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Preface

Welcome to the course ORMS2020 Decisions under Uncertainty! The course will be com-
pleted by doing one or two assignments. There is no final exam. There are no weekly exercises.
There is no compulsory attendance of any kind. There are weekly guidance groups where help
for the assignments are given. Attending the groups is recommended but not mandatory.



In this course we will use the GNU Octave software. At the writing of these notes, May
16, 2024, the latest stable version of GNU Octave is 9.1.0. If you have an older version of
GNU Octave installed, it should work just fine. Also, if you want to use Matlab instead of GNU
Octave, that should also work just fine.

Remark The PDF driver of some versions of the GNU Octave does not work. In such case you
can use, e.g., JPG format for you pictures.

Remark For your assignments and for some examples in these notes you will need to have
the home made GNU Octave functions: scaling.m and dmatrix.m in your current directory.
They can be downloaded from the course web directory

https://lipas.uwasa.fi/∼tsottine/orms2020/en/.

or via the following direct links

• https://lipas.uwasa.fi/∼tsottine/orms2020/en/scaling.m.
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/dmatrix.m.

I wish to thank PhLic Saara Lehto for helping naming the names in this booklet.

Vaasa May 16, 2024
T.S.

https://lipas.uwasa.fi/~tsottine/orms2020/en/
https://lipas.uwasa.fi/~tsottine/orms2020/en/scaling.m
https://lipas.uwasa.fi/~tsottine/orms2020/en/dmatrix.m


Tutorial Videos

All the tutorial videos (mkv format) of the course can be found in the course web directory
https://lipas.uwasa.fi/∼tsottine/orms2020/en/.

The tutorial videos are titled CxEy.mkv for Chapter x Episode y. In this booklet, there are eight
chapters and each chapter has three to six sections. Not each booklet section has a dedicated
video, but some episodes span several sections. So the episodes and sections do not match.
Sorry for the confusion!

Below are also the direct links to the videos

Part 0 Welcome to the course!

Chapter 0 Introductory Material
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/C0S1.mp4 (10 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/C0S2.mp4 (10 min)

Part I Leading examples

Chapter 1 Brianna Brisk’s Rain Gear
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L1E1.mp4 (25 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/fi/L1E2.mp4 (28 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/fi/L1E3.mp4 (23 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L3E1.mp4 (21 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L3E1.mp4 (21 min)

Chapter 2 Eugene Equally-Brisk’s Synchronized Rain Gear
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L2E1.mp4 (19 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L2E2.mp4 (15 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L2E3.mp4 (11 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L3E1.mp4 (21 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L3E1.mp4 (21 min)

Part II Decision Matrix Techniques

Chapter 3 Decision Matrices and Decision Rules
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L3E1.mp4 (21 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L3E1.mp4 (21 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L3E1.mp4 (21 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L3E1.mp4 (21 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L3E1.mp4 (21 min)

Chapter 4 Decision Matrix Calculations with GNU Octave
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• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L4E1.mp4 (10 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L4E1.mp4 (10 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L4E1.mp4 (10 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L3E1.mp4 (21 min)

Part III Examples for Assignments

Chapter 5 Stefan Student’s Fall
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L5E1.mp4 (40 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L5E1.mp4 (40 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L5E1.mp4 (40 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L3E1.mp4 (21 min)

Chapter 6 Catherine Cato’s Scientific Report
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L6E1.mp4 (13 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L6E1.mp4 (13 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L6E1.mp4 (13 min)
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L3E1.mp4 (21 min)

Part IV Assigments

Chapter 7 Assignment 1: Your Fall
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L7E1.mp4 (13 min)

Chapter 8 Assignment 2: Ministry Report
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/L7E1.mp4 (13 min)
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Chapter 1

Brianna Brisk’s Rain Gear

Problem Description

Brianna Brisk walks every day to her office and back. The journey is 10 km. Brianna has to
decide what kind of gear to put on in the morning. The travel to work is not a problem, since
the weather is obvious. The travel back from work is a problem, because Brianna lives is Vaasa
where the weather can change a lot during a day.

Brianna has to decide between the following three alternatives: normal gear, an umbrella,
or a rain coat. If the weather is dry it is annoying to carry an umbrella and a rain coat is always
uncomfortable. If the weather is rainy but calm, a rain coat is a good choise but a bit sweaty:
an umbrella would be better. If the weather is both rainy and windy, an umbrella is mostly
useless and a rain coat is the best choice.

Decision Matrix

We build the decision matrix, a.k.a. the reward matrix, for Brianna.

Brianna mus choose between the following three alternatives (or actions)

a1 = Normal gear.
a2 = Umbrella.
a3 = Rain coat.

Brianna decides to consider her altarnatives in the following threee scenarios:

s1 = Dry weather.
s2 = Rainy, but calm weather.
s3 = Rainy and windy weather.

Because Brianna is weather forecast critical she does not bother to contemplate the probabilities
of different weather scenarios. This means she does not care about the probabilities

p1 = Probability of dry weather after the working day.
p2 = Probability of rainy but calm weather after the working day.
p3 = Probability of rainy and windy weather after the working day.
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Brianna measures the consequences of her actions, a.k.a. her rewards, as subjective com-
forts that are numbers in the scale 0 . . . 100 (per cent). These rewards are based on the fol-
lowing facts:

• Normal gear is a good choice for dry weather, but the worst possible choice for rainy
weather.

• Carrying an umbrella is slightly annoying and an umbrella is useless in windy weather.
• A rain coat is a safe choice for any weather, but it is slightly uncomfortable.

Because comfort is, in addition of being subjective, a very nebulous concept, Brianna mea-
sures it only on a four-point scale:

100 = Very comfortable.
80 = Relatively comfortable.
20 = Relatively uncomfortable.
0 = Very uncomfortable.

After contemplating, Brianna is left with the decision matrix (reward matrix)

Weather
Gear Dry Rain and calm Rain and wind
Normal gear 100 0 0
Umbrella 80 80 0
Rain coat 20 20 20

Brianna, like all of us, makes her decision on an emotional basis. Brianna’s feelings tells
her to decide a2 = Umbrella.

Next, Brianna will be a bit more analytical and consequently she may change her decision,
or maybe not. If not, then she may have at least found a good argument for her decision, or at
least a good excuse.

Decision Rules and Decision

Intuititvely, or based on her feelings, Brianna has made the choice a2 = Umbrella. We obtain
the decision matrix with value function, or decision function, V int . Here 1 denotes the alter-
native we choose and 0 denotes an alternative we do not choose. We have also boldfaced the
choice.

Weather Value
Gear Dry Rain and calm Rain and wind V int

Normal gear 100 0 0 0
Umbrella 80 80 0 1
Rain coat 20 20 20 0

Here, formally, V int is a decision rule or a value function that associates every alternative ai

with a value V int
i .
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In addition to her intuitive choice, Brianna wants to analyze her decision; its background
and values. As background, Brianna needs to decide how she reacts to uncertainty. Brianna
decides that she wants to minimize her regret.

Minimizing regret is a kind of if ifs and buts thinking. Regret is what you get if you do not
choose the best possible choice for a given scenario. Formally, if Ri j is the reward associated
with the altrenative ai if the scenario s j occurs, then the regret with the chosen alternative ai

and occurred scenario s j is

Ki j = max
i

Ri j − Ri j.

Note that here maxi Ri j is the best possible reward that we could have obtained if we only knew
that scenario s j would occur.

So, Brianna Brisk has the following regret matrix:

Regret due to weather
Gear Dry Rain and calm Rain and wind
Normal gear 0 80 20
Umbrella 20 0 20
Rain coat 80 60 0

Brianna wants to minimize the maximal regret. The maximal regrets V mr
i for the alternatives

ai are

Regret due to weather Value
Gear Dry Rain and calm Rain and wind V mr

Normal gear 0 80 20 80
Umbrella 20 0 20 20
Rain coat 80 60 0 80

So, in order to minimize her maximal regret, Brianna Brisk has to choose the alternative a2 =
Umbrella.

It turned out that Brianna Brisk is consistent: her intuitive choice was the same as the choice
arising from the minimax regret rule.

Sensitivity Analysis

Brianna’s choice was based on her subjective comforts

100 = Very comfortable.
80 = Relatively comfortable.
20 = Relatively uncomfortable.
0 = Very uncomfortable.

Here the comfort scale 100, 80, 20, 0 is very arbitrary. Why precisely these numbers? The
extremes 0 and 100 are of course normal. They just fix the range. But the middle numbers
80 and 20 are very arbitrary. By keeping the scale symmteric, we replace the numbers 80 and
20 with a free parameter c in the following way (and replace 100 (%) with 1):
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1 = Very comfortable.
c = Relatively comfortable.

1− c = Relatively uncomfortable.
0 = Very uncomfortable.

Note that the parameter c is in the interval 0.5 . . . 1. The parameter c tells us how Brianna
weighs the extremes of her comfort. For c = 0.5 the alternatives relatively comfortable and
relatively uncomfortable are the same. For c = 1 very comfortable and relatively comfortable
are the same; ditto for relatively uncomfortable and very uncomfortable.

By using the parameter c we get the following decision matrix augmented with the intuitive
choice V int

i :

Weather Value
Gear Dry Rain and calm Rain and wind V int

Normal gear 1 0 0 0
Umbrella c c 0 1
Rain coat 1− c 1− c 1− c 0

The parametrized regret matrix for Brianna and its maximal regrets is (recall that c ≥ 0.5)

Regret due weather Value
Gear Dry Rain and calm Rain and wind V mr

Normal gear 0 c 1− c c
Umbrella 1− c 0 1− c 1− c
Rain coat c 2c − 1 0 c

Because c ≥ 0.5, we have 1− c ≤ c . Similarly, c ≥ 2c−1. We see that Brianna Brisk’s minimax
regret choice is not at all sensitive on how she measures the extremes of her comfort.
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Chapter 2

Eugene Equally-Brisk’s Synchronized Rain
Gear

Problem Description

Eugene Equally-Brisk is Brianna Brisk’s spouse and collegue. He walks every day to his office
with Brianna. Eugene’s decision problem is the same as Brianna’s, i.e., what gear to use for the
walk: normal gear, an umbrella or a rain coat.

A new flavor in Eugene’s problem is the goal to synchronize the gear with Brianna, i.e, is is
possible to find a compromise so that both Brianna and Eugene use the same gear.

Eugene models the scenarios almost like Brianna. In addition to dry, rain and calm, rain
and wind, there is warm weather. It is well known that it is never warm when it rains in Vaasa.
This leaves Eugene with four scenarios (see below).

Decision Matrix

Eugene has the same alternatives as Brianna:

a1 = Normal gear.
a2 = Umbrella.
a3 = Rain coat.

Eugene’s scenarios are an extended version of Brianna’s scenarios. We emphasize this with
tree-like enumeration

s1,1 = Dry warm weather.
s1,2 = Dry cool weather.

s2 = Rainy and calm weather.
s3 = Rainy and windy weather.

Unlike Brianna, Eugene is not weather forecast critical. He is very interested in the proba-
bilities

p1,1 = Probability of dry and warm weather after the working day.
p1,2 = Probability of dry and cool weather after the working day.

p2 = Probability of rainy and calm weather after the working day.
p3 = Probability of rainy and windy weather after the working day.
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Decision Rules and Decision

Just like Brianna, Eugene basis his decision on subjective comfort. Unlike Brianna, Eugene is a
extremist in the sense that everything is either very comfortable (value 1) or very uncomfortable
(value 0) for him. The comfort matrix (reward matrix, decision matrix) for Eugene is

Weather
Gear Dry and warm Dry and cool Rain and calm Rain and wind
Normal gear 1 1 0 0
Umbrella 0 0 1 0
Rain coat 0 1 0 1

Intuitively, based on his feelings, Eugene thinks like Brianna a2 =Umbrella is a good choice.
So, Eugene’s reward matrix with intuitive values is

Weather Value
Gear s1,1 s1,2 s2 s3 V int

a1 1 1 0 0 0
a2 0 0 1 0 1
a3 0 1 0 1 0

(We used the symbols ai and s j here for marginal reasons.)
Just like Brianna, Eugene want to understand his intuitive decision, its background and

values. Eugene decides that he values uncertainty by using expected values: the value of an
alternative ai is its probability-weighted sum:

V ev
i =
∑

j

Ri j p j,

where p j is the probability of the scenario s j , the summing index j runs through all the sce-
narios, and Ri j is the reward associated with the alternative ai if the scenario s j occurs. In the
language of probability theory this means that ai is a random variable and Eugene’s value is
the expectation

V ev
i = E [ai]

=
∑

j

ai(s j)P[s j]

=
∑

j

Ri j p j.

(We use square brackets for E and P purely for aesthetic reasons. There is nothing profound
in this.)

In order to use the expected value decision rule, Eugene must know the probabilities p j .
In general, estimating probabilities is a difficult task in practice. Let us assume that these
probabilities are simply given by the weather forecast as

p1,1 = 0.05
p1,2 = 0.45
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p2 = 0.25
p3 = 0.25

(So, for example, the probability of rain is p2 + p3 = 0.50, the probability of dry and warm
weather is on p1,1 = 0.05, and the probability for rain and calm is p2 = 0.25.)

Calculating the value function V ev is straightforward but cumbersome. We obtain the values

V ev
1 = 1 · p1,1 + 1 · p1,2 + 0 · p2 + 0 · p3

= 0.05+ 0.45

= 0.50,

V ev
2 = 0 · p1,1 + 0 · p1,2 + 1 · p2 + 0 · p3

= 0.25,

V ev
3 = 0 · p1,1 + 1 · p1,2 + 0 · p2 + 1 · p3

= 0.45+ 0.25

= 0.70.

Consequently, the Eugene’s decision matrix augmented with the intuitive choice and the
expected values is

Weather Value
Gear s1,1 (0.05) s1,2 (0.45) s2 (0.25) s3 (0.25) V int V ev

a1 1 1 0 0 0 0.50
a2 0 0 1 0 1 0.25
a3 0 1 0 1 0 0.70

We see that Eugene’s feeling based choice a2 = Umbrella is not consistent with the expected
value choice a3 = Rain coat. Now, Eugene is left with two choices: either stick with his intuitive
choice, or change the choice to the maximal expected value choice. Eugene decides to be
consistent with expected value and change his choice to a3 = Rain coat.

Combining Decision Rules

Brianna Brisk and Eugene Equally-Brisk chose different alternatives. Or course, nothing pre-
vents then to choose different gears for their walks, but for some reason they want to choose
the same gear. So, the problem is to find a reasonable compromise.

There were three alternatives: a1 , a2 and a3 . Brianna chose the alternative a2 and Eugene
chose the alternative a3 . Now one might think that we only need to choose between the
alternatives a2 and a3 . This is not true, however. It dould be that the alternative a3 is simply
repulsive for Brianna and the alternative a2 is equally repulsive for Eugene. Furthermore, it
could in principle be that the alternative a1 could be a reasonable alternative for both Brianna
and Eugene. So, we need to be careful in finding the compromise.

Brianna Brisk and Eugene Equally-Brisk both considered subjective comfort. This is not
important in finding the compromise. We can base the compromise purely on their respective
value functions V (B) (for Brianna) and V (E) (for Eugene). All that has to be taken care of
that both V (B) and V (E) are the same type and in the same scale. By type we mean either
maximization or minimization. Let us transform both V (B) and V (E) to be of maximization
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type. Now, V (E) is the expected value, which is already maximization type. So, there is nothing
to transform here. However, V (B) is regret type, which is minimization type. Thus, we have
to transform it into maximization type. The transformation is simple: we transform

Vi(B) ←− −Vi(B).

Now V (B) is maximization type.
Next, we have to ensure that both V (B) and V (E) are in the same scale. To do so we apply

to both of them the affine transformation

Vi ←−
Vi − mink Vk

maxk Vk − mink Vk
.

Indeed, this transformation does not change the preferences for either Brianna or Eugene,
but it ensures that the value functions are on the interval 0 . . . 1 with maximal value 1 and
minimal value 0. By not changing the preferences we mean that if Vi1 ≤ Vi2 before the affine
transformation, so is Vi1 ≤ Vi2 after the affine transformation
Remark If the value function V is constant, then we have a division-by-zero problem at our
hand. To avoid this, we set V ≡ 1 for constant value functions V .

The next GNU Octave code will be used later to automatically scale value functions.

1 function V_scaled = s c a l i n g (V)
2 %% Funktion V_scaled = s c a l i n g (V) re tu rns the sca led vec to r
3 %% V_scaled = (V=min(V) ) /(max(V)=min(V) ) i f max(V) > min(V) , and the cons tant
4 %% vec to r V_scaled = [1 1 1 . . . 1 ] ’ o therwise . The vec to r V_scaled i s a
5 %% column vec to r .
6
7 %% Make V to be a coulumn vec to r .
8 i f s ize (V ,1 ) < s ize (V ,2 )
9 V = V ’ ;

10 end
11 %% V i s a cons tant vec to r .
12 i f max(V) == min(V)
13 V_scaled = ones ( length (V) ,1) ;
14 %% V i s not a cons tant vec to r .
15 else
16 V_scaled = (V=min(V) ) / (max(V)=min(V) ) ;
17 end
18 end

https://www.uwasa.fi/∼tsottine/orms2020/en/scaling.m

Let us than recall Brianna’s regret matrix with the associated maximal regret value function

Weather Value
Gear s1 s2 s3 V mr(B)
a1 0 80 20 80
a2 20 0 20 20
a3 80 60 0 80

Thus all that matters are the maximal regret values are

V mr
1 (B) = 80,

V mr
2 (B) = 20,

V mr
3 (B) = 80.
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Similarly, for Eugene, all that matters are the expected values

V ev
1 (E) = 0.50,

V ev
2 (E) = 0.25,

V ev
3 (E) = 0.70.

Let us denote V mj
i = −V mr

i (mj = maximize joy). Then, for Brianna,

V mj
1 (B) = −80,

V mj
2 (B) = −20,

V mj
3 (B) = −80.

That is, we just transformed Brianna’s value function into a maximization form. Next, we
transform Brianna’s joy values onto the interval 0 . . . 1 by using the affine transformation. We
obtain

V1(B) =
−80− (−80)
−20− (−80)

= 0,

V2(B) =
−20− (−80)
−20− (−80)

= 1,

V3(B) =
−80− (−80)
−20− (−80)

= 0.

Similarly, the affine transformation to Euqene yields

V1(E) =
0.50− 0.25
0.70− 0.25

= 0.56,

V2(E) =
0.25− 0.25
0.70− 0.25

= 0,

V3(E) =
0.70− 0.25
0.70− 0.25

= 1.

Now, Brianna’s and Eugene’s value functions are of the same type and on the same scale.
Thus it makes sense to compare them. The comparisons are give in the following table:

Values
Gear V (B) V (E)

a1 0 0.56
a2 1 0
a3 0 1
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Now, we can combine Brianna’s and Eugene’s values by choosing a weight w from the interval
0 . . . 1 and set a new value function V (w) to be

Vi(w) = wVi(B) + (1−w)Vi(E)

This means that Brianna’s point of view gets the weight w and Eugene’s point of view gets
the complementary weight 1−w . In the next table we have calculated the compromise value
function V (w) with weights w= 0.75, 0.50,0.25

Values
Gear V (B) V (E) V(0.75) V(0.50) V(0.25)

a1 0 0.56 0.14 0.28 0.42
a2 1 0 0.75 0.50 0.25
a3 0 1 0.25 0.50 0.75

We see that in the equal weight situation w = 0.5 both the alternatives a2 and a3 are equally
optimal. If Brianna gets a greater weight in the compromise value function, then Brianna’s
optimal alternative a2 will be compromise optimal, and if Eugene gets greater weight then
Eugene’s optimal alternative a3 will be compromise optimal.

Sensitivity Analysis

The analysis of V (w) in the end of the previous section was far from complete. Also, we could
consider the sensitivity of the compromise value function if the Brianna’s compfort matrix has
parameter c . This is what we do this, i.e., we look how sensitive the problem is with respect
to the parameters w and c .

Brianna’s regret matrix and maximal regrets are

Regret due weather Value
Gear Dry Rain and calm Rain and wind V mr(B; c)
Normal gear 0 c 1− c c
Umbrella 1− c 0 1− c 1− c
Rain coat c 2c − 1 0 c

By transforming into maximization by

Vi ←− −Vi

and by affinely scaling

Vi ←−
Vi − mink Vk

maxk Vk − mink Vk
,
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we obtain the values

V1(B; c) =
−c − (−c)

−(1− c)− (−c)
= 0,

V2(B; c) =
−(1− c)− (−c)
−(1− c)− (−c)

= 1,

V3(B; c) =
−c − (−c)

−(1− c)− (−c)
= 0.

We see that the parameter c disappears in the scaling. So, all that is left is the compromise
weight w .

Now,

V1(w) = 0.56(1−w),
V2(w) = w,

V3(w) = (1−w).

We see that a1 is never the optimal choice. Also, a2 is optimal if and oly if w≥ 0.5, and a3 is
optimal if and only if w≤ 0.5.
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Part II

Decision Matrix Techniques
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Chapter 3

Decision Matrices and Rules

Static Setting

We only consider decision problems that are static in their nature: the decision is done only
once and then we see the consequences. The decisions do not affect the scenarios or their
probabilities. In principle there is no time dimension or cause and effect.

The simplest way to understand decision matrix technique is the following: first Tu Ipse
(you self) chooses an alternative ai from the set {ai ; i ∈ I} , and then Fortuna Brevis (the
goddess of chance) chooses a scenario s j from the set {s j ; j ∈ J} with probability p j . In this
game Tu Ipse gets the reward Ri j .
Remark In the language of probability theory we may say that the scenarios form the probability
space Ω= {s j ; j ∈ J} . The alternatives ai , i ∈ I , are random variables ai : Ω→ R with values
ai(s j) = Ri j with probabilities

P
�

ai = Ri j

�

= p j,

or equally,

p j = P[s j].

The value function defining a decision rule is a function V : I → R can in principle be
anything that associates the alternative ai with a value Vi (some value functions can be silly).
The decision rule is either minimizing or maximizing the value function. So, strictly speaking
decision rules and value functions are different things, but we will use them synonymously
anyway.

If the decision rule is of maximization form, it means that the decision maker will choose
such an alternative a∗ = ai∗ , for which

Vi∗ = max
i

Vi.

In other words

i∗ = argmax
i

Vi.

It should be noted that there may be many different optimal alternatives a∗ . If there are many
optimizers, then just one is chosen at will.
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If the decision rule is of minimization form, it means that the decision maker will choose
such an alternative a∗ = ai∗ , for which

Vi∗ = min
i

Vi.

In other words

i∗ = argmin
i

Vi.

Again, the minimizer a∗ may not be unique. In the case of non-uniqueness one optimizer is
chosen at will.

Non-Stochastic Decision Rules

Formally a decision rule (which we equate with the value function V ) depends on the decision
problem via the reward matrix R and the probabilities p for the scenarios (columns of the
reward matrix). If the decision rule is independent of the scenario probabilities p we call the
decision rule non-stochastic. (Stochastic means random in modern English, it comes from the
ancient Greek word that means to aim or to guess).

Below we will briefly introduce some popular non-stochastic decision rules.

Optimist is Gladstone Gander, who thinks that Fortuna Brevis is his friend: whichever
alternative ai the optimist chooses, Laby Fortuna will choose the best possible scenario s j =
s j(i) for the chosen alternative ai . Formally this means that the optimist’s value function to be
maximized is

V opt
i = max

j
Ri j

Because the optimist’s selection a∗ = ai∗ satisfies

V opt
i∗ = max

i
max

j
Ri j,

is the optimist rule also called the maximax rule.

Pessimist is Donald Duck, who thinks Fortuna Brevis is his enemy: whichever alternative
ai the pessimist chooses, Lady Fortuna will choose the worst possible scenario s j = s j(i) for the
chosen alternative ai . Formally this means that the pessimist’s value function to be maximized
is

V pess
i = min

j
Ri j.

Because the pessimist’s selection a∗ = ai∗ satisfies

V pess
i∗ = max

i
min

j
Ri j,

is the pessimist rule also called the maximin rule.

The optimist and the pessimist are in some sense natural opposites. To form something in
between, we can take a weight w from the interval 0 . . . 1 and combine the optimist and the
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pessimist rules. This is called the Hurwicz rule. Formally in Hurwicz rule the value function
to be maximized is

V Hur
i (w) = w ·max

j
Ri j + (1−w) ·min

j
Ri j

= w · V opt
i + (1−w) · V pess

i .

The free parameter w here is called the degree of optimism of the decision maker. (Of course
in practice almost no-one knows his/her/their degree of optimism, but it can be estimated in
certain ways. To explain these ways are beyond the scope of this course.)

Regret averse decision maker who wants to minimize the maximal regret for all scenarios.
The old wisdom says that “it pays to be pessimist, for you shall have no regrets”. This is not
true! The regret averse rule is different to pessimist rule. To apply the regret averse rule one
has to first calculate the regret matrix K = [Ki j]i∈I , j∈J . Here Ki j tells how much the decision
ai regrets us when the scenario s j occurs. Formally

Ki j = max
i

Ri j − Ri j.

So, Ri j is the reward for choosing ai if s j occurs and maxi Ri j is the best possible reward if s j

occurs. Of course, we do not know which s j occurs, but the regret is there, just the same. The
regret averse decision maker wants to minimize the maximal possible regret. So, the regret
averse value function to be minimized is

V mr
i = max

j
Ki j

= max
j

h

max
i

Ri j − Ri j

i

.

The regret for the optimal decision a∗ = ai∗ is therefore

V mr
i∗ = min

i
max

j
Ki j

= min
i

max
j

h

max
i

Ri j − Ri j

i

.

Consequently, the regret averse rule is also called the minimax regret rule.
The rules we have seen so far — the optimist, the pessimist, Hurwicz, and regret averse –

were all non-stochastic. They did not care about the probabilities p j , j ∈ J , of the scenarios s j ,
j ∈ J . This is both a good and a bad thing. The good thing about it is that we do not have to
estimate the probabilities, which can be difficult or outright impossible. The bad thing is that
they treat all the scenarios equally even if some scenarios may be typical and other scenarios
may be extremely rare.

Finally, we present a decision rule that could be called semi-stochastic. This is the so-
called Laplace rule. It is based on the idea that all the scenarios s j , j ∈ J , are — more or less
– equally likely. Suppose that there are m scenarios. Then the value function to be maximized
in the Laplace rule is the scenario-wise average

V Lap
i =

1
m

∑

j

Ri j.

The optimal decision in the Laplace rule satisfies

V Lap
i∗ =

1
m

max
i

∑

j

Ri j.

Consequently omitting the constant m , the Laplace rule is also called the maxsum rule.
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Stochastic Decision Rules

Unlike the non-stochastic rules, the stochastic rules depend not only on the reward matrix R
but also on the scenario probabilities p .

By far the most natural stochastic rule is the expected value rule, which is to maximize
the value function

V ev
i =
∑

j

Ri j p j.

In the language of probability theory this rule meas that the value of the random variable ai

in the decision making is its expectation:

V ev
i = E [ai]

=
∑

j

ai(s j)P[s j]

=
∑

j

Ri j p j.

The optimal decision a∗ = ai∗ in the expectation rule satisfies

V ev
i∗ = max

i
E [ai] .

Consequently, the expected value rule is sometimes called the maxiE rule.

Remark If all the scenarios s j , j ∈ J , are equally probable, then the expected value rule is
simply the Laplace rule.

Remark The expected value rule is also called the risk neutral rule. Indeed, the decision maker
who follows the expected value rule is indifferent between the following two choices:

(i) a certain reward of 1 =C.
(ii) with probability 0.5 a reward of 2 =C and with probability 0.5 nothing.

Most of us are probably indifferent with these choices, or indeed indifferent of the game alto-
gether. The gist of the question is in scaling. A risk neutral decision maker is also indifferent
between the choices

(i) a certain reward of 100 000 =C.
(ii) with probability 0.5 a reward of 200 000 =C and with probability 0.5 nothing.

Now most of us will probably choose the alternative (i). This choice corresponds to risk aver-
sion. Choosing (ii) would correspond to risk seeking.

To model risk aversion and seeking one usually uses utility functions. The idea is that we
still use expected value as the decision rule but we do not apply it to the rewards R , but to the
so-called utilities U that are calculated from the reward matrix R by using a so-called utility
function Ui j = u(Ri j) . Here u: R → R . If the marginal utility, i.e. the derivative u′ of the
utility function u is decreasing, is the decision maker risk averse. In the same way, if u′ is
increasing the decision maker risk seeking. In general, the utility function of a decision maker
can exhibit both risk averse and risk seeking behavior for different values of the reward.
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Risk averse utility function on the left and risk seeking utility function on the right.

If the utility function u is given then the value function to be maximized associated with
the utility rule is

V util
i =
∑

j

u
�

Ri j

�

p j.

In the language of the probability theory this means that the value of the random variable ai

is its expected utility:

V util
i = E [u(ai)]

=
∑

j

u
�

ai(s j)
�

P[s j]

=
∑

j

u
�

Ri j

�

p j

=
∑

j

Ui j p j.

The value of the optimal decision a∗ = ai∗ in the utility rule is

V util
i∗ = max

i
E [u(ai)] .

Therefore the utility rule is sometimes called the maxiEU rule.

The expected utility rule is the gold standard of decision making. This follows from the
remarkable results of Von Neumann and Morgenstern, who showed that a decision maker is
rational if and only if he/she/they follow an expected utility rule. To go into details of that
theory is beyond the scope of this course.

Now we are faced with the problem of finding the utility function u . As in the case of
the degree of otimism for the Hurwicz rule, almost no-one know his/her/their utility function.
A one solution is to build a parametrized model for the utility u and then provide a way to
estimate the parameter. This is what we do next.
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We assume that the decision maker is risk averse, and his/her/their absolute risk aversion is
constant. This is also called the CARA assumption, CARA= Constant Absolute Risk Aversion.
This means that the risk aversion

−
u′′(r)
u′(r)

= constant.

This is a second order differential equation that can be solved in many ways. It turns out that
the solution is

u(r) = 1− e−r/r0 ,

where r0 is a free parameter. We call this parameter r0 the risk tolerance. To estimate the
risk tolerance we note that it is the value of indifference for the following game: what is the
amount of modey r0

=C that you are indifferent with the alternatives

(i) You get nothing.
(ii) You get r0

=C with probability 0.5, but lose r0/2 =C with probability 0.5.

It is obvious that the more risk averse the decision maker is, the smaller the risk tolerance r0

is. The expected value rule is a limiting case of the CARA rule, where the risk tolerance is the
limit r0 =∞ .

Below is a picture that illustrates the CARA utility function with different risk tolerances r0 .

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

CARA function with r0 = 100 (blue), r0 = 500 (red) and r0 = 1000 (yellow).

25



Combining Decision Problems

To combine two decision problems we only need their respective value functions. However, the
value functions must be of the same type (maximization or minimization: we choose maximiza-
tion in this course). A minimization type value function can be transformed into a maximization
type value problem with the simple transformation

Vi ←− −Vi

Also the value functions must be on the same scale. We use the affine scale transformation

Vi ←−
Vi − mink Vk

maxk Vk − mink Vk
.

to scale the value function on the interval 0 . . . 1 so that the best value will be 1 and the worst
value will be (if possible) 0. (If maxk Vk = mink Vk , we have a division-by-zero problem. In
this case we set Vi = 1 for all i .) We have a home-made GNU Octave function scaling that
does the affine scaling automatically. The m-file scaling.m defining the function scaling
can be downloaded here:

https://www.uwasa.fi/∼tsottine/orms2020/en/scaling.m
Most of our m-files in this booklet uses the affine scaling function scaling. So, it is a good idea
to download the file scaling.m to your GNU Octave working directory, if you have not done
so already. Another home-made GNU Octave function that is used repeatedly in the m-files
in this booklet is dmatrix that solves decision matrix problems automatically. The function
dmatrix is defined in the m-file dmatrix.m that can be downloaded here:

https://www.uwasa.fi/∼tsottine/orms2020/en/dmatrix.m
Let V 1 and V 2 be two value functions that are both of the maximization type and both are

affinely scaled to the same scale. Then we can choose a compromise parameter w from the
interval 0 . . . 1 to combine the value functions V 1 and V 2 into a new combined, or compromise,
value function V (w):

V (w) = wV 1 + (1−w)V 2.

So, the combined value function V (w) is a compromise of V 1 and V 2 , where V 1 is given the
weight w and V 2 is given the weight 1−w .
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Chapter 4

Decision Matrix Calculus with GNU Octave

Installing GNU Octave

GNU Octave is an open source version of the celebrated matrix calculus software Matlab. It can
be downloaded from the address https://octave.org/download. In making these lectures
the latest (stable) version of GNU Octave is 9.1.0, but older versions should work just fine.

Installing GNU octave to Windows and Linux is simple. MacOS installation is, however, a
bit complicated. The easiest way to install GNU Octave is to install an old version 6.2.0 via
Octave.app: https://octave-app.org/Download.html.

You can also use GNU Octave online in the address https://octave-online.net/. I do
not recommend the online version.

Once the GNU Octave is installed, you should have (on your desktop) two icons: Octave
CLI and Octave GUI. CLI stands for Command Line Interface and GUI stands for Graphical User
Interface. I strongly recommend using the GUI. After lauching the Octave GUI you should have
a screen like this (I am using version 7.1.0, so your screen may be slight different):

This course is not a programming course as such, and it is not strictly mandatory to use
GNU Octave. You are free to use any tool you wish, like Excel (if you are a masochist), Matlab,
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Python, Julia, C, pen and paper, or whatever. It is my opinion that GNU Octave is the best and
easiest tool for the purposes of this course, however. Also, I have made a function dmatrix
that calculates decision problems with GNU Octave automatically.

The Octave m-files of this course are written in such a way that they should also work with
Matlab, if you want to use Matlab instead of GNU Octave. I have not tested them with Matlab,
though.

Function dmatrix for Decision Matrices

The m-file dmatrix.m defines a function

dresult = dmatrix(dproblem),

that is solves decision matrix problems. (In the m-files of this booklet we usually write dp and
dr instead of dproblem and dresult.)

The function dmatrix takes in a structure type variable dproblem that defines the decision
matrix problem. It has the following fields:

drule is a string that determines the decision rule to be used. The supported decision rules are

"opt" optimist
"pess" pessimist
"Hur" Hurwicz rule

"regret" regret aversion
"Lap" Laplace rule
"ev" expected value rule

"cara" constant absolute risk aversion rule

The field drule is obviously mandatory. Note also that small and capital letters are not
the same for GNU Octave.

dmat is the decision matrix, or the reward matrix whose rows are the alernatives and the
columns are the scenarios. The field dmat is obviously mandatory.

odegree the the degree of optimism in the Hurwicz rule. This field is only needed if the decision
rule is the Hurwicz rule.

prob is a column vector giving the probabilities of the scenarios. This field is needed only in
the case for the decision rules "ev" and "cara".

rtol is the risk tolerance only needed with the "cara" rule.

The function dmatrix returns a structure type variable dresult that always has the fol-
lowing fields:

dvalues is a vector giving the values of the decisions.
doptim is the index of the optimal decision.

In addition, if the decision rule is "regret" the dresult has the field rmat that contains the
regret matrix, and if the decision rule is "cara" then the dresult has the field umat that
contains the utility matrix.
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The reason to use structure type variables is that in GNU Octave one does not have to define
fields that are unnecessary. Also, if one defines fields that are not used, it does not cause any
problems.

Below is the listing for the function file dmatrix.m:

1 function d r e s u l t = dmatrix ( dproblem )
2 %% Funct ion d r e s u l t = dmatrix ( dproblem ) re tu rns a s t r u c t type v a r i a b l e dre su l t ,
3 %% whose f i e l d dvalues t e l l s the va lues of the d e c i s i o n s and the f i e l d doptim
4 %% t e l l s the index of the opt imal dec i s i on . I f the dec i s i on ru l e i f minimax
5 %% regre t , i . e . " r e g r e t " , then the output f i e l d rmat w i l l be the r e g r e t matr ix .
6 %% I f the dec i s i on ru l e i s cons tant abso lu te r i s k avers ion , or " cara " , then the
7 %% output f i e l d umat re tu rns the u t i l i t y matr ix .
8 %%
9 %% The argument dproblem i s a l so a s t r u c t v a r i a b l e . I t s f i e l d s are :

10 %%
11 %% dmat i s the dec i s i on ( or reward ) matr ix .
12 %%
13 %% drule i s the s t r i n g tha t d e s c r i b e s the dec i s i on ru l e . Supported r u l e s are
14 %% " opt " ( op t im i s t ) , " pess " ( p e s s i m i s t ) , " Hur " ( Hurwicz ) , " r e g r e t " (minimax
15 %% r e g r e t ) , " Lap " ( Laplace ) , " ev " ( expected value ) , " cara " ( cons tant abso lu te
16 %% r i s k aver s ion ) .
17 %%
18 %% odegree i s the degree of optimism in Hurwicz ru l e .
19 %%
20 %% prob i s the column vec to r conta in ing the p r o b a b i l i t e s of the scenar ios ,
21 %%
22 %% r t o l i s the r i s k to l e rance r e l a t e d to the " cara " ru l e .
23
24 %% Lyhennysmerkintoja
25 R = dproblem . dmat ; %% Dec i s ion matr ix
26 s = dproblem . dru le ; %% Dec i s ion ru l e
27 I = 1: s ize (R,1 ) ; %% R ’ s rows
28 J = 1: s ize (R,2 ) ; %% R ’ s columns
29
30 i f strcmp ( s , " opt " )
31 d r e s u l t . dvalues = max(R ’ ) ’ ;
32 [ tmp , d r e s u l t . doptim ] = max( d r e s u l t . dvalues ) ;
33 e l s e i f strcmp ( s , " pess " )
34 d r e s u l t . dvalues = min(R ’ ) ’ ;
35 [ tmp , d r e s u l t . doptim ] = max( d r e s u l t . dvalues ) ;
36 e l s e i f strcmp ( s , " Hur " )
37 w = dproblem . odegree ;
38 d r e s u l t . dvalues = w*max(R ’ ) ’ + (1=w)*min(R ’ ) ’ ;
39 [ tmp , d r e s u l t . doptim ] = max( d r e s u l t . dvalues ) ;
40 e l s e i f strcmp ( s , " r e g r e t " )
41 %% Bui ld the r e g r e t matr ix
42 for i=I
43 for j=J
44 K( i , j ) = max(R( : , j ) ) = R( i , j ) ;
45 end
46 end
47 d r e s u l t . dvalues = max(K ’ ) ’ ;
48 [ tmp , d r e s u l t . doptim ] = min( d r e s u l t . dvalues ) ;
49 d r e s u l t . rmat = K;
50 e l s e i f strcmp ( s , " Lap " )
51 d r e s u l t . dvalues = (1/ s ize (R,2 ) )*sum(R ’ ) ’ ;
52 [ tmp , d r e s u l t . doptim ] = max( d r e s u l t . dvalues ) ;
53 e l s e i f strcmp ( s , " ev " )
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54 p = dproblem . prob ;
55 d r e s u l t . dvalues = R*p ; %% p has to be a clolumn vec to r !
56 [ tmp , d r e s u l t . doptim ] = max( d r e s u l t . dvalues ) ;
57 e l s e i f strcmp ( s , " cara " )
58 p = dproblem . prob ;
59 r0 = dproblem . r t o l ;
60 %% Bui ld the u t i l i t y matr ix
61 for i=I
62 for j=J
63 U( i , j ) = 1 = exp(=R( i , j )/ r0 ) ;
64 end
65 end
66 d r e s u l t . dvalues = U*p ; %% p has to be a column vec to r !
67 [ tmp , d r e s u l t . doptim ] = max( d r e s u l t . dvalues ) ;
68 d r e s u l t . umat = U;
69 end
70 end

https://www.uwasa.fi/∼tsottine/orms2020/en/dmatrix.m

We will explain the inner workings of the function dmatrix in a video lecture. It is, how-
ever, not necessary to understand how the function dmatrix works. It is enough to know how
to use it.

In the next sections and chapters we will demonstrate how to use the function dmatrix
via examples.

Finally, a word of warning: The function dmatrix has no input checking whatsoever. It
works with the maxim bullshit in – bullshit out. So, if the input variable dproblem is not
properly defined, the output variable dresult may be nonsense! Caveat emptor!

Using Function dmatrix for Brianna Brisk and Eugene
Equally-Brisk

We investigate Brianna’s and Eugene’s examples of Chapter 1 and Chapter 2 by using the func-
tion dmatrix. Note that to use these examples you must have the m-file dmatrix.m down-
loaded in your GNU Octave current directory. You will also need the m-file scaling.m in you
current directory. Both can be downloaded from the course web directory

https://lipas.uwasa.fi/∼tsottine/orms2020/en/.

or via the following direct links

• https://lipas.uwasa.fi/∼tsottine/orms2020/en/scaling.m.
• https://lipas.uwasa.fi/∼tsottine/orms2020/en/dmatrix.m.

Brianna Brisk’s Decision

The m-file example_bb.m calculates Brianna’s optimal decision with mid-comport degree c =
80%. The actual calculations are done in the lines 10–22. The lines 1–9 are simply comments
that are there for the readers’ comfort. Finally, in the lines 24–41 we have listed the output of
the m-file itself.

The m-file example_bb.m is listed below:
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1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% FILE : example_bb .m
4 %%
5 %% Brianna Br i sk ’ s problem with the func t ion dmatrix .
6 %%
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8
9 %% Mid=comfort degree

10 c = 0 .8 ;
11
12 %% Dec i s ion matr ix
13 R = [ 1 0 0;
14 c c 0;
15 1=c 1=c 1=c ] ;
16
17 %% Dec i s ion problem (dp) f o r the func t ion dmatrix
18 dp . dmat = R;
19 dp . dru le = " r e g r e t " ;
20
21 %% Dec i s ion r e s u l t ( dr )
22 dr = dmatrix (dp)
23
24 %% Running the f i l e we get the output dr
25 %%>> example_bb
26 %%dr =
27 %%
28 %% s c a l a r s t r u c t u r e conta in ing the f i e l d s :
29 %%
30 %% dvalues =
31 %%
32 %% 0.8000
33 %% 0.2000
34 %% 0.8000
35 %%
36 %% doptim = 2
37 %% rmat =
38 %%
39 %% 0 0.8000 0.2000
40 %% 0.2000 0 0.2000
41 %% 0.8000 0.6000 0

https://www.uwasa.fi/∼tsottine/orms2020/en/example_bb.m

In the example_bb.m the first comment block 1–7 is simply a title. The comment sign
“%” beginning a line makes the line a comment meaning that the GNU Octave interpreter will
simply ignore it. These lines are there only for the readers’ convenience. The empty lines are
also simply ignored by the GNU Octave interpreter. Thus the line 8 is there only for the readers’
convenience. Ditto for the comment the line 9. In the line 10 we set the mid-comfort degree
to be 0.8 = 80%. This can be changed to different values if one wants to experiment. The
empty line 11 and the comment line 12 are there for the readers’ convenience. The lines 13–
15 define the the reward or decision matrix R. The empty line 16 and the comment line 17 are
there only for readers’ convenience. The lines 18–19 define the required fields for the decision
problem structure variable which we call dp (for decision problem). The empty line 20 and
the comments line 21 are there only for the readers’ convenience (again). The line 22 is the
beef. There the decision problem dp is solved with the function dmatrix and the solution is
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stored in the structure variable dr (for decision result). Lines 23 and 24 are there only for the
readers’ convenience. Finally, the commented lines 25–41 show how the result of running the
script m-file example_bb should look like. Compare these results with the Brianna’s results
from Chapter 1.

Eugene Equally-Brisk’s Decision

Eugene Equally-Bisk’s solution is given in the m-file example_ee.m listed below.
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% FILE : example_ee .m
4 %%
5 %% Eugene Equal ly=Br isk ’ s s o l u t i o n with dmatrix .
6 %%
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8
9 %% Dec i s ion matr ix

10 R = [ 1 1 0 0;
11 0 0 1 0;
12 0 1 0 1 ] ;
13 %% P r o b a b i l i t i e s f o r s c ena r i o s .
14 p = [0.05 0.45 0.25 0 . 2 5 ] ’ ;
15
16 %% Dec i s ion matr ix and i t s s o l u t i o n
17 dp . dmat = R;
18 dp . dru le = " ev " ;
19 dp . prob = p ;
20 dr = dmatrix (dp)
21
22 %% Running the f i l e we get the output dr
23 %% >> example_ee
24 %% dr =
25 %%
26 %% s c a l a r s t r u c t u r e conta in ing the f i e l d s :
27 %%
28 %% dvalues =
29 %%
30 %% 0.5000
31 %% 0.2500
32 %% 0.7000
33 %%
34 %% doptim = 3

https://www.uwasa.fi/∼tsottine/orms2020/en/example_ee.m

The actual calculations are made in the lines 10–20. All the rest is either comments for
the readers’ convenience (lines 1–9), or listing the result of the m-file (lines 22–34). To be
more precise, the lines 1–9 are there only for readers’ convenience. In the lines 10–12 the
decision, or reward, matrix R is given. The line 13 is just a comment line. In the line 14
the probabilities p for scenarios are given as a column matrix. Lines 15–16 are there only
for the readers’ convenience. In the lines 17–19 the decision problem (dp) is defined. The
beef is the line 20, where the decision problem (dp) is solved by using the function dmatrix
and the solution is stored in the variable dr (decision result). The lines 21–22 are there for
the readers’ convenience. Finally, in the lines 23–34 we show the output of calling the m-file
example_ee.m
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Branna’s and Eugene’s Compromise Decision

The compromise calculations for Brianna and Eugene are given in the m-file example_bbee.m
that is listed below

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% FILE : example_bbee .m
4 %%
5 %% Brianna ’ s and Eugene ’ s compromise s o l u t i o n by using dmatrix .
6 %%
7 %% NOTE: In add i t ion to dmatrix .m t h i s s c r i p t uses s c a l i n g .m.
8 %%
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10
11 %% Brianna ’ s problem with s c a l i n g
12 c = 0 .8 ;
13 RB = [ 1 0 0;
14 c c 0;
15 1=c 1=c 1=c ] ;
16 dpB . dru le = " r e g r e t " ;
17 dpB . dmat = RB;
18 drB = dmatrix (dpB) ;
19 VB = drB . dvalues ;
20 VB = =VB;
21 VB = s c a l i n g (VB) ;
22
23 %% Eugene ’ s problem with s c a l i n g
24 RE = [ 1 1 0 0;
25 0 0 1 0;
26 0 1 0 1 ] ;
27 p = [0.05 0.45 0.25 0 . 2 5 ] ’ ;
28 dpE . dru le = " ev " ;
29 dpE . dmat = RE;
30 dpE . prob = p ;
31 drE = dmatrix (dpE) ;
32 VE = drE . dvalues ;
33 VE = s c a l i n g (VE) ;
34
35 %% Compromise dec i s i on with Briann weight w=0.1 , 0 .2 , . . . , 1
36 w = 1:=0.1:0 ’ ;
37 for i=1: length (w)
38 V ( : , i ) = w( i )*VB + (1=w( i ) )*VE ;
39 [ tmp , compromise ( i ) ] = max(V ( : , i ) ’ ) ;
40 end
41
42 %% Running the f i l e and checking the output compromise
43 %%>> example_bbee
44 %%>> compromise
45 %%compromise =
46 %%
47 %% 2 2 2 2 2 2 3 3 3 3 3

https://www.uwasa.fi/∼tsottine/orms2020/en/example_bbee.m

Let us analyze the script file example_bbee.m. As always, the first commented block, here
the lines 1–9, are there just for the readers’ convenience. The same is true for the empty line
10 and for the comment line 11. In the line 12 the mid-comfort degree c is set to 0.8 = 80%.
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The decision matrix for Brianna, RB is given in the lines 13–15. Then the decision problem for
Brianna dpB is given in the lines 16–21. Not that here we scale the Brianna’s decision values
VB in the line 21. This requires the home made funxtion scaling.m. The lines 22–23 are
there only for the readers’ convenience. In the lines 24–26 the decision matrix for Eugene RE
is given. In the line 27 the probabilities p for the scenarios are given. In the lines 28–30 the
decision problem (dpE) of Eugene is given. In the line 31 the Eugene’s decision problem dpE
is solved with the function dmatrix and the solution is stored in the variable drE (decision
result for Eugene). In the line 32 the decision values are stored in the variable VE (values for
Eugene), which is scaled in the line 33. The lines 41–42 a the for the readers’ convenience.
Finally, in the lines 43–47 we run the script file and check its result variable compromise.

Visualizing Sensitivity for Sheldon Share

In this section we show how to visualize decision data when there are two free (or uncertain)
sensitivity parameters. In your assignments in chapters 7 and 8 (and in the related examples
in chapters 5 and 6) you should always have two sensitivity parameters, so pay attention.

In the example of this section we encounter the Koala Ebola with is an infectious disease
that may evolve into a global pandemic. We will encounter the Koala Ebola in all our later ex-
amples and assignments also. So far, the Koala Ebola has only been encountered in Outdonesia.
Unfortunately, Outdonesia is a popular tourist attraction and the Koala Ebola has penetrated
the entire land. Outdonesia has not enforced any kind of quarantine yet, so it may be only a
matter of time before we may have a global pandemic at our hand.

Sheldon Share has c = 100 000 =C extra money to invest. Sheldon does not believe in
diversification. Instead he will invest in one of he following alternatives:

a1 = Invest in a retail company stock.
a2 = Invest in a retail company call-options.
a3 = Invest in an airline company stock.
a4 = Invest is an airline company call-options.

Sheldon thinks that the following scenarios are relevant to his choise:

s1 = Koala Ebola runs rampant.
s2 = Koala Ebola is contained, but the economy is in recess.
s3 = Koala Ebola is contained and the economy is booming.

Sheldon assumes the probabilities for the scenarios above to be

p1 = p0,

p2 = q0,

p3 = q0.

Here p0 is an unknown uncertainty parameter and (necessarily) q0 = (1− p0)/2. The reason
to have p2 and p3 with equal probabilities is the so-called maximum entropy principle: we
have no reason to assume the probabilities to be different in any special way, so we assumed
them to be the same. Recall also that the probability p0 is of course not fixed, it is a sensitivity
parameter.

Sheldon Share has consulted the “best investing experts” and they have given him the fol-
lowing decision matrix (values are in returns)
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Return (prob)
Choice s1 (p0) s2 (q0) s3 (q0)
a1 80 −50 10
a2 120 −100 −100
a3 −60 20 200
a4 −100 −100 400

Sheldon is risk averse with CARA type utility function

u(r) = 1− e−r/r0 .

Unfortunately, Sheldon does not know his risk tolerance r0 .

Remark Because Sheldon Share uses a utility rule, he should not calculate with returns but
with outcomes. Therefore his decision matrix is actually

Outcome (prob)
Choice s1 (p0) s2 (q0) s3 (q0)
a1 1.8c 0.5c 1.1c
a2 2.2c 0.0c 0.0c
a3 0.4c 1.2c 3.0c
a4 0.0c 0.0c 5.0c

,

where c = 100 000 =C is the amount of money to be invested.

Sheldon has two uncertain parameters, p0 and r0 that he does not know how to estimate.
Therefore, he treats them as sensitivity parameters and plots how his optimal decision changes
as the two parameters change. This is done in the m-file example_shsh.m below.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% FILE : example_shsh .m
4 %%
5 %% Sheldon Share has c euros ex t ra money to be inves ted . He contenp la te s
6 %% between the fo l lowing four a l t e r n a t i v e s :
7 %%
8 %% a1 = r e t a i l s tock
9 %% a2 = r e t a i l c a l l=opt ion

10 %% a3 = a i r l i n e r s tock
11 %% a4 = a i r l i n e r c a l l=opt ion
12 %%
13 %% Sheldon b e l i e v e s the fo l lowing s cena r i o s are r e l e van t to h i s a l t e r n a t i v e s :
14 %%
15 %% s_1 = Koala Ebola runs rampant .
16 %% s_2 = Koala Ebola i s contained , but the economy i s in r e c e s s .
17 %% s_3 = Koala Ebola i s contained and the economy i s booming .
18 %%
19 %% Sheldon assumes tha t the a s soc i a t ed p r o b a b i l i t i e s are :
20 %%
21 %% p1 = p0 .
22 %% p2 = q0 .
23 %% p3 = q0 .
24 %%
25 %% Here p0 i s an unknown s e n s i t i v i t y parameter and q0 = (1=p0) /2.
26 %%

35



27 %% Sheldon uses the CARA rule , but i s uncer ta in of the r e l a t e d r i s k to l e rance
28 %% r0 . Thus , he t r e a t s r0 a l so as a s e n s i t i v i t y parameter .
29 %%
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31
32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33 %% C a l c u l a t i o n s and d e f i t i t i o n s f o r v i s u a l i z a t i o n .
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35
36 %% Money to be inves ted and the d e c i t i o n matr ix
37 c = 100000;
38 R = [ 1.8* c 0.5* c 1.1* c ;
39 2.2* c 0.0* c 0.0* c ;
40 0.4* c 1.2* c 3.0* c ;
41 0.0* c 0.0* c 5.0* c ] ;
42
43 %% N i s the sampling frequency f o r p0 and r0 . The b igger the N the b e t t e r the
44 %% pic ture , but the longer the c a l c u l a t i o n s take . For N=100 the c a l c u l a t i o n s
45 %% take 1.5 seconds . For N=500 the c a l c u l a t i o n s take 35 seconds .
46 N = 500;
47 p0samples = l inspace (0 , 1 , N) ; %% N e q u i d i s t a n t samples from 0 . . . 1
48 r0samples = l inspace (1 , 10*c ,N) ; %% N e q u i d i s t a n t samples from 0 . . . 1 0 c
49
50 %% Constant f i e l d s f o r dec i s i on problem dp .
51 dp . dmat = R;
52 dp . dru le = " cara " ;
53
54 %% Optimal cho i ce s with d i f f e r e n t parameter va lues p0 and r0 are s to red in the
55 %% matrix z .
56 for i = 1:N
57 x = p0samples ( i ) ;
58 dp . prob = [x (1=x )/2 (1=x ) /2 ] ’ ;
59 for j = 1:N
60 y = r0samples ( j ) ;
61 dp . r t o l = y ;
62 dr = dmatrix (dp) ;
63 z ( j , i ) = dr . doptim ;
64 end
65 end
66
67 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
68 %% P l o t t i n g the s e n s i t i v i t y p i c t u r e
69 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
70
71 %% Contour p i c t u r e of z
72 contourf ( p0samples , r0samples , z ) ;
73
74 %% Names f o r axes and t h e i r l a b e l s
75 set (gca , " f o n t s i z e " , 22) ;
76 xlabel ( " p_0 " ) ;
77 ylabel ( " r_0 " ) ;
78
79 %% Change the c o l o r s of the p i c t u r e
80 red = [1 0 0 ] ; %% RGB coded co lo r
81 green = [0 1 0 ] ; %% RGB coded co lo r
82 colormap ( [ red ; 0.5* red ; green ; 0.5* green ] ) ; %% Colormap with four va lues
83
84 %% Plo t the l a b e l s f o r the a l t e r n a t i v e (we pr in ted z with N=10 to check which
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85 %% co lo r corresponded to which a l t e r n a t i v e and we noted tha t the y a x i s i s
86 %% rever ted in z compared to the p i c t u r e )
87 text (0 .05 , 9.50*c , " a_4 " , " f o n t s i z e " , 24) ;
88 text (0 .30 , 9.50*c , " a_3 " , " f o n t s i z e " , 24) ;
89 text (0 .60 , 9.50*c , " a_1 " , " f o n t s i z e " , 24) ;
90 text (0 .85 , 9.50*c , " a_2 " , " f o n t s i z e " , 24) ;
91 %o r i e n t ( " landscape " )
92 %p r i n t ( " she ldon_p ic ture . pdf " )

https://www.uwasa.fi/∼tsottine/orms2020/en/example_shsh.m

Let us explain the code in the file example_shsh.m in detail.
The lines 1–30 is a comment block that explains the problem. GNU Octave interpreter will

simply omit this block. Indeed, GNU Octave will always omit what comes after the comment
sign ‘’%” in the line. Empty lines are also omitted in the interpretation.

The next empty line 31 there is only for the readers’ convenience.
The comment lines 32–34 is there only for the readers’ convenience. They explain that in

the next code block preliminary calculations are done for the visualization.
The Lines 35–36 are again only for the readers’ convenience.
In line the 37 we set the money to be invested c as 100 0000. This can be changed if we

want to experiment.
The decision matrix, or the reward matrix, is given in the lines 38–41.
The empty line 42 and the comment lines 43–45 are there for the readers’ convenience.
In the line 46 we set the sampling frequency N for the plot. We use a small number N=10

or N=100 when we test the code and a big number N=500 for the final picture.
In the line 47 we define p0samples to be a vector of N values equidistant from the interval

0 . . . 1. They are the sampled values of the sensitivity parameter p0. Similarly, in the line 48,
the vector r0samples will be a equidistant values from the interval 0 . . . 10c representing the
sampled values of r0.

Lines 49–50 are there only for the readers’ convenience.
In the lines 51–52 we fill in the constant (with respect to p0 and r0) field for the decision

problem structure variable dp.
The lines 53–55 are there for the readers’ convenience only. Finally, in the lines 56–65

we have two nested for loops for p0 (outer loop) and r0 (inner loop). In the inner loop the
decision problem is solved for given fixed values of p0 and r0 and the optimal decisions are
stored in the matrix z (note that the y -axis in z is reversed in the contourf picture below).

Again, the lines 66–71 are there for the readers’ convenience.
The actual picture is drawn in the line 72. Here the function call contourf(p0samples,

r0samples, z) plots a filled contour plot of the matrix z with x sampled in p0samples and
y sampled in r0samples.

Again, the lines 73–74 are there for the readers’ convenience only.
In the line 75 we set the font size for the axis to be 22. (here gca stands for Get Current

Axis).
In the lines 76–77 the labels for the x and y axis are given.
Once again the lines 78–79 are there for the readers’ convenience only.
In the lines 80–82 we change the colors of the contour plot. Line 80 defines the color read

and line 81 defines the color green. In the line 82 the rotating color map for the contour plot
is set by red, dark red, green, dark green.
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Yet again, the lines 83–86 are there for the readers’ convenience only.

The lines 87–90 print the labels for the alternatives in the contour picture. The function
text takes the first two arguments as the x and y position of the text. The third argument is
the text itself, and the rest of the arguments are formatting for the text.

Finally, if we uncomment the lines 91–92 then the contour plot is printed in the land-
scape in the file sheldon_picture.pdf. (Note that in some systems the PDF driver is bro-
ken. In this case you should use, e.g., JPG picture. This means changing the line 91 to
print("sheldon_picture.jpg"). You may also have to remove the orientation line
orient("landscape").)

The output of the file example_shsh.m with sampling frequency N = 500 is printed be-
low:

p0

r 0

a4 a3 a1 a2

0 0.2 0.4 0.6 0.8 1

200000

400000

600000

800000

1e+06

The interpretation of the picture should be obvious. For example, in the case of extreme risk
aversion r0 (near zero risk tolerance) the optimal alternative is a1 . As risk tolerance increases,
all the alternative become more-or-less equally optimal depending on the Koala Ebola proba-
bility p0 .

38



Part III

Examples for Assignments
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Chapter 5

Sophie Sophomore’s Fall

This chapter gives an example “Sophie Sophomore’s Fall” that aims to help you for your first
assignment “Your fall” given in Chapter 7

Problem Description

Sophie Sophomore is a second year technology student in the University of Vaasa. It is February
and Sophie has to decide what to do in the next Fall. What affects Sophie’s choice is the pending
Koala Ebola pandemic. So far, the Koala Ebola has only been encountered in Outdonesia.
Unfortunately, Outdonesia is a popular tourist attraction and the Koala Ebola has penetrated
the entire land. Outdonesia has not enforced any kind of quarantine yet, so it may be only a
matter of time before we may have a global pandemic at our hand.

Sophie Sophomore contemplates between the following alternatives:

a1 = Student exchange to China.
a2 = Concentrate on her studies full-time.
a3 = Mostly studies and working for a food delivery company in the evenings.
a4 = Little studies in the evenings and working full-time for a multinational corporation.

Sophie Sophomore thinks that the following yes/no questions are relevant to her alterna-
tives:

• Koala Ebola is pandemic or not.
• University is in distant teaching or in normal teaching.
• World economy is in recess or recovering.

In principle, with these three yes/no questions we get 23 = 8 different scenarios. However,
the distant teaching in the university occurs only if Koala Ebola is pandemic. Therefore we are
left with the following six scenarios:

s1 = Koala Ebola is pandemic, the university is in distant teaching, and the world economy
is in recess.

s2 = Koala Ebola is pandemic, the university is in distant teaching, and the world economy
is recovering.

s3 = Koala Ebola is pandemic, the university is in normal teaching, and the world economy
is in recess.
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s4 = Koala Ebola is pandemic, the university is in normal teaching, and the world economy
is recovering.

s5 = Koala Ebola has been defeated, and the world economy is in recess.
s6 = Koala Ebola has been defeated, and the world economy is recovering.

Let p0 be the unknown Koala Ebola pandemic probability. The other probabilities for the sce-
narios are assumed to be

p1 = p0/4

p2 = p0/4

p3 = p0/4

p4 = p0/4

p5 = (1− p0)/2
p6 = (1− p0)/2.

The reasoning behind these probabilities is that the Koala Ebola pandemic probability p0 =
p1 + p2 + p3 + p4 is unknown, but the pandemic scenarios s1, s2, s3, s4 are equally probable.
Ditto for the non-pandemic scenarios s5 and s6

Decision Matrices and Rules

Sophie Sophomore decides to practice multi-objective optimization. This means that she con-
siders two decision matrices (or objectives) R1 and R2 . To make things interesting, Sophie has
chosen two opposite objectives. The objectives are

• Earned credit points in one year (reward).
• Remaining expected time to graduation after one year (punishment).

There is a lot of uncertainty involved in these objectives. Nevertheless, Sophie will estimate the
decision matrices and take the values as they are. In other words, there will be no uncertainty
parameters involved in the decision matrices.

Sophie’s net worth is zero: no assets, no debt. Sophie also lives for free: her spouse takes
care of the living expenses. Sophie gets student allowance of 252.76 =C per month1 and a
5 000 =C scholarship if she decides to go to China.

The values in Sophie’s decision matrices are based on the following observations:

• During the recess the living costs are lower.
• During the Koala Ebola pandemic the living costs are lower.
• Living costs in China are lower than in Finland, but in China one must pay rent.
• In a multinational corporation the last hired is the first fired.
• Working for a multinational corporation increases the cost of living.
• During a pandemic there is more work for food delivery.

1This amount has changed since the writing of these notes. In your assignment you should use the current
student allowance.
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More precise calculations are given in the m-file example_so.m that is listed in the Appendix
A: Calculations.

Here are Sophie Sophomore’s decision matrices (first R1 for net worth and then R2 for
remaining time to graduate)

Net Worth
Pandemic/Distant Teaching/Recess Probabilities

Choice p0/4 p0/4 p0/4 p0/4 (1− p0)/2 (1− p0)/2
Exchange to China 3633 3033 3633 3033 3333 3033
Full-Time Studying –567 –2967 –567 –2967 –1767 –2967
Food delivery 8073 5673 3753 1353 393 –807
Full-Time Working –2850 3750 –2850 6000 450 10500

Time to Graduation
Pandemic/Distant Teaching/Recess Probabilities

Choice p0/4 p0/4 p0/4 p0/4 (1− p0)/2 (1− p0)/2
Exchange to China 2 2 2 2 2 2
Full-Time Studying 2 2 1 1 1 1
Food Delivery 2 2 2 2 2 2
Full-Time Working 3 4 3 4 3 5

Sophie Sophomore decides to use the expected value rule. Since she has two decision
matrices this means that Sophie has two value functions

V 1
i =

6
∑

j=1

R1
i j p j and V 2

i =
6
∑

j=1

R2
i j p j.

Since the p j ’s are determined by the Koala Ebola pandemic probability p0 we will write ex-
plicitly V 1(p0) for V 1 and V 2(p0) for V 2 . This emphasizes that fact that p0 is a sensitivity
parameter.

Another sensitivity parameter arises from the fact that we have to find a compromise be-
tween the value functions V 1(p0) and V 2(p0) . We could in principle weigh them equally, in
which case we would have the compromise value function V = 0.5V̄ 1(p0) + 0.5V̄ 2(p0) , where
the barred value functions are affinely scaled versions of the corresponding un-barred value
functions. Instead of equal weighing, we make the weight w a second sensitivity parameter.
So, have the two-parameter value function

V (p0, w) = wV̄ 1(p0) + (1−w)V̄ 2(p0)

where both p0 and w are sensitivity parameters from the interval 0 . . . 1, and the barred value
functions are affinely scaled:

V̄ 1(p0) =
V 1(p0)−mink V 1

k (p0)

maxk V 1
k (p0)−mink V 1

k (p0)
,

V̄ 2(p0) =
V 2(p0)−mink V 2

k (p0)

maxk V 2
k (p0)−mink V 2

k (p0)
,

if the value functions are not constant, so that we have no division-by-zero problem. In the
constant case, the affine scaling is set to be the constant value function ≡ 1.
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Sensitivity Analysis

We analyze Sophie Sophomore’s decision given by the value function

V (p0, w) = wV̄ 1(p0) + (1−w)V̄ 2(p0)

as the sensitivity parameters p0 and w alternate in the interval 0 . . . 1. We obtain the following
picture (see Appendix A, m-file example_so.m). Recall that

a1 = Student exchange to China.
a2 = Concentrate on the studies full-time.
a3 = Mostly studies and working for a food delivery company in the evenings.
a4 = Little studies in the evenings and working full-time for a multinational corporation.
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The picture says more than thousand words. Anyway, in some words we see that the alternative
a2 (full-time studies) is optimal if most of the weight (w is low) is given to remaining time to
graduation (objective R2 ). If most weight is given to net worth (w is high, objective R1 ),
then the optimal solution is very sensitive to the Koala Ebola pandemic probability p0 . If the
Koala Ebola pandemic probability p0 is small and the net worth weight w is high, then a4

(full-time work) is optimal. If the Koala Ebola pandemic probability is high and the net worth
weight is relatively high, then a3 (food delivery) is generally a good choice. Finally, a1 (student
exchange to China) is generally a good choice if the Koala Ebola pandemic probability is not
too high and net worth is given some reasonable weight.
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Susan Suit’s Fall

Susan Suit is Sophie Sophomore’s spouse. Susan is faced with the same problem as Sophie.
The difference is that Susan’s decision matrix (reward matrix, objective) is her (monthly) salary
after three years. As a decision rules, Susan uses expected value and regret aversion. The
alternatives and the scenarios for Susan are the same as those of Sophie.
Remark For the compromise problem between Susan and Sophie to make sense only the alter-
natives have to be the same. It in not necessary that the scenarios are the same also.

Susan has two sensitivity parameters. First, there is the weight w that tells how the ex-
pected value rule and the regret aversion rule are combined. Second, there is the Koala Ebola
pandemic probability p0 .

Susan has as single decision matrix (reward matrix, objective) of the expected monthly
salaries after three years. Susan has come up (somehow) with the following decision matrix

Monthly Salary after 3 Years
Pandemic/Distant Teaching/Recess Probabilities

Choice p0/4 p0/4 p0/4 p0/4 (1− p0)/2 (1− p0)/2
Exchange to China 3000 3500 2800 3500 2800 3500
Full-Time Studying 2500 2700 3300 3800 3500 4000
Food Delivery 3000 3200 2000 2500 2000 2500
Full-Time Working 3000 3200 2500 4000 3000 3500

This decision matrix above is based on the following observations:

• Quick graduation increases salary.
• Recess lowers salary.
• Exchange in China increases salary, but prolongs graduation.
• Full-time working increases salary, but prolongs graduation.
• Distant teaching and food delivery work well together.
• Distant teaching suits well exchange students
• On site teaching works badly for full-time working.

Recall the affine scaling

V̄ =
V −mink Vk

maxk Vk −mink Vk

if maxk Vk >mink Vk , and

V ≡ 1

otherwise.
Susan’s decision rule is

V (p0, w) = wV̄ 1(p0) + (1−w)V̄ 2,

where V̄ 1(p0) the the affinely scaled expected value rule given the Koala Ebola pandemic prob-
ability p0 that is a sensitivity parameter from the interval 0 . . . 1, and V̄ 2 is the affinely scaled
regret averse decision rule turned into a maximization form which is independent of the sen-
sitivity parameter p0 . The combination weight w is a sensitivity parameter from the interval
0 . . . 1.

We obtain the following picture (see Appendix A, m-file example_su.m). Recall that
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a1 = Student exchange to China.
a2 = Concentrate on the studies full-time.
a3 = Mostly studies and working for a food delivery company in the evenings.
a4 = Little studies in the evenings and working full-time for a multinational corporation.
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The picture says more than thousand words. We see that the alternative a2 (full-time studies)
is best if the weight w for the decision rule for the expected value is relatively high and the
Koala Ebola pandemic probability is not too high. Otherwise, the alternative a1 (Exchange to
China) is optimal. The alternatives a3 (food delivery) and a4 (full-time working) are never
optimal.

Sophie’s and Susan’s Compromise Sensitivity Analysis

Sophie Sophomore and Susan Suit want to find a compromise alternative that both can accept.
They decide to consider the problem with two sensitivity parameters (since paper is two dimen-
sional). Obvious parameters are p0 , the Koala Ebola pandemic probability, and w that is the
weight Sophie’s value function has in the compromise value function. To form the compromise
value function V (p0, w) we need the individual values functions V (So; p0) and V (Su; p0) for
Sophie and Susan. Then

V (p0, w) = wV (So, p0) + (1−w)V (Su; p0)
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where we have affinely scaled the individual value functions V (So; p0) and V (Su; p0) and they
are both in maximization form.

We assume that in their internal calculations both Sophie and Susan use the equal weight
w= 0.5 in combining their internal value functions. Then (see Appendix A: Calculations, m-file
example_sosu.m) we obtain the sensitivity picture
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Recall that

a1 = Student exchange to China.
a2 = Concentrate on the studies full-time.
a3 = Mostly studies and working for a food delivery company in the evenings.
a4 = Little studies in the evenings and working full-time for a multinational corporation.

Again, the picture says more than thousand words. In some words, though, it seems that a1 (ex-
change to China) is most commonly the optimal compromise choice. If we weigh Sophie highly
and the Koala Ebola pandemic probability is relatively low, then the alternative a2 (full-time
studies) is the optimal compromise. If we weigh Susan highly and the Koala Ebola pandemic
probability is high, then the alternative a3 (food delivery) is the optimal compromise. The
alternative a4 (full-time work) is never an optimal compromise.
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Appendix A: Calculations

Below is listed the m-file for Sophie Sophomore.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% FILE : example_so .m
4 %%
5 %% Sophie Sophomore ’ s f a l l .
6 %%
7 %% Sophie ’ s a l t e r n a t i v e s
8 %%
9 %% a1 = Student exchange to China .

10 %% a2 = Concentrate on the s t u d i e s f u l l=time .
11 %% a3 = Mostly s t u d i e s and working fo r a food d e l i v e r y company in the evenings .
12 %% a4 = L i t t l e s t u d i e s and working f u l l=time f o r a mu l t i na t i ona l corpora t ion .
13 %%
14 %% Sophie ’ s s c ena r i o s
15 %%
16 %% s1 = Koala Ebola i s pandemic , the u n i v e r s i t y i s in d i s t a n t teaching ,
17 %% and the wofdd economy i s in r e c e s s .
18 %% s2 = Koala Ebola i s pandemic , the u n i v e r s i t y i s in d i s t a n t teaching ,
19 %% and the wofdd economy i s recover ing .
20 %% s3 = Koala Ebola i s pandemic , the u n i v e r s i t y i s in normal teaching ,
21 %% and the wofdd economy i s in r e c e s s .
22 %% s4 = Koala Ebola i s pandemic , the u n i v e r s i t y i s in normal teaching ,
23 %% and the wofdd economy i s recover ing .
24 %% s5 = Koala Ebola has been defeated , and the wofdd economy i s in r e c e s s .
25 %% s6 = Koala Ebola has been defeated , and the wofdd economy i s recover ing .
26 %%
27 %% The p r o b a b i l i t i e s f o r the s cena r i o s are
28 %%
29 %% p1 = p0/4
30 %% p2 = p0/4
31 %% p3 = p0/4
32 %% p4 = p0/4
33 %% p5 = (1=p0)/2
34 %% p6 = (1=p0)/2
35 %%
36 %% The Koela Ebola pandemic paramter p0 i s a s e n s i t i v i t y parameter .
37 %%
38 %% Sophie uses the expected value ru l e with two dec i s i on matr i ces ( o b j e c t i v e s )
39 %%
40 %% = Net worth a f t e r one year (R1) .
41 %% = Remaining time to graduat ion (R2)
42 %%
43 %% The compromise weigth w f o r the o b j e c t i v e s i s a s e n s i t i v i t y parameter .
44 %%
45 %% The f i l e uses the func t i on s dmatrix and s c a l i n g .
46
47 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48 %% Dec i s ion matr i ces
49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
50
51 %% Net worth a f t e r one year .
52
53 sa = 12*252.76; %% Year ly s tudent al lowance .
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54 cs = 5000; %% China s c h o l a r s h i p .
55 cm = 2000; %% China moving c o s t s .
56 c f = 12*500; %% Year ly l i v i n g c o s t s in Finland .
57 cc = 12*250; %% Year ly l i v i n g c o s t s in China .
58
59 sc = sa+cs=cm; %% Year ly income in China .
60 s f = sa ; %% Year ly income i f F inland .
61
62 fd = 12*200*0.9; %% Year ly food d e l i v e r y s a l a r y .
63 f t = 12*2500*0.75; %% Year ly f u l l=time s a l a r y in a mu l t i na t i ona l corpora t ion .
64
65 R1 = [
66 sc=0.8*cc sc=cc sc=0.8*cc sc=cc sc=0.9*cc sc=cc ;
67 s f =0.6* c f s f=c f s f =0.6* c f s f=c f s f =0.8* c f s f=c f ;
68 s f+4*fd=0.6* c f s f+4*fd=c f s f+2*fd=0.6* c f s f+2*fd=c f s f+fd=0.8* c f s f+fd=c f ;
69 0.3* f t =1.6* c f 0.7* f t=2*c f 0.3* f t =1.6* c f 0.8* f t=2*c f 0.5* f t =1.8* c f f t=2*c f
70 ] ;
71
72 %% Remaining time to graduat ion a f t e r one year .
73
74 R2 = [
75 2 2 2 2 2 2;
76 2 2 1 1 1 1;
77 2 2 2 2 2 2;
78 3 4 3 4 3 5
79 ] ;
80
81 R2 = =R2 ; %% Turn R2 in to a maximization form .
82
83 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
84 %% S e n s i t i v i t y v i s u a l i z a t i o n
85 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
86
87 %% Sampling frequency . The b igger the b e t t e r the p ic rure , but the longer the
88 %% c a l c u l a t i o n s take . With frequency N=500 the c a l c u l a t i o n s take 5 seconds .
89 N=500;
90
91 %% C a l c u l a t i o n s
92
93 %% N e q u i d i s t a n t samples from the i n t e r v a l 0 . . 1 f o r both p0 and w.
94 p0samples = l inspace (0 ,1 ,N) ;
95 wsamples = l inspace (0 ,1 ,N) ;
96
97 %% Constant (w. r . t . p0 and w) f i e l d s f o r dp1 and dp2 : dec i s i on ru l e and the
98 %% dec i s i on matr i ces .
99 dp1 . dru le = " ev " ;

100 dp1 . dmat = R1 ;
101 dp2 . dru le = " ev " ;
102 dp2 . dmat = R2 ;
103
104 %% Ca l cu l e t e opt imal d e c i s i o n s z ( j , i )=z (w, p0) in nested fo r loops fo r p0 and w.
105 for i=1: length ( p0samples )
106 p0 = p0samples ( i ) ;
107 q0 = 1=p0 ;
108 dp1 . prob = [p0/4 p0/4 p0/4 p0/4 q0/2 q0 /2 ] ’ ;
109 dp2 . prob = [p0/4 p0/4 p0/4 p0/4 q0/2 q0 /2 ] ’ ;
110 dr1 = dmatrix (dp1) ;
111 dr2 = dmatrix (dp2) ;
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112 V1 = s c a l i n g ( dr1 . dvalues ) ;
113 V2 = s c a l i n g ( dr2 . dvalues ) ;
114 for j=1: length ( wsamples )
115 w = wsamples ( j ) ;
116 V = w*V1 + (1=w)*V2 ;
117 [ tmp , z ( j , i ) ] = max(V) ;
118 end
119 end
120
121 %% P i c t u r e drawing
122
123 %% Draw the p i c t u r e with contour f (x , y , z ) .
124 contourf ( p0samples , wsamples , z )
125
126 %% Set the axes l a b e l s f o n t s i z e to 24. ( gca s tands fo r get cur ren t axes . )
127 set (gca , " f o n t s i z e " , 24) ;
128
129 %% Draw the x and y axes l a b e l s .
130 xlabel ( " p_0 " )
131 ylabel ( "w" )
132
133 %% Define a RGB coded colormap fo r the c o l o r s in the p i c t u r e .
134 red = [1 0 0 ] ;
135 green = [0 1 0 ] ;
136 colormap ( [ red ; 0.6* red ; green ; 0.6* green ] )
137
138 %% Set the a l t e r n a t i v e l a b e l s in the p i c t u r e .
139 text (0 .40 ,0 .50 , " a_1 " , " f o n t s i z e " , 24)
140 text (0 .20 ,0 .10 , " a_2 " , " f o n t s i z e " , 24)
141 text (0 .85 ,0 .60 , " a_3 " , " f o n t s i z e " , 24)
142 text (0 .10 ,0 .85 , " a_4 " , " f o n t s i z e " , 24)
143
144 %% Uncommet the fo l lowing l i n e s to draw the p i c t u r e in a landcape paper in
145 %% PDF format to the f i l e so_p i c tu re . pdf . Your system may not suppor the PDF
146 %% format format . In tha t case you can try , e . g . , the JPG format . This means
147 %% naming the p r i n t f i l e as so_p i c tu re . jpg . You may a l so want to leave the
148 %% o r i e n t l i n e commented .
149 %o r i e n t ( " landscape " )
150 %p r i n t ( " so_p i c tu re . pdf " )

https://www.uwasa.fi/∼tsottine/orms2020/en/example_so.m

Below is listed the m-file for Susan Suit.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% FILE : example_su .m
4 %%
5 %% Sophie Sophomore ’ s spouse Susan Su i t contemplates what to do next F a l l .
6 %% Susan ’ s a l t e r a n t i v e s and s cena r i o s are the same as Sophie ’ s :
7 %%
8 %% A l t e r n a t i v e s :
9 %%

10 %% a1 = Student exchange to China .
11 %% a2 = Concentrate on the s t u d i e s f u l l=time .
12 %% a3 = Mostly s t u d i e s and working fo r a food d e l i v e r y company in the evenings .
13 %% a4 = L i t t l e s t u d i e s and working f u l l=time f o r a mu l t i na t i ona l corpora t ion .
14 %%
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15 %% Scenar ios :
16 %%
17 %% s1 = Koala Ebola i s pandemic , the u n i v e r s i t y i s in d i s t a n t teaching ,
18 %% and the wofdd economy i s in r e c e s s .
19 %% s2 = Koala Ebola i s pandemic , the u n i v e r s i t y i s in d i s t a n t teaching ,
20 %% and the wofdd economy i s recover ing .
21 %% s3 = Koala Ebola i s pandemic , the u n i v e r s i t y i s in normal teaching ,
22 %% and the wofdd economy i s in r e c e s s .
23 %% s4 = Koala Ebola i s pandemic , the u n i v e r s i t y i s in normal teaching ,
24 %% and the wofdd economy i s recover ing .
25 %% s5 = Koala Ebola has been defeated , and the wofdd economy i s in r e c e s s .
26 %% s6 = Koala Ebola has been defeated , and the wofdd economy i s recover ing .
27 %%
28 %% The p r o b a b i l i t i e s f o r the s cena r i o s are
29 %%
30 %% p1 = p0/4
31 %% p2 = p0/4
32 %% p3 = p0/4
33 %% p4 = p0/4
34 %% p5 = (1=p0)/2
35 %% p6 = (1=p0)/2
36 %%
37 %% The Koala Ebola pandemic paramter p0 i s a s e n s i t i v i t y parameter .
38 %%
39 %% Susan bases her d e c i s i o n s on excpectd value ru l e and r e g r e t aver s ion ru l e .
40 %% Susan ’ s dec i s i on matr ix i s her expected monthy s a l a r y a f t e r three years=
41 %% The combination weight f o r expected value and r e g r e t a rve r s i on i s a
42 %% s e n s i t i v i t y parameter w.
43 %%
44 %% The f i l e uses the func t i on s dmatrix and s c a l i n g .
45
46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47 %% Dec i s ion matr ix
48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
49
50 R = [
51 3000 3500 2800 3500 2800 3500;
52 2500 2700 3300 3800 3500 4000;
53 3000 3200 2000 2500 2000 2500;
54 3000 3200 2500 4000 3000 3500
55 ] ;
56
57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58 %% V i s u a l i z a t i o n
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60
61 %% C a l c u l a t i o n s .
62
63 %% Constant f i e l d s f o r dec i s i on problem 1 ( expected value )
64 dp1 . dmat = R;
65 dp1 . dru le = " ev " ;
66
67 %% Dec i s ion problem 2 ( r e g r e t aver s ion )
68 dp2 . dmat = R;
69 dp2 . dru le = " r e g r e t " ;
70 dr2 = dmatrix (dp2) ;
71 V2 = dr2 . dvalues ;
72 V2 = =V2 ; %% Maximization form .
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73 V2 = s c a l i n g (V2) ; %% A f f i n e s c a l i n g .
74
75
76 %% O t t e i s t u s t a a j u u s . Mita isompi sen parempi , mutta laskeminen kes taa .
77 %% Jos N=500 laskeminen kes taa noin 20 sekunt ia .
78 N=500;
79
80 %% C a l c u l a t i o n s .
81 p0samples = l inspace (0 ,1 ,N) ;
82 wsamples = l inspace (0 ,1 ,N) ;
83
84 for i=1: length ( p0samples )
85 p0 = p0samples ( i ) ;
86 q0 = 1=p0 ;
87 dp1 . prob = [p0/4 p0/4 p0/4 p0/4 q0/2 q0 /2 ] ’ ;
88 dr1 = dmatrix (dp1) ;
89 V1 = s c a l i n g ( dr1 . dvalues ) ;
90 for j=1: length ( wsamples )
91 w = wsamples ( j ) ;
92 V = w*V1 + (1=w)*V2 ;
93 [ tmp , z ( j , i ) ] = max(V) ;
94 end
95 end
96
97 %% The p i c t u r e . See m= f i l e example_so .m f o r more d e t a i l e d comments .
98 contourf ( p0samples , wsamaples , z )
99 set (gca , " f o n t s i z e " , 24) ;

100 xlabel ( " p_0 " )
101 ylabel ( "w" )
102 red = [1 0 0 ] ;
103 green = [0 1 0 ] ;
104 colormap ( [ red ; 0.6* red ; green ; 0.6* green ] )
105 text (0 .80 ,0 .20 , " a_1 " , " f o n t s i z e " ,24)
106 text (0 .20 ,0 .60 , " a_2 " , " f o n t s i z e " ,24)
107 %% Uncomment the fo l lowing l i n e s to produce landscape PDF p i c t u r e . Note tha t
108 %% in some systems the PDF d r i v e r does not work . In tha t case use , e . g . , the
109 %% JPG d r i v e r . This means changing the f i e ex tens ion to . jpg . You may a l so
110 %% what to leave the o r i e n t l i n e commented in tha t case .
111 %o r i e n t ( " landscape " )
112 %p r i n t ( " su_p i c tu re . pdf " )

https://www.uwasa.fi/∼tsottine/orms2020/en/example_su.m

Below is listed the m-file for Sophie Sophomore’s and Susan Suit’s compromise.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% FILE : example_sosu .m
4 %%
5 %% Sophie Sophomore ’ s and Susan Suit ’ s compromise s o l u t i o n
6 %%
7 %% A l t e r n a t i v e s :
8 %%
9 %% a1 = Student exchange to China .

10 %% a2 = Concentrate on the s t u d i e s f u l l=time .
11 %% a3 = Mostly s t u d i e s and working fo r a food d e l i v e r y company in the evenings .
12 %% a4 = L i t t l e s t u d i e s and working f u l l=time f o r a mu l t i na t i ona l corpora t ion .
13 %%
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14 %% Scenar ios :
15 %%
16 %% s1 = Koala Ebola i s pandemic , the u n i v e r s i t y i s in d i s t a n t teaching ,
17 %% and the wofdd economy i s in r e c e s s .
18 %% s2 = Koala Ebola i s pandemic , the u n i v e r s i t y i s in d i s t a n t teaching ,
19 %% and the wofdd economy i s recover ing .
20 %% s3 = Koala Ebola i s pandemic , the u n i v e r s i t y i s in normal teaching ,
21 %% and the wofdd economy i s in r e c e s s .
22 %% s4 = Koala Ebola i s pandemic , the u n i v e r s i t y i s in normal teaching ,
23 %% and the wofdd economy i s recover ing .
24 %% s5 = Koala Ebola has been defeated , and the wofdd economy i s in r e c e s s .
25 %% s6 = Koala Ebola has been defeated , and the wofdd economy i s recover ing .
26 %%
27 %% The p r o b a b i l i t i e s f o r the s cena r i o s are
28 %%
29 %% p1 = p0/4
30 %% p2 = p0/4
31 %% p3 = p0/4
32 %% p4 = p0/4
33 %% p5 = (1=p0)/2
34 %% p6 = (1=p0)/2
35 %%
36 %% The Koala Ebola pandemic paramter p0 i s a s e n s i t i v i t y parameter . The weight
37 %% w comibing Sophie ’ s and Susan ’ s value func t i on s i s a s e n t i t i v i t y parameter .
38 %%
39 %% The f i l e uses the func t i on s dmatrix and s c a l i n g .
40
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
42 %% Dec i s ion matr i ces
43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44
45 %% Sophie ’ s matr ix 1
46
47 sa = 12*252.76; %% Year ly s tudent al lowance .
48 cs = 5000; %% China s c h o l a r s h i p .
49 cm = 2000; %% China moving c o s t s .
50 c f = 12*500; %% Year ly l i v i n g c o s t s in Finland .
51 cc = 12*250; %% Year ly l i v i n g c o s t s in China .
52
53 sc = sa+cs=cm; %% Year ly income in China .
54 s f = sa ; %% Year ly income i f F inland .
55
56 fd = 12*200*0.9; %% Year ly food d e l i v e r y s a l a r y .
57 f t = 12*2500*0.75; %% Year ly f u l l=time s a l a r y in a mu l t i na t i ona l corpora t ion .
58
59 RSo1 = [
60 sc=0.8*cc sc=cc sc=0.8*cc sc=cc sc=0.9*cc sc=cc ;
61 s f =0.6* c f s f=c f s f =0.6* c f s f=c f s f =0.8* c f s f=c f ;
62 s f+4*fd=0.6* c f s f+4*fd=c f s f+2*fd=0.6* c f s f+2*fd=c f s f+fd=0.8* c f s f+fd=c f ;
63 0.3* f t =1.6* c f 0.7* f t=2*c f 0.3* f t =1.6* c f 0.8* f t=2*c f 0.5* f t =1.8* c f f t=2*c f
64 ] ;
65
66 %% Sophie ’ s matr ix 2
67
68 RSo2 = [
69 2 2 2 2 2 2;
70 2 2 1 1 1 1;
71 2 2 2 2 2 2;
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72 3 4 3 4 3 5
73 ] ;
74
75 RSo2 = =RSo2 ; %% Maximization form !
76
77 %% Susan ’ s dec i s i on matr ix
78
79 RSu = [
80 3000 3500 2800 3500 2800 3500;
81 2500 2700 3300 3800 3500 4000;
82 3000 3200 2000 2500 2000 2500;
83 3000 3200 2500 4000 3000 3500
84 ] ;
85
86 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
87 %% V i s u a l i z a t i o n .
88 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
89
90 %% Dec i s ion problems ’ cons tant f i e l d s ( independent of p0 and w)
91 dpSo1 . dmat = RSo1 ;
92 dpSo1 . dru le = " ev " ;
93 dpSo2 . dmat = RSo2 ;
94 dpSo2 . dru le = " ev " ;
95
96 dpSu1 . dmat = RSu ;
97 dpSu1 . dru le = " ev " ;
98 dpSu2 . dmat = RSu ;
99 dpSu2 . dru le = " r e g r e t " ;

100
101 %% Dec i s ion problem dpSu2 can be c a l c u l a t e d completely , s i n ce i t i s independent
102 %% pf p0 and w.
103 drSu2 = dmatrix (dpSu2) ;
104 VSu2 = drSu2 . dvalues ;
105 VSu2 = =VSu2 ; %% Regret i s a minimizat ion form .
106 VSu2 = s c a l i n g (VSu2) ;
107
108
109 %% Sampling frequeny . The bigge the b e t t e r picure , but the longer the
110 %% c a l c u l a t i o n s take . For N=500 the c a l c u l a t i o n s take 5 seconds .
111 N = 500;
112
113 %% Sample po in t s f o r x ( p0samples ) and y ( wsamples ) axes .
114 p0samples = l inspace (0 ,1 ,N) ;
115 wsamples = l inspace (0 ,1 ,N) ;
116
117 for i=1: length ( p0samples )
118 p0 = p0samples ( i ) ;
119 q0 = 1=p0 ;
120 dpSo1 . prob = [p0/4 p0/4 p0/4 p0/4 q0/2 q0 /2 ] ’ ;
121 dpSo2 . prob = [p0/4 p0/4 p0/4 p0/4 q0/2 q0 /2 ] ’ ;
122 dpSu1 . prob = [p0/4 p0/4 p0/4 p0/4 q0/2 q0 /2 ] ’ ;
123 drSo1 = dmatrix (dpSo1) ;
124 drSo2 = dmatrix (dpSo2) ;
125 drSu1 = dmatrix (dpSu1) ;
126 %% drSu2 has been c a l c u l a t e d in the l i n e 103.
127 VSo1 = s c a l i n g ( drSo1 . dvalues ) ;
128 VSo2 = s c a l i n g ( drSo2 . dvalues ) ;
129 VSo = 0.5*VSo1 + 0.5*VSo2 ;
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130 VSo = s c a l i n g (VSo) ;
131 VSu1 = s c a l i n g ( drSu1 . dvalues ) ;
132 VSu = 0.5*VSu1 + 0.5*VSu2 ;
133 VSu = s c a l i n g (VSu) ;
134 for j=1: length ( wsamples )
135 w = wsamples ( j ) ;
136 V = w*VSo + (1=w)*VSu ;
137 [ roskaa , z ( j , i ) ] = max(V) ;
138 end
139 end
140
141 %% Draw the p i c t u r e . See the m= f i l e example_so .m f o r comments .
142 contourf ( p0samples , wsamples , z )
143 set (gca , " f o n t s i z e " , 24) ;
144 xlabel ( " p_0 " )
145 ylabel ( "w" )
146 red = [1 0 0 ] ;
147 yel low = [1 1 0 ] ;
148 green = [0 1 0 ] ;
149 colormap ( [ red ; yel low ; green ] )
150 text (0 .70 ,0 .50 , " a_1 " , " f o n t s i z e " ,24)
151 text (0 .08 ,0 .08 , " a_2 " , " f o n t s i z e " ,24)
152 text (0 .92 ,0 .92 , " a_3 " , " f o n t s i z e " ,24)
153 %% Uncommet the fo l lowing l i n e s to draw the p i c t u r e in a landcape paper in
154 %% PDF format to the f i l e so su_p i c tu re . pdf . Your system may not support the
155 %% PDF format format . In tha t case you can try , e . g . , the JPG format . This
156 %% means naming the p r i n t f i l e as so_p i c tu re . jpg . You may a l so want to leave
157 %% the o r i e n t l i n e commented .
158 %o r i e n t ( " landscape " )
159 %p r i n t ( " so su_p i c tu re . pdf " )

https://www.uwasa.fi/∼tsottine/orms2020/en/example_sosu.m
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Chapter 6

Catherine Cato’s Scientific Report

This chapter is an example for you second assignment “Ministry Report” given in Chapter 8.

Problem Description

The Caligula Institute is a libertarian think tank. Catherine Cato works for the Caligula Institute.
She is assigned to write a scientific report on what kind of policy should Finland adopt in the
pending Koala Ebola pandemic. Recall that so far the Koala Ebola has only been encountered
in Outdonesia. Unfortunately, Outdonesia is a popular tourist attraction and the Koala Ebola
has penetrated the entire land. Outdonesia has not enforced any kind of quarantine yet, so it
may be only a matter of time before we may have a global pandemic at our hand.

In this chapter we use the decision matrix technique in less than honest way. We have
decided what we want and then we cook the numbers to show the results we wanted. How
this is done is revealed in the Appendix B: Secret Supplementary Protocol.

Catherine decides to consider the following four alternatives for the general economic policy
for Finland:

a1 = Extreme laissez-faire policy.
a2 = Laissez-faire policy.
a3 = Current policy.
a4 = Regulated policy.
a5 = Extreme regulated policy.

We do not go into details what these policies entail.
The decision matrix will be the GDP development (change in per cents). There are two

essential uncertainties involved:

• Is Koala Ebola pandemic on or not?
• Is Finland’s export thriving or not?

From these two uncertainties we obtain the following four scenarios:

s1 = Koala Ebola is contained, and export is thriving.
s2 = Koala Ebola is contained, but export is not thriving.
s3 = Koala Ebola is pandemic, but export is thriving.
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s4 = Koala Ebola is pandemic, and export is not thriving.

By using the Harrison–Stetson method we estimate the scenario probabilities to be

p1 = 0.75p0,

p2 = 0.25p0,

p3 = 0.25q0,

p4 = 0.75q0,

where

q0 = 1− p0

an the sensitivity parameter p0 for Koala Ebola containment is unknown. We treat p0 as a
sensitivity parameter.

Decision Matrix and Rules

According to best economists we have the following decision matrix telling the change (in per
cent) of Finland’s GDP under different economic policies and under different scenarios. This is
the starting point of Catherine Cato’s analysis.

GDP Change in Per Cents
Choice 0.75p0 0.25p0 0.25q0 0.75q0

Extreme laissez-faire policy 8 2 3 –5
Laissez-faire policy 6 2 2 –3
Current policy 2 1 1 –2
Regulated polity 0 –1 0 –2
Extreme regulated policy –2 –1 –1 –1

The numbers are based on the following observations

• Extreme laissez-fair policy is good, if Koala Ebola is contained and export is thriving.
Koala Ebola risk for this policy is considerable.

• Laissez-fair policy has less Koala Ebola risk than extreme laissez-fair policy, but the risk
is still considerable.

• Current policy has little Koala Ebola risk, but does not exploit thricing exports very well.
• Regulated policy can handle Koala Ebola risk very well, but can not exploit the thriving

export very well.
• Extreme regulatex policy can handle Koala Ebola risk very well, but is the worst in ex-

ploting thriving export.

In macro level decision making such as Catherine’s problem, the expected value rule is the
most sensible choice. The expected value rule is, however, sensitive to the uncertain proba-
bilities. This is why we temper the expected value rule with the Hurwicz rule. This gives us
in principle two additional sensitivity parameters: the compromise weight for expected value
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rule and the Hurwicz rule, and the degree of optimism in the Hurwicz rule. To have only two
sensitivity parameters, we use equal weight in combining the decision rules. This leads to the
value function

V (p0, w) = 0.5 · V ev(p0) + 0.5 · V Hur(w),

where the summands V ev(p0) and V Hur(w) are assumed to be affinely scaled.

Sensitivity Analysis

We obtain the following sensitivity picture (see Appendix A: Calculations, m-file example_cc.m):

p0

w

a1

a2

a3

a5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall that

a1 = Extreme laissez-faire policy.
a2 = Laissez-faire policy.
a3 = Current policy.
a4 = Regulated policy.
a5 = Extreme regulated policy.

The picture says it all! Laissez-faire and extreme laissez-faire are good policies and the regu-
lated policies are good only if we are very pessimistic and the Koala Ebola pandemic probability
is very small.
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Appendix A: Calculations

Catherine’s calculations are in the m-file example_cc.m that is listed below.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% FILE : example_cc .m
4 %%
5 %% Cather ine Cato ’ s s c i e n t i f i c r epor t .
6 %%
7 %% A l t e r n a t i v e s :
8 %%
9 %% a1 = Extreme l a i s s e z=f a i r e p o l i c y .

10 %% a2 = La i s sez=f a i r e p o l i c y .
11 %% a3 = Current p o l i c y .
12 %% a4 = Regulated p o l i c y .
13 %% a5 = Extreme regu la ted p o l i c y .
14 %%
15 %% Scenar ios :
16 %%
17 %% s1 = Koala Ebola i s contained , and export i s t h r i v i n g .
18 %% s2 = Koala Ebola i s contained , but export i s not t h r i v i n g .
19 %% s3 = Koala Ebola i s pandemic , but export i s t h r i v i n g .
20 %% s4 = Koala Ebola i s pandemic , and export i s not t h r i v i n g .
21 %%
22 %% Scenar io p r o b a b i l i t i e s :
23 %%
24 %% p1 = 0.75*p0 ,
25 %% p2 = 0.25*p0 ,
26 %% p3 = 0.25*q0 ,
27 %% p4 = 0.75*q0 ,
28 %%
29 %% where
30 %%
31 %% q0 = 1=p0
32 %%
33 %% Here p0 i s a s e n s i t i v i t y parameter .
34 %%
35 %% Cather ine uses the expected value ru l e and the Hurwicz ru l e . They are
36 %% combined with equal weights . The Hurwicz degree of optimism , w, i s a
37 %% s e n s i t i v i t y parameter .
38 %%
39 %% This f i l e uses the func t i on s dmatrix and s c a l i n g .
40 %%
41 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
42
43 %% Dec i s ion matr ix .
44
45 R = [
46 8 2 3 =5 ;
47 6 2 2 =3 ;
48 2 1 1 =2 ;
49 0 =1 0 =2 ;
50 =2 =1 =1 =1
51 ] ;
52
53 %% Fixed f i e l d s f o r dec i s i on problems .
54
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55 dp_Hur . dmat = R;
56 dp_Hur . dru le = " Hur " ;
57
58 dp_ev . dmat = R;
59 dp_ev . dru le = " ev " ;
60
61 %% C a l c u l a t i o n s f o r changing p0 and w.
62
63 %% Sampling frequency . For N=500 the c a l c u l a t i o n s take 30 seconds .
64 N = 500;
65
66 p0samples = l inspace (0 ,1 ,N) ;
67 wsamples = l inspace (0 ,1 ,N) ;
68
69 for i=1: length ( p0samples )
70 p0 = p0samples ( i ) ;
71 q0 = 1=p0 ;
72 dp_ev . prob = [0.75*p0 0.25*p0 0.25*q0 0.75*q0 ] ’ ;
73 dr_ev = dmatrix ( dp_ev ) ;
74 V_ev = s c a l i n g ( dr_ev . dvalues ) ;
75 for j=1: length ( wsamples )
76 w = wsamples ( j ) ;
77 dp_Hur . odegree = w;
78 dr_Hur = dmatrix (dp_Hur) ;
79 V_Hur = s c a l i n g ( dr_Hur . dvalues ) ;
80 V = 0.5*( V_ev + V_Hur) ;
81 [ tmp , z ( j , i ) ] = max(V) ;
82 end
83 end
84
85 %% Draw the p i c t u r e .
86 contourf ( p0samples , wsamples , z )
87 set (gca , " f o n t s i z e " , 24) ;
88 xlabel ( " p_0 " )
89 ylabel ( "w" )
90 red = [1 0 0 ] ;
91 green = [0 1 0 ] ;
92 yel low = [1 1 0 ] ;
93 colormap ( [ green ; 0.6* green ; yel low ; 0.6* red ; red ] )
94 text (0 .70 ,0 .70 , " a_1 " , " f o n t s i z e " ,24)
95 text (0 .20 ,0 .50 , " a_2 " , " f o n t s i z e " ,24)
96 text (0 .10 ,0 .10 , " a_3 " , " f o n t s i z e " ,24)
97 text (0 .01 ,0 .03 , " a_5 " , " f o n t s i z e " ,24)
98 %o r i e n t ( " landscape " ) ;
99 %p r i n t ( " c c _ p i c t u r e . pdf " ) ;

https://www.uwasa.fi/∼tsottine/orms2020/en/example_cc.m

Appendix B: Secret Supplementary Protocol

The problem treatment was honest except for a one minor point: the decision matrix came
from the “best economists’: this is to say me. I cooked the numbers until I finally got what
I wanted. This illustrates that the numbers in the decision matrix R are the most important
ingredient in the decision matrix technique. Indeed, if the matrix numbers are good then the
analysis is good, and if they are bullshit then the analysis is bullshit.
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Part IV

Assignments
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Chapter 7

Assignment 1: Your Fall

Problem Description

The assignment is to plan your next fall by using the decision matrix technique. You can use
the backdrop of pending Koala Ebola pandemic: the Koala Ebola has been encountered in
Outdonesia. Unfortunately, Outdonesia is a popular tourist attraction and the Koala Ebola has
penetrated the entire land. Outdonesia has not enforced any kind of quarantine yet, so it may
be only a matter of time before we may have a global pandemic at our hand. There is no
vaccine for Koala Ebola yet, but there is a test for it.

Now, it is your task now to decide what to do next fall. You may consider for example the
alternatives

• study full-time,
• some work with some studies,
• work full-time,
• take the semester off and find yourself by meditating in a Distantistanian monastery.

If you consider the pending Koala Ebola pandemic relevant to your alternatives, then the fol-
lowing scenarios can be relevant to you

• Is the society (and borders) closed due to Koala Ebola pandemic.
• Is the university in distant teaching.
• Is the world economy in recess.

You can use a completely different set of scenarios, if you want.
Then, consider one or two objectives. This means that you build one or two decision ma-

trices. Choose opposite objectives to make the problem interesting. The decision matrices can
be for example

• income,
• earned study credit points,
• personal (subjective) comfort.

After this, choose one or two decision rules.
Finally, choose two sensitivity parameters, plot your optimal decisions, and analyze the

result.
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For full three points you also have to consider a compromise problem. This can be done
from the perspective of your spouse/mother/cat/dog, or whatever. It is enough to consider
one decision matrix and one decision rule for your spouse/mother/cat/dog, whatever. Choose
two sensitivity parameters for the compromise problem, plot your results, and analyze them.

Remark Chapter 5 is a guide on how to do this assignment. You should use its structure in your
assignment, unless you find a different structure more suitable.

Guidelines

Below is a detailed list, or guidelines, on how to do your assignment, and what should be in
it. These guidelines follow the Sophie Sophomore’s example of Chapter 5. If you decide to be
imaginative, and not imitate Sophie’s example, you can take a relaxed attitude towards these
guidelines.

(i) Introduce yourself and the problem at least in the level done in Chapter 5.
(ii) Describe the timeline of you problem.

(iii) Choose approximately 3–8 alternatives.
(iv) Choose approximately 3–8 scenarios.
(v) Estimate the probabilities for the scenarios. You may want to have the probabilities to

depend on a sensitivity parameter p0 . If you use only non-stochastic decision rules, you
can omit this point.

(vi) Choose approximately 1–2 objectives or decision matrices. You may want to pick opposite
objectives to make your analysis more interesting.

(vii) Build the decision matrices. This is where you should spend most of your time. If the
numbers in the decision matrices are reasonable, then your analysis is reasonable, and if
not, then not.

(viii) In this point you may want to go through the parts (iii)–(vii) and see if they make a good
setting as a whole. Revise if necessary

(ix) Choose approximately 1–3 decision rules
(x) Choose 2 sensitivity parameters and calculate the decision picture. Analyze the picture.

(xi) Investigate the decision problem from the point fo view of your spouse/mother/cat/dog,
whatever.

(xii) Build the compromise decision picture with two sensitivity parameters and analyze the
result. You may want to use the compromise combination weight w as a sensitivity
parameter, or you can set w= 0.5 for equal weight.

(xiii) Return the completed assignment to the teacher via email as a PDF attachment. If you
intend to also do the Assignment 2, return both assignments at the same time. Remember
to include your student number when returning the assignments.

Grading

This Assignment 1 (also Assignment 2) is graded on the scale 0–3 grade points. 1 point means
that you will pass the course with grade 1 (if you get no points from Assignment 2). Similarly,
with 3 points you get the grade 3 (if you get no points from Assignment 2).
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There are both qualitative and quantitative criteria in the grading. To get the points, you
must meet both the qualitative and the quantitative criteria.

Qualitative criteria in the grading are:

3 p The assignment is written so that any reasonable human being can understand it. The
appearance and the language is polished.

2 p The assignment is written so that anyone who has passed this course can understand it.
The appearance and the language is reasonably good.

1 p The assignment is written so that the teacher can understand it. The appearance and the
language does not have serious flaws.

Fo the quantitative criteria we assume that you imitate the example of Chapter 5. If you
decide to be imaginative and not follow Sophie’s example, then you can take a more relaxed
attitude towards the quantitative criteria listed below, i.e., the teacher will reward imaginative
solutions.

Quantitative criteria in grading are:

3 p All the points in (i)–(xiii) in the list of the previous section have been completed.
2 p In the list of the previous section, the “compromise points” (xi)–(xii) are not done, but

all the other points are done.
1 p In the list of the previous section, the “compromise points” (xi)–(xii) are not done, and

in the point (vi) and in the point (ix) only one decision matrix and one decision rule is
implemented, but all the other points are done.

Minimal Example

The m-file example_ll.m listed below, is a short solved Assignment 1. It explains Laila Lai-
hian’s fall. If the contents and the picture of example_ll.m are explained in a report, then it
would be a grade 1 solution to Assignment 1.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %%
3 %% FILE : example_ l l .m
4 %%
5 %% L a i l a Laihian ’ s f a l l : a minimal m= f i l e f o r Assignment " Your F a l l " .
6 %% Adding repor t to these kind of c a l c u l a t i o n s w i l l g ive you an accepted
7 %% assignment with grade 1 .
8 %%
9 %% L a i l a La ih ian l i v e s with her mother in La ih i a and contemplates what to do

10 %% in the next f a l l .
11 %%
12 %% L a i l a cons ide r s the fo l lowing a l t e r n a t i v e s :
13 %%
14 %% a1 = Move to Vaasa in to a VOAS f l a t .
15 %% a2 = Commute d a i l y between La ih i a and Vaasa .
16 %% a3 = Di s t an t s t u d i e s from La ih i a .
17 %%
18 %% The scena r i o s are :
19 %%
20 %% s1 = Koala Ebola i s contained .
21 %% s2 = Koala Ebola i s pandemic , Campus i s open , teach ing i s p a r t l y d i s t a n t .
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22 %% s3 = Koala Ebola i s pandemic , Campus i s c losed , teach ing i s d i s t a n t .
23 %%
24 %% The scenar io p r o b a b i l i t i e s are
25 %%
26 %% p0 = Koala Ebola pandemic p r o b a b i l i t y (p0 = p2+p3)
27 %% q0 = 1=p0
28 %%
29 %% p1 = q0
30 %% p2 = p0/2
31 %% p3 = p0/2
32 %%
33 %% L a i l a has two dec i s i on matr i ces and she uses the expected value ru l e .
34 %%
35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 %% Dec i t i on matr i ces ( multi=o b j e c t i v e dec i s i on problem )
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40
41 %% Monthly expenses
42 R1 = [
43 100+40 100+50 100+100; %% VOAS f l a t ( rent+food )
44 120 0.5*120 0*120; %% Driv ing to Vaasa (100%=50%=0% on s i t e teach ing )
45 0 0 0 %% Studying from La ih i a ( ba se l i ne )
46 ] ;
47
48 R1 = =R1 ; %% Maximun form !
49
50
51 %% Study c r e d i t po in t s
52 R2 = [
53 30 25 20; %% VOAS f l a t
54 25 25 20; %% Driv ing to Vaasa
55 10 15 20 %% Studying from La ih i a
56 ] ;
57
58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
59 %% S e n s i t i v i t y c a l c u l a t i o n s and v i s u a t i z a t i o n
60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
61
62 %% Samplin frequency . For N=500 the c a l c u l a t i o n s take 3 seconds .
63 N = 500;
64 p0samples = l inspace (0 ,1 ,N) ;
65 wsamples = l inspace (0 ,1 ,N) ;
66
67 %% Dec i s ion problem ’ s cons tant f i e l d s .
68 dp1 . dru le = " ev " ;
69 dp1 . dmat = R1 ;
70 dp2 . dru le = " ev " ;
71 dp2 . dmat = R2 ;
72
73 %% Ca l cu l a t i ng the s e n s i t i v i t y matr ix z .
74 for i=1:N
75 p0 = p0samples ( i ) ;
76 q0 = 1=p0 ;
77 dp1 . prob = [q0 p0/2 p0 /2 ] ’ ;
78 dp2 . prob = [q0 p0/2 p0 /2 ] ’ ;
79 dr1 = dmatrix (dp1) ;
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80 dr2 = dmatrix (dp2) ;
81 V1 = dr1 . dvalues ;
82 V1 = s c a l i n g (V1) ;
83 V2 = dr2 . dvalues ;
84 V2 = s c a l i n g (V2) ;
85 for j=1:N
86 w = wsamples ( j ) ;
87 V = w*V1 + (1=w)*V2 ;
88 [ tmp , z ( j , i ) ] = max(V) ;
89 end
90 end
91
92 %% Drawing the s e n s i t i v i t y matr ix z .
93 contourf ( p0samples , wsamples , z ) ;
94 %% Uncomment the fo l lowing l i n e s f o r PDF f i l e output .
95 %o r i e n t ( " landscape " )
96 %p r i n t ( " l l _ p i c t u r e . pdf " )

https://www.uwasa.fi/∼tsottine/orms2020/en/example_ll.m

Below is the sensitivity picture the m-file example_ll.m produces:
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Chapter 8

Assignment 2: Ministry Report

Problem Description

You are a junior specialist in the Ministry of Health and Wellbeing. You are tasked to give
recommendations for the government of Finland in the pending Koala Ebola pandemic. Recall
that the Koala Ebola has been encountered in Outdonesia. Unfortunately, Outdonesia is a
popular tourist attraction and the Koala Ebola has penetrated the entire land. Outdonesia has
not enforced any kind of quarantine yet, so it may be only a matter of time before we may have
a global pandemic at our hand. There is no vaccine for Koala Ebola yet, but there is a test for
it.

You may consider, for example, the following actions

• travel restrictions to Outdonesa,
• quarantine to those who have traveled to Outdonesia,
• closing borders,
• quarantining Finland,
• wait for the vaccine and then (forcefully) vaccinate everybody.

Your objectives can be, for example,

• lost healthy living years,
• GDP change,
• “civic liberties”.

The decision rules can be, for example,

• expected value rule,
• Hurwicz rule,
• CARA rule.

Build your decision matrix or matrices and perform sensitivity analysis by using two sensi-
tivity parameters.
Remark The example of Chapter 6 may help a little in doing this assignment. Also note that
unlike in the Assignment 1, in this Assignment 2 there is no need to do compromise analysis. If
you wish, you can do the compromise analysis. You may choose for example another ministry,
say the Treasury, and its report.
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Guidelines

Unlike Assignment 1, this Assignment 2 requires some independent thinking: it is not a straight-
forward version of the example of Chapter 5 as Assignment 1 is. Therefore the assignment itself
is narrower is scope. Indeed, below are the guidelines for Assignment 2:

(i) Choose approximately 3–8 alternatives.
(ii) Choose approximately 3–8 scenarios

(iii) Estimate the probabilities for the scenarios. You may want to have the Koala Ebola pan-
demic probability as a sensitivity parameter p0 . IF you use only non-stochastic decision
rules, you can mot this point.

(iv) Choose approximately 1–2 objectives or decision matrices. You may want to pick opposite
objectives to make your analysis more interesting

(v) Build the decision matrices. This is where you should send most of your time. If the
numbers in the decision matrices are reasonable, then your analysis is reasonable, and if
not, then not.

(vi) In this point you may want to go through the parts (i)–(v) and see if they make a good
setting as a whole. Revise if necessary.

(vii) Choose approximately 1–3 decision rules.
(viii) Choose 2 sensitivity parameters and calculate the decision picture. Analyze the picture.
(ix) State the final recommendation of the government of Finland.
(x) Return the completed assignment to the teacher via email as a PDF attachment. If you

intend to also do the Assignment 1, return both assignments at the same time. Remember
to include your student number when returning the assignments.

Grading

This Assignment 2 is graded almost in the same way as Assignment 1.
Qualitative criteria in the grading are:

3 p The assignment is written so that any reasonable human being can understand it. The
appearance and the language is polished.

2 p The assignment is written so that anyone who has passed this course can understand it.
The appearance and the language is reasonably good.

1 p The assignment is written so that the teacher can understand it. The appearance and the
language does not have serious flaws.

Quantitative criteria in grading are:

3 p All the points (i)–(x) in the list of the previous section have been completed. The numbers
in the decision matrices as well as the scenario probabilities are well argued.

2 p All the points (i)–(x) in the list of the previous section have been completed. The numbers
in the decision matrices or the scenario probabilities are not well argued.

1 p All the points (i)–(x) in the list of the previous section have been done. The numbers in
the decision matrices and the scenario probabilities are not well argued. The sensitivity
analysis is lacking.
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