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CHRISTIAN BENDER, TOMMI SOTTINEN, AND ESKO VALKEILA

ARBITRAGE WITH FRACTIONAL BROWNIAN
MOTION?1

In recent years fractional Brownian motion has been suggested to
replace the classical Brownian motion as driving process in the mod-
elling of many real world phenomena, including stock price modelling.
In several papers seemingly contradictory results on the existence or
absence of a riskless gain (arbitrage) in such stock models have been
stated. This survey tries to clarify this issue by pointing to the im-
portance of the chosen class of admissible trading strategies.

1. Introduction

Absence of arbitrage, i.e. the impossibility of receiving a riskless gain
by trading into a market, is a basic equilibrium condition at the heart
of financial mathematics: Suppose there is a strategy that is feasible for
investors and promises a riskless gain. Then investors would like to buy (and
not at all sell) this strategy. Hence, by the law of supply and demand, the
price of this strategy would increase immediately, showing that the market
prices have not been in an equilibrium. Therefore, absence of arbitrage has
become a minimum requirement for a sensible pricing model.

Mathematically, the first fundamental theorem of asset pricing, (see [9]
for a version relevant in the context of the present paper), links the no-
arbitrage property to the martingale property of the discounted stock price
process under a suitable pricing measure. Since fractional Brownian motion
is not a semimartingale (except in the Brownian motion case), stock price
processes (fully or partially) driven by a fractional Brownian motion can
typically not be transformed into a martingale by an equivalent change
of measure. So, at first glance, the fundamental theorem rules out these
models as sensible pricing models. However, this kind of arbitrage does not
make the hedging problem irrelevant.
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Note that existence of an arbitrage crucially depends on the class of
investment strategies that is at the investor’s disposal. The fundamental
theorem presupposes a class of admissible strategies which is – in some sense
– as big as possible from a mathematical point of view. Apart from being
self-financing and a condition excluding doubling strategies, any predictable
and integrable process (w.r.t. the stock price process) is admissible.

In the other extreme, it is of course always possible to construct a class
of strategies that is small enough to exclude arbitrage. (For instance one
can forbid all trading.) So the problem to be discussed can be posed as: Is
it possible to construct a class of economically meaningful strategies, that
does not contain arbitrage and is at the same time sufficiently rich to be
interesting from the perspective of pricing? By ‘interesting from the per-
spective of pricing’ we mean that practically relevant options can be priced
via (approximative) replication arguments within the class of strategies.

The main purpose of this paper is to discuss several results on existence
or absence of arbitrage in models driven by a fractional Brownian motion
for different classes of strategies in the light of the above criterion. Af-
ter explaining the self-financing condition in Section 2 we consider models
purely driven by a fractional Brownian motion and different subclasses of
self-financing strategies in Section 3. In Section 4 we discuss the notion of
Wick-self-financing portfolios. Models simultaneously driven by a Brownian
motion and a fractional Brownian motion are treated in Section 5. Finally,
Section 6 summarizes our findings.

2. Self-financing portfolios

Throughout this paper a discounted market model is a 6-tuple

M = (Ω,F , {Ft}0≤t≤T , P, S,A),

where (Ω,F , {Ft}0≤t≤T , P ) is a filtered probability space, S = (St)0≤t≤T is
an adapted stochastic process modelling discounted stock prices, and A is
a set of admissible trading strategies. For simplicity we shall assume that
the process S takes values in R and has continuous trajectories. Hence we
consider a market with two tradable assets: the discounted stock S and a
discounted money market account Bt ≡ 1.

A portfolio is a pair of adapted stochastic processes ϕ = (βt, γt). The
processes βt and γt denote the amount of money stored on the bank account
at time t and number of stock shares held at time t respectively. Thus, the
corresponding wealth process is given by

Vt(ϕ) = βt + γtSt.

Definition 1. (i) A portfolio ϕ is an arbitrage, if V0(ϕ) = 0, VT (ϕ) ≥ 0
P -almost surely, and P (VT (ϕ) > 0) > 0.
(ii) A market M is free of arbitrage, if no portfolio ϕ ∈ A is an arbitrage.
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Obviously, the notion of an arbitrage-free market crucially depends on
the chosen class of admissible portfolios. A standard restriction is, that
only self-financing portfolios can be admissible: Suppose, under absence of
transaction costs, the investor’s portfolio is constant between times t1 and
t2, and she rearranges her portfolio at time t2. Then her wealth immedi-
ately before rearranging is βt1 + γt1St2 and her wealth immediately after
rearranging is βt2 + γt2St2 . Now ‘self-financing’ means, by definition, that
these two values coincide, i.e. that neither money is added nor withdrawn
when rearranging the portfolio. Note that, by elementary manipulations,
this self-financing condition is equivalent to

Vt2(ϕ) = Vt1(ϕ) + γt1(St2 − St1).

So, a natural extension of the self-financing condition to a more general
class of portfolios can be given in terms of the forward integral. We briefly
review the pathwise approach due to Föllmer [13] and refer the reader to
[16], [21], and [26] for different approaches.
Definition 2. Suppose a sequence (πn) of partitions of [0, T ] is given such
that mesh(πn) → 0. Then X is said to have a forward integral w.r.t. S, if

lim
n→∞

∑

ti∈πn;ti≤t

Xti−1
(Sti − Sti−1

) =:
∫ t

0
XudSu

exists P -almost surely for all 0 ≤ t ≤ T and defines a continuous function
in t on almost every path.

For the remainder of the paper we will consider an appropriate sequence
of partitions πn fixed and suppress the dependence on πn in all definitions
below.
Definition 3. A portfolio ϕ = (βt, γt) is said to be self-financing, if γt has
a forward integral w.r.t. to S and, for all 0 ≤ t ≤ T ,

Vt(ϕ) = V0(ϕ) +
∫ t

0
γudSu.

We can now introduce some classes of admissible portfolios.
Definition 4. (i) A portfolio ϕt = (βt, γt) is simple, if there exists a finite
number of non-decreasing stopping times τ0, . . . , τK, such that the portfolio
is constant on (τk, τk+1]. The set of simple and self-financing portfolios is
denoted Asi.
(ii) An ε-simple portfolio is a simple one such that τk+1 − τk > ε for all k.
The set of ε-simple and self-financing portfolios is denoted Aε,si.
(iii) A self-financing portfolio ϕt = (βt, γt) is nds-admissible, if there is a
constant a ≥ 0 such that for all 0 ≤ t ≤ T ,

Vt(ϕ) ≥ a P -almost-surely.
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The set of nds-admissible portfolios is denoted Ands. Here nds stands for
‘no doubling strategy’.

As a direct consequence of the fundamental theorem of asset pricing (in
the version of Delbaen and Schachermeyer [9]), we obtain:
Theorem 1. If S is not a semimartingale, then there exists an approxima-
tive arbitrage in the class Asi.

Here, an approximative arbitrage is meant in the sense of a ‘free lunch
with vanishing risk’. We refer the reader to [9] for the exact definition
of this notion. The previous theorem implies that one needs to restrict the
class of self-financing strategies, if one wants to consider non-semimartingale
models, for instance the models (fully or partially) driven by a fractional
Brownian motion that we consider in the following sections.

3. Arbitrage in fractional Black-Scholes model

Recall that fractional Brownian motion BH
t with Hurst parameter 0 <

H < 1 is a continuous centered Gaussian process with covariance structure

E[BH
t BH

s ] =
1

2

(
t2H + s2H − |t− s|2H

)
.

We state some well known properties of the fractional Brownian motion:

1. For H = 1/2 fractional Brownian motion is a classical Brownian mo-
tion.

2. If H 6= 1/2 fractional Brownian motion is not a semimartingale.

3. If H > 1/2, fractional Brownian motion has zero pathwise quadratic
variation along appropriate sequences of partitions, i.e. for all 0 ≤
t ≤ T ,

lim
n→∞

∑

ti∈πn; ti≤t

|BH
ti
−BH

ti−1
|2 =: 〈BH〉t = 0; P -almost surely.

4. For H > 1/2 fractional Brownian motion has a long memory, in the
sense that the covariance function

ρH(n) := Cov(BH
k −BH

k−1, B
H
k+n −BH

k+n−1)

satisfies
∑∞

n=1 |ρH(n)| = ∞.

From now on BH will always denote a fractional Brownian motion with
H > 1/2. Since Itô’s formula carries over to the forward integral, with the
quadratic variation interpreted in the above pathwise sense, (see [13]), we
obtain

f(BH
t ) = f(0) +

∫ t

0
f ′(BH

u )dBH
u ,
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(including the existence of the forward integral). Hence, the pathwise frac-
tional Black-Scholes model with parameters σ > 0 and µ ∈ R

S̃H
t = s0 exp

{
σBH

t + µt
}

satisfies the pathwise SDE

dS̃H
t = µS̃H

t dt + σS̃H
t dBH

t .

Note that the forward integral does not have zero expectation in general.
Hence, we cannot interpret the second term in the SDE as an additive noise.
A remedy is to consider the SDE in the Wick-Itô sense (see the next Section
for the definition of the Wick-Itô integral). Its solution

SH
t = s0 exp

{
σBH

t − 1/2σ2t2H + µt
}

is called the Wick-fractional Black-Scholes model. It coincides with the
classical Black-Scholes model for H = 1/2. Actually, the term −1/2σ2t2H

is a drift term that does not have any influence on the arbitrage issue. So
we will consider the model SH only.

Since fractional Brownian motion with H > 1/2 is not a semimartingale
we conclude from Theorem 1 that there exists approximative arbitrage for
SH

t in the class Asi. The following example, essentially due to Shiryaev [23]
and Dasgupta and Kallianpur [10], gives a simple explicit construction of
an arbitrage in the class of nds-admissible strategies Ands. It only relies on
the fact that SH

t inherits the zero quadratic variation property from BH .
Example 1. Let g be continuously differentiable nonnegative function
satisfying g(0) = 0 and g(x0) > 0 for some x0 ∈ R. Define ϕ = (βt, γt) with

βt = g(SH
t − s0)− g′(SH

t − s0)S
H
t , γt = g′(SH

t − s0).

Then,

Vt(ϕ) = g(SH
t − s0)− g′(SH

t − s0)S
H
t + g′(SH

t − s0)S
H
t = g(SH

t − s0).

Consequently, ϕ is an arbitrage that is bounded from below by 0. To show
that ϕ ∈ Ands, the self-financing condition must be verified. However, by
Itô’s formula applied to the zero quadratic variation process SH

t −s0 we get,

Vt(ϕ) = g(SH
t − s0) =

∫ t

0
g′(SH

t − s0)dSH
u =

∫ t

0
γudSH

u .

We now consider the function g(x) := (x)+ := max{x, 0}, and ap-
proximate it by a sequence of continuously differentiable nonnegative func-
tions gm(x) satisfying gm(0) = 0. From the previous example we obtain
a sequence of nds-admissible arbitrages ϕm such that V0(ϕ

m) = 0 and
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VT (ϕm) = gm(SH
T − s0) ≈ (SH

T − s0)+ for large m. Hence, these arbitrages
constitute, for large m, approximate hedges for an at-the money European
call option with initial capital 0.

We close this section by a remark summarizing some interesting results
on existence and absence of arbitrage for different classes of portfolios.
Remark. (i) Cheridito proves in [8] that the fractional Black-Scholes model
is free of arbitrage with the class Aε,si of ε-simple strategies for every ε > 0.
On the other hand, the cheapest super-replicating portfolio for a European
call option in the class Aε,si is to buy one share of the stock at time 0 and
to hold it until time T . Hence, only a trivial price bound for European call
options can be obtained that way.
(ii) A portfolio is called almost simple, if there is a sequence of nondecreas-
ing stopping times (τk)k∈N such that P (τk = T infinitely often) = 1 and
the portfolio is constant on (τk, τk+1]. This means that the number of rear-
ranging times is finite on almost every path, but not necessarily bounded
as function on Ω. Existence of a self-financing almost simple arbitrage has
been shown by Rogers [20], making use of the history of a fractional Brown-
ian motion starting at −∞, and subsequently by Cheridito [8], taking only
the history starting from 0 into account. Both constructions rely on the
long memory property of the fractional Brownian motion.
(iii) A very intuitive construction of an arbitrage in fractional Cox-Ross-
Rubinstein models, exploiting the memory of a binary version of a frac-
tional Brownian motion, can be found in [24] and [4]. In [24] the discrete
approximation of the fractional Black-Scholes model is based on ordinary
products, in [4] on discrete Wick products.
(iv) Under proportional transaction costs, absence of arbitrage for the frac-
tional Black-Scholes models is proved in [14]. The introduction of propor-
tional transaction costs requires, however, that only processes of bounded
variation can be considered as portfolios.

We conclude that there seems to be no subclass of self-financing strate-
gies that is sufficiently small to be free of arbitrage and, at the same time,
sufficiently rich to induce a sensible price for European call options by hedg-
ing arguments.

4. ‘Wick self-financing portfolios’

It has been first suspected by Hu and Øksendal [15], that the existence of
arbitrage in the fractional Black-Scholes model is – mathematically – due to
the non-zero expectation property of the forward integral w.r.t. fractional
Brownian motion. They suggested to build a financial calculus for fractional
Brownian models on the Wick-Itô integrals instead, an approach which was
later extended by Elliott and van der Hoek [12]. The Wick-Itô integral
is based on a renormalization operator, called the Wick product. Given
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a Gaussian random variable ξ, we define its Wick exponential by E(ξ) :=
exp{ξ− 1

2
E[|ξ|2]}. For a Brownian motion B1/2 we obtain, with t1 < t2 < t3,

E(B
1/2
t3 −B

1/2
t2 )E(B

1/2
t2 −B

1/2
t1 ) = E(B

1/2
t3 −B

1/2
t1 ).

This identity does not hold for any other choice of Hurst parameter due
to the correlated increments. To enforce a similar property, and – in some
sense – to kill a part of the memory by ignoring the correlation of two
Gaussian random variables, one can introduce the Wick product for Wick
exponentials by

E(ξ) ¦ E(η) := E(ξ + η).

The Wick product can then be extended to a larger class of random variables
by different equivalent procedures, see e.g. [2], [11], [12], [15].

The simplest way to define the fractional Wick-Itô integral is to replace
the ordinary products in the definition of the forward integral by Wick
products (see [11]), i.e.

∫ t

0
Xud

¦BH
u := lim

n→∞
∑

ti∈πn;ti≤t

Xti−1
¦ (BH

ti
−BH

ti−1
),

if the Wick products and the limit exist in L2(Ω). Different approaches to
the fractional Wick-Itô integral can be found in [18] via Malliavin calculus,
[12] and [15] via white noise analysis, and [2] via a more elementary S-
transform approach. We list some properties of the fractional Wick-Itô
integral:

1. For H = 1/2 it coincides with the Itô integral (under suitable integra-
bility condition on the integrand).

2. It has zero expectation.

3. Its Itô formula has a correction term, precisely

f(BH
t ) = f(0) +

∫ t

0
f ′(BH

u )d¦BH
u + H

∫ t

0
f ′′(BH

u )u2H−1du.

Since SH satisfies,

SH
t = s0 +

∫ t

0
µuS

H
u du +

∫ t

0
σSH

u d¦BH
u ,

we define the Wick-Itô integral w.r.t. SH by

∫ t

0
Xud

¦SH
u :=

∫ t

0
µXuS

H
u du +

∫ t

0
σXuS

H
u d¦BH

u .

We now recall the notion of a Wick-self-financing portfolio from [12] (cf.
[15] for a similar definition).
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Definition 5. A portfolio ϕ = (βt, γt) is said to be Wick-self-financing, if
γt has a Wick-Itô integral w.r.t. to SH and, for all 0 ≤ t ≤ T ,

Vt(ϕ) = V0(ϕ) +
∫ t

0
γud

¦Su.

The following Theorem is due to [12], cf. [15] for a variant of this result.
The proof is based upon a fractional version of the Girsanov Theorem.
Theorem 2. The Wick-fractional Black-Scholes model is free of arbitrage
with the class of Wick-self-financing portfolios (satisfying an appropriate
integrability condition).

Although this result is a mathematically nice analogue of the no-arbitrage
result for the classical Black-Scholes model, it has been noted later by sev-
eral authors (e.g. [6], [25], and [4] in a discrete setting), that the Wick-self-
financing condition does not admit an easy economic interpretation, (and
most likely does not have any). In particular, the no-arbitrage result for
Wick-self-financing portfolios still holds, if the investor has full information
about the future stock prices. In such situation, an arbitrage opportunity
should, of course, exist in a realistic setup.

The difference between a self-financing and a Wick-self-financing strat-
egy with the same number of shares γt can be calculated in terms of the
Malliavin derivative, see [25]. As a special case of the results in [25], we
state:
Theorem 3. Suppose ϕ = (βt, γt) is a Wick-self-financing strategy such that
γt = g(t, SH

t ) for some continuously differentiable function g(t, x). Then
ϕ̃ = (β̃t, γt) is self-financing for

β̃t = βt + H
∫ t

0
u2H−1σ2(SH

u )2 ∂

∂x
g(u, SH

u )du

Remark. (i) If one is only interested in hedging then the Wick-self-
financing point of view is safe, but expensive. Indeed, the Wick-self-financing
∆-hedge for a claim F (SH

T ) is γt = ∂
∂x

f(t, SH
t ), where f solves the fractional

Black-Scholes differential equation

∂

∂t
f(t, x) = −Hσ2x2t2H−1 ∂2

∂x2
f(t, x),

with f(T, x) = F (x) (we refer to [25] for more details). So, if the claim is
convex, it follows from Theorem 3 that in the pathwise self-financing sense
the agent is super hedging, or consuming.
(ii) The capital needed to hedge a claim F (SH

T ) in the Wick-self-financing
sense is EQ[F (SH

T )], where Q is the so-called average risk neutral measure,
i.e. a measure characterized by the properties: EQ[SH

t ] = s0 and SH
t is
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log-normal. These properties would be satisfied if Q were an equivalent
martingale measure. In the fractional Black-Scholes model there are of
course no martingale measures. However, curiously these minimal require-
ments provide us with a unique measure. For further details on average risk
neutral measure we refer to [25].

Remark. In [19] the notion of a market observer was introduced by
Øksendal in order to justify the use of the Wick product in the self-financing
condition. Roughly speaking, all formulae containing Wick products are in-
terpreted as abstract quantities which become real prices, wealth processes,
etc., by an observation (which mathematically can be thought of as a dual
pairing). This approach is discussed in Chapter 6.5 of [3]. In particular, it
is shown, that there are Wick-self-financing portfolios that become an ar-
bitrage under some observations (weak arbitrages), while the no-arbitrage
result of Theorem 2 means that there are no Wick-self-financing strategies
that become arbitrages under all observations (strong arbitrages). Due to
the existence of weak arbitrages and the rather complex concept of mar-
ket observations, it is doubtful that the market observer interpretation can
become a successful approach.

To summarize, it appears that the notion of a Wick-self-financing port-
folio is a purely mathematical concept, that should better not be used in
financial engineering.

5. Absence of ‘regular’ arbitrage in mixed models

The previous sections suggest that a Black-Scholes type model driven by
a fractional Brownian motion (H > 1/2) can most likely not be equipped
with a economically sensible class of arbitrage free portfolios that is rich
enough for pricing purposes. Therefore, we now consider a model that is
driven by a fractional Brownian motion BH and a Brownian motion W ,
namely,

SH,ε
t = s0 exp

{
σBH

t + εWt + µt− 1

2
σ2t2H − 1

2
ε2t

}
.

We will assume that σBH
t +εWt is a Gaussian process, which is, for instance,

satisfied, if BH and W are independent as in [26] or if BH is constructed
from W via convolution with a suitable kernel as in [17].

We note that, for independent W and BH the process σBH
t + εWt is

not a semimartingale, if H ≤ 3/4. However, it is equivalent to εWt, if
H > 3/4 and ε > 0. Both results are proved in [7]. Hence, in the latter
case SH,ε inherits absence of arbitrage with nds-admissible strategies from
the standard Black-Scholes models. For the general case we now introduce
the class of regular portfolios.
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Definition 6. An nds-admissible portfolio ϕ = (βt, γt) is regular, if there
is a continuously differentiable function g : [0, T ]×R4

+ → R such that

γt = g
(
t, SH,ε

t , max
0≤u≤t

SH,ε
u , min

0≤u≤t
SH,ε

u ,
∫ t

0
SH,ε

u du
)

.

We know from Section 4 that there exist regular arbitrage opportunities
in the pure fractional model, i.e. for ε = 0. The following theorem, due
to [5], shows that the regularization via the Brownian motion removes this
type of arbitrage.
Theorem 4. The mixed model SH,ε is arbitrage-free with regular portfolios,
if ε > 0.

This theorem generalizes significantly a result from [1], where only the
case βt = b(t, SH,ε

t ) and γt = g(t, SH,ε
t ) is treated by PDE arguments. The

main idea to prove Theorem 4 is, to construct continuous functionals v(t, ·)
on the space of continuous functions such that Vt(ϕ) = v(t, SH,ε). Since
SH,ε

t has the same pathwise quadratic variation as a standard Black-Scholes
model with volatility ε along appropriate partitions, one can show that v
also induces a wealth functional for the Black-Scholes model. Then, via
continuity, absence of arbitrage can be transferred from the Black-Scholes
model to the mixed one.

Moreover, it can be shown that European, Asian, and lookback options
can be hedged with regular portfolios (up to a regularity issue at t = T ,
which is resolved in [5]). The hedges for these products are given by the
same functionals as in the classical Black-Scholes model. This robustness
of hedges was first observed in [22] for European options and is extended to
exotic options, such as Asian and lookback ones, in [5]. Moreover, the thus
obtained hedging prices coincide with those in the classical Black-Scholes
model. In conclusion, in the mixed fractional Black-Scholes model the class
of regular portfolios constitutes an arbitrage-free class of strategies that is
sufficiently large to cover hedges for practically relevant options.
Remark. The results on no-arbitrage and robust hedges in [5] cover a
wider class of models than the mixed fractional Black-Scholes model and a
larger class of portfolios. They actually indicate, that pricing of a large class
of options does basically only depend on the pathwise quadratic variation.
Moreover, one can include a so-called volatilty smile by introducing a local
volatility structure instead of the constants σ and ε. The reader is referred
to [5] for the details.

6. Conclusion

1. In the purely fractional Black-Scholes models there is no subclass of
self-financing strategies known that is arbitrage-free and sufficiently
large to hedge relevant options (and most likely there does not exist
such a class).
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2. The purely fractional Black-Scholes models become arbitrage-free with
Wick-self-financing strategies. But the notion of a Wick self-financing
portfolios seems to be void of a sound economic interpretation, if it is
to be interpreted in a real world sense. If one sticks to the concept of
market observation and thus regards the Wick-self-financing property
in an abstract world, arbitrage will appear again in a weak sense, i.e.
under some observations.

3. From 1. and 2. we conclude that it is not quite sensible to use the
purely fractional models as pricing models.

4. However, if one adds a Brownian component and considers mixed
models, the class of regular portfolios is arbitrage free and includes
hedges for many practically relevant options. Hence, the mixed models
are more promising as candidates for sensible pricing models.
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