60
61 ## Set the type of each variable as continuous.
62 vtype = ""; # Start with an empty string.
63 for i=1:n # Loop n times.
64 vtype = [vtype, "C"]; # Append "C" to the string.
65 endfor
66
67 ## Solve the system by calling glpk.
68 [x_max, z_max, STATUS] = glpk(c, A, b, o, [], ctype, vtype, -1);
69
70 ## Set the STATUS code given by glpk to the appropriate string
71 status = "unknown"; # Pessimism by default.
72 if (STATUS==180) # Everything went fine.
73 status="bounded";
74 elseif (STATUS==183) # LP infeasible detected.
75 status="infeasible";
76 elseif (STATUS==184) # LP unboundedness detected.
77 status="unbounded";
78 endif
79 endfunction

A.7 trans_solver

1 function [cost,schedule] = trans_solver(C,s,d)
2 ## Function [cost, schedule] = trans_solver(C, s, d) solves the
3 ## balanced transportation problem
4 ##
5 ## ----- -----
6 ## \ \
7 ## min > > C(i,j)*X(i,j)
8 ## / /
9 ## ----- -----

A.7 trans_solver 183

10 ## i j
11 ##
12 ## -----
13 ## \
14 ## s.t. > X(i,j) = s(i) for all ports i
15 ## /
16 ## -----
17 ## j
18 ##
19 ## -----
20 ## \
21 ## > X(i,j) = d(j) for all markets j
22 ## /
23 ## -----
24 ## i
25 ##
26 ## Input:
27 ##
28 ## C, s, d
29 ## The matrix of the transportation costs, the column vector
30 ## of the supplies, and the column vector of the demands.
31 ##
32 ## Output:
33 ##
34 ## cost, schedule
35 ## The minimal transportation cost and schedule.
36 ##
37 ## See also: glpk.
38
39 ## Some short-hands.
40 m1 = length(s); # Number of ports.
41 m2 = length(d); # Number of markets.
42 n = m1*m2; # Number of decisions.
43 o = zeros(n,1); # For glpk lower bounds.
44
45 ## Build the technology matrix A
46 A = zeros(m1+m2,n); # Initialization.
47 for i = 1:m1
48 A(i, (1:m2)+(i-1)*m2) = ones(1,m2); # Supply side.
49 A((1:m2)+m1, (1:m2)+(i-1)*m2) = eye(m2); # Demand side.
50 endfor
51
52 ## Set the sense of bounds (equality for balanced).
53 ctype = "";
54 for i=1:(m1+m2)
55 ctype = [ctype, "S"];
56 endfor
57
58 ## Set the type of each decision variable as continuous.
59 vtype = "";
60 for i=1:n
61 vtype = [vtype, "C"];
62 endfor
63

A.7 trans_solver 184

64 ## Solve the system by calling glpk.
65 [schedule, cost] = glpk(C’(:), A, [s; d], o, [], ctype, vtype, 1);
66
67 ## Reshape the schedule vector to a matrix.
68 schedule = reshape(schedule, m2, m1)’;
69 endfunction

Index

first_simplex_tableau, 177
is_optimal_simplex_tableau, 177
new_simplex_tableau, 178
npv, 179
simplex_lp_solver, 179
stu_lp_solver, 181
trans_solver, 182

active constraint, 43
active subproblem, 164
assignment problem, 144, 146

balanced transportation problem, 133
basic feasible solution, 44
basic variables, 46
BFS, 44
binary integer program, 146, 158
BIP, 146, 158
block-notation, 21
boundary point, 44
branch-and-bound algorithm, 163
Brutus Forcius, 45
business mix, 111
BV, 46

CCR dual LP, 124
CCR fractional program, 118
colon-notation, 20
column vector, 19
combinatorial curse, 45, 166
complementary slackness theorem, 100
constraints, 8, 40
corner point, 44

data envelopment analysis, 106
DEA, 106
DEA efficiency, 112, 118, 119, 124

decision variables, 8
decision-making unit, 106
DMU, 106
dot-notation, 20
dual, 89
dual variable, 79

feasible region, 43
feasible solution, 43
fixed-charge problem, 169, 170
function file, 28
fundamental theorem of linear program-

ming, 45

glpk, 32
GNU Linear Programming Kit, 32
guess–and–improve optimization, 45

Hungarian method, 148

identity matrix, 24
inner point, 44
integer program, 10, 157
integrity constraint, 11
inverse matrix, 24
IP, 10, 157

Karush–Kuhn–Tucker theorem, 53
knapsack problem, 10

left division, 26
linear independence, 44
linear optimization problem, 40
linear program, 7, 40
linear system, 26
LP, 7, 40
LP relaxation, 146, 157

A.7 INDEX 186

marginal price, 79
matrix, 18
matrix multiplication, 24
matrix product, 23
matrix sum, 22
MILP, 158
mixed integer linear program, 158

NBV, 46
non-basic variables, 46

objective function, 8, 40
Octave, 14
opportunity cost, 85
optimization modeling algorithm, 8

primal, 89
product selection problem, 7
pure integer program, 157

QP, 12
quadratic program, 12

reduced cost, 51, 84
row vector, 19

scalar multiplication, 22
script file, 30
search path, 31
sensitivity analysis, 78
set-covering problem, 173
shadow price, 79
sign constraint, 9
sign constraints, 41
simplex tableau, 59
slack form, 46, 60
slack variable, 46, 60
standard form, 41
standard form transformation, 41
subproblem, 159

technology matrix, 40
transportation algorithm, 139
transportation problem, 129
transportation problem (balanced), 133
transpose, 19

transshipment problem, 149, 150
traveling salesman problem, 165

Ubuntu, 14

vector, 19
virtual DMU, 124

weak duality theorem, 97
working directory, 32

	I Introduction and Preliminaries
	Selection of Optimization Problems
	Product Selection Problem
	Knapsack Problem
	Portfolio Selection Problem*
	Exercises and Projects

	Short Introduction to Octave
	Installing Octave
	Octave as Calculator
	Linear Algebra with Octave
	Function and Script Files
	Octave Programming: glpk Wrapper
	Exercises and Projects

	II Linear Programming
	Linear Programs and Their Optima
	Form of Linear Program
	Location of Linear Programs' Optima
	Solution Possibilities of Linear Programs
	Karush–Kuhn–Tucker Conditions*
	Proofs*
	Exercises and Projects

	Simplex Algorithm
	Simplex tableaux and General Idea
	Top-Level Algorithm
	Initialization Algorithm
	Optimality-Checking Algorithm
	Tableau Improvement Algorithm
	Exercises and Projects

	Sensitivity and Duality
	Sensitivity Analysis
	Dual Problem
	Duality Theorems*
	Primal and Dual Sensitivity
	Exercises and Projects

	III Linear Models
	Data Envelopment Analysis
	Graphical Introduction*
	Charnes–Cooper–Rhodes Model
	Charnes–Cooper–Rhodes Model's Dual
	Strengths and Weaknesses of Data Envelopment Analysis
	Exercises and Projects

	Transportation-Type Models
	Transportation Problem
	Assignment Problem
	Transshipment Problem
	Exercises and Projects

	IV Mixed Integer Linear Programming and Models
	Mixed Integer Linear Programming
	Mixed Integer Linear Programming Terminology
	Branch-And-Bound Method
	Exercises and Projects

	Mixed Integer Linear Models
	Traveling Salesman Problem
	Fixed-Charge Problem
	Set-Covering Problem
	Exercises and Projects

	Octave Codes
	first_simplex_tableau
	is_optimal_simplex_tableau
	new_simplex_tableau
	npv
	simplex_lp_solver
	stu_lp_solver
	trans_solver

