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Abstract. We consider a queue fed by Gaussian traffic and give conditions on the input process under which
the path space large deviations of the queue are governed by the rate function of the fractional Brownian
motion. As an example we consider input traffic that is composed of of independent streams, each of which
is a fractional Brownian motion, having different Hurst indices.
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1. Introduction

A teletraffic model based on the fractional Brownian motion (fBm) was introduced in [9].
The asymptotics of the busy periods of such model were studied in [10]. We generalise
the results given in the latter article to a setting where the input traffic is not quite the
fBm but behaves as one in the large time scales.

As input traffic consider a zero mean Gaussian process Z = (Zt : t ∈ R) with
stationary increments and regularly varying variance with index 2H , i.e.

VarZt = L(t)|t|2H .
Here H ∈ (0, 1) and L is an even function satisfying

lim
α→±∞

L(αt)

L(α)
= 1

for all positive t , i.e. L is slowly varying at infinity. Moreover, assume that Z0 = 0,
i.e. limt→0 |t|2HL(t) = 0. Note that if L ≡ 1 the process Z is an fBm, i.e. the (upto
a multiplicative constant) unique Gaussian process with stationary increments and self-
similarity index H.

∗ Corresponding author.
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The normalised Gaussian storage is the process

Vt := sup
−∞<s�t

(
Zt − Zs − (t − s)

)
.

Thus V is a non-negative stationary process indicating the storage occupancy when the
storage is fed by the process Z and the service rate is one (this is no restriction if the
effective service rate is constant c, since we can always consider an input process c−1Z).

We are interested in the distribution of the excursions of V , i.e. the busy periods
of the storage, and the distribution of V0, i.e. the queue length. We study them in the
so-called large deviations framework. In particular, we show that the large deviations
asymptotics of the busy periods and the queue length are governed by the same rate
function as in the case when the queue is fed by an fBm.

The paper is organised as follows. Section 2 is devoted to the technicalities needed
to invoke the large deviations machinery. In particular, lemmas 2.7 and 2.8 provide us
sufficient conditions (referred to as assumption C and assumption B, respectively) for
the slowly varying function L for the results of section 3 to hold. The main result,
theorem 3.5, is stated in section 3.

2. Technicalities

2.1. Weak convergence

Define a family of processes (Z(α): α � 1) by setting

Z
(α)
t := 1

αH
√
L(α)

Zαt . (2.1)

Proposition 2.1. The family (2.1) converges to an fBm in finite dimensional distribu-
tions.

Proof. Consider first a single time point t ∈ R. Now the random variable Z
(α)
t is

Gaussian with mean zero and variance (L(αt)/L(α))t2H . Since L is slowly varying
at infinity it follows that

lim
α→∞ VarZ(α)

t = t2H , (2.2)

i.e. the marginal distributions of Z(α) converge to those of an fBm. Since each Z(α)

is a process with stationary increments the limit process must be one with stationary
increments also. Moreover, the asymptotic covariances are determined by the asymptotic
variances, viz.

Cov
(
Z(α)
s , Z

(α)
t

) = 1

2

(
VarZ(α)

s + VarZ(α)
t − VarZ(α)

t−s
)

→ 1

2

(
t2H + s2H − |t − s|2H )
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as α tends to infinity by virtue of (2.2). But this is the covariance function of a fBm. The
claim follows, since in the centred Gaussian case the covariance function determines the
distribution. �

Having proved the finite dimensional convergence let us turn to the weak conver-
gence. To this end denote by C(X) the space of continuous real valued functions over
the set X equipped with the supremum norm. Consider the weighted space � defined by

� :=
{
ω ∈ C(R): ω(0) = 0, lim|t |→∞

ω(t)

1 + |t| = 0

}
equipped with the norm

‖ω‖� := sup
t∈R

|ω(t)|
1 + |t| .

Remark 2.2. The space � is a separable Banach space. Hence, the weak convergence
is equivalent to finite dimensional convergence with tightness (cf. Billingsley [2], theo-
rems 5.1 and 5.2).

We have the following characterisations of pre-compact sets and tightness in �.

For the proofs we refer to lemmas 1 and 3 of [4].

Lemma 2.3. A set B is pre-compact in � if and only if

(i) for any T > 0 the set

{ω|[−T ,T ]: ω ∈ B}
is pre-compact in C([−T , T ]),

(ii)

lim
T→∞ sup

ω∈B
sup
|t |�T

|ω(t)|
1 + |t| = 0.

The Ascoli–Arzelà equicontinuity characterisation of pre-compact sets in the space
C([−T , T ]) yields the following tightness characterisation.

Lemma 2.4. The family (2.1) is tight in � if and only if

(i) for any ε, T > 0

lim
δ↓0

sup
α�1

P
(

sup
s,t∈[−T ,T ]

|t−s|�δ

∣∣Z(α)
t − Z(α)

s

∣∣ > ε
)

= 0,

(ii) for any ε > 0

lim
T→∞

sup
α�1

P
(

sup
|t |�T

|Z(α)
t |

1 + |t| > ε

)
= 0.
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So far we have assumed nothing about Z that would make its sample paths to
belong to the space � or even to be continuous. Just assuming that Z ∈ � would
not give us enough to prove the tightness and later the so-called exponential tightness.
Moreover, since we are considering functions over a non-compact parameter space there
is a need for machinery that is more powerful than the Kolmogorov criterion.

Assumptions C and B below will ensure thatZ has sample paths in� almost surely.
Moreover, they provide us quantitative information on the regularity of the sample paths
of Z needed to check the conditions (i) and (ii) of lemma 2.4. Assumption C concerns
the continuity of Z ensuring equicontinuity of the family (Z(α): α � 1) on any compact
interval [−T , T ] ⊂ R. Assumption B concerns the boundedness of Zt as t tends to
infinity. (Actually, assumption C is included in assumption B(ii).)

Let us introduce the so-called metric entropy machinery. Define a majorising vari-
ance

σ̄ 2(t) := sup
0<s<t

sup
α�1

L(αs)

L(α)
s2H

and the associated “metric entropy integral”

J (κ, T ) :=
∫ κ

0

(
ln

(
T

2σ̄ (−1)(u)
+ 1

))1/2

du.

The name metric entropy integral comes from the following. Consider the space [0, T ]
equipped with the seminorm σ̄ . Let Nσ̄ (u) denote the least number of closed balls with
radius u needed to cover the space [0, T ]. The logarithm of Nσ̄ , denoted by Hσ̄ , is called
the metric entropy of the space [0, T ] under the pseudometric induced by σ̄ . Obviously,
we have

Hσ̄(u) � ln

(
T

2σ̄ (−1)(u)
+ 1

)
.

For details of metric entropy we refer to Buldygin and Kozachenko [3].

Assumption C. The integral J (σ̄ (T ), T ) is finite for every T > 0.

Assumption B. There exists a sequence (xk : k ∈ N) increasing to infinity such that

(i) for all T ∈ N

dT :=
∞∑
k=T

c(xk)σ̄ (xk) < ∞,

(ii)
∞∑
k=1

c(xk)J
(
σ̄ (�xk),�xk

)
< ∞,

where we have denoted �xk := xk+1 − xk and c(x) = 1/(1 + x).
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Remark 2.5. (i) One can replace the majorising variance σ̄ by any increasing function σ
such that σ̄ (u) � σ (u) for all u.

(ii) Assumption C is satisfied if for some ε > 0, such that σ̄ (−1)(ε) < 1, the
“Dudley integral” ∫ ε

0

∣∣ln σ̄ (−1)(u)
∣∣1/2

du

converges.

Theorem 2.6. If the assumptions C and B hold then the family (2.1) converges weakly
in � to an fBm.

Theorem 2.6 follows from the lemmas 2.7 and 2.8 below, providing us the condi-
tions (i) and (ii) of lemma 2.4, respectively.

Lemma 2.7. If assumption C holds then the Z(α)’s are almost surely continuous on
[0, T ]. Moreover, for

δ >
8

p(1 − p)
J
(
pσ̄ (ε), T

)
we have

P
(

sup
s,t∈[0,T ]
|t−s|<ε

∣∣Z(α)
t − Z(α)

s

∣∣ > δ
)

� 2 exp

(
−(δ − 8/(p(1 − p))J (σ̄ (ε), T ))2

4σ̄ 2(ε)c(p)

)
,

where ε � T , and p ∈ (0, 1).

Lemma 2.8. If assumption B holds then for any integer T � 0 and ε > BT (p)

P
(

sup
t�xT

∣∣c(t)Z(α)
t

∣∣ > ε
)

� 2 exp

(
−(ε − BT (p))

2

2AT (p)

)
,

where

BT (p)= 1

p(1 − p)

∞∑
k=T

c(xk)J
(
pσ̄ (�xk),�xk

)
,

AT (p)= d2
T

(1 − p)

(
1 + 2β2

T

p(1 − p)

)
,

βT = sup
k�T

σ̄ (�xk)

σ̄ (xk)
,

and p ∈ (0, 1).

Lemma 2.7 can be proved like theorem 3.4.2 of Buldygin and Kozachenko [3].
Lemma 2.8 is a corollary of Kozachenko and Vasilik [8], lemma 4.2.
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The idea of the proofs is the following: Choose any p ∈ (0, 1) and set εn =
σ̄ (−1)(pn supt∈[0,T ] σ̄ (t)) for the case of lemma 2.7 and εnk = σ̄ (−1)(pnσ̄ (�xk)) for the
case of lemma 2.8. Let Sn be a minimal εn-net of the space [0, T ]. Then S = ⋃

n Sn
is a separability set of [0, T ]. Consider mappings αn : S → SN , n = 0, 1, . . . , where
αn(t) = t is t ∈ Sn and otherwise αn(t) is a point in Sn satisfying |t − αn(t)| < εn. It is
easy to see that Zt − Zαn(t) → 0 as n → ∞ with probability one uniformly in t.

Let t be an arbitrary point from S. For any m � 1, denote tm = αm(t), tm−1 =
αm−1(tm), . . . , t1 = α1(t2).

For any t, s ∈ S there exists such integers m and n that t ∈ Sm and s ∈ Sn.
Let us take any ε > 0 and choose such a k that σ̄ (εk) < σ̄ (ε) < σ̄ (εk−1) (i.e.,
pk supt∈[0,T ] σ̄ (t) < σ̄ (ε) < pk−1 supt∈[0,T ] σ̄ (t)).

For any t, s ∈ S we have

|Zt − Zs | � 2
∞∑
&=k

max
t∈S&+1

|Zt − Zα&(t)| + |Ztk − Zsk |,

|Ztk − Zsk | � 2
∞∑
&=k

max
t∈S&+1

|Zt − Zα&(t)| + |Zt − Zs |.

So, by choosing certain numbers qn > 1 we obtain by using the Hölder inequality
that

E exp
(
λ|Ztk − Zsk |

)
�
(
E exp

(
λq0|Zt − Zs|

))1/q0

∞∏
l=k

(
E exp

(
2λq&−k+1 max

t∈S&+1

|Zt − Zαl(t)|
))1/(q&−k+1)

�
(

exp

(
1

2

(
λq0σ̄ (ε)

)2
))1/q0 ∞∏

&=k

(
Nσ̄ (ε&+1) exp

(
2
(
λq&−k+1σ̄ (ε&)

)2))1/(q&−k+1)

� exp

(
1

2q0

(
λq0σ̄ (ε)

)2 +
∞∑
&=k

1

ql−k+1

(
Hσ̄ (ε&+1)+ 2

(
λq&−k+1σ̄ (ε&)

)2))

for any λ > 0.
Setting q0 = 1/(1 − p) and

qn =
√
(2λσ̄ (εk−1)/(1 − p))2 + 2Hσ̄ (εn+k)

2λσ̄ (εn+k−1)
,

n = 1, 2, . . . , we obtain that

E exp
(
λ sup

|t−s|<ε
|Zt − Zs |

)

� exp

(
λ2σ̄ 2(ε)

(
1

2(1 − p)
+ 4

p(1 − p)2

)
+ 8λ

p(1 − p)
J
(
pσ̄ (ε), T

))
.
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Using the Chebychev’s inequality one gets the upper bound of lemma 2.7 using
this method. The result of lemma 2.8 comes using the method above by considering
compact subsets [xk+1, xk], k = 1, 2, . . ., separately.

Proof of theorem 2.6. Lemma 2.7 corresponding to assumption C and the symmetry of
the process Z gives us the condition (i) of lemma 2.4 since for all T > 0

lim
ε↓0

σ̄ (ε) = 0 and lim
ε↓0

J
(
σ̄ (ε), T

) = 0.

Also, lemma 2.8 corresponding to assumption B together with the symmetry of Z gives
us the condition (ii) of lemma 2.4 since

lim
T→∞BT (p) = 0 and lim

T→∞AT (p) = 0

for all p ∈ (0, 1). Hence, the family (2.1) is tight. The claim follows now from proposi-
tion 2.1. �

Since it is in practise somewhat tedious to check the assumptions C and B we
provide the following proposition.

Proposition 2.9. Suppose that the majorising variance σ̄ satisfies

σ̄ (t) � D

(ln(1 + 1/t))ε

for some ε ∈ (1/2, 1). Then the assumptions C and B are satisfied.

Proof. We may suppose that T > 2. Now

T

2σ̄ (−1)(u)
+ 1 � T (exp((D/u)1/ε)− 1)

2
+ 1 � T

2
exp

((
D

u

)1/ε)

and(
ln

(
T

2σ̄ (−1)(u)
+ 1

))1/2

�
(

ln
T

2
+
(
D

u

)1/ε)1/2

�
(

ln
T

2

)1/2

+
(
D

u

)1/(2ε)

.

Therefore,

J (κ, T )� κ

(
ln
T

2

)1/2

+D1/(2ε)
∫ κ

0

1

u1/(2ε)
du

= κ

(
ln
T

2

)1/2

+D1/(2ε)κ1−1/(2ε) 1

1 − 1/(2ε)
. (2.3)

In particular, assumption C is satisfied.
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Consider then assumption B. By the inequality (2.3) it is enough to show that

∞∑
k=1

1

1 + xk

D

(ln(1 + 1/xk))ε
<∞, (2.4)

∞∑
k=1

1

1 + xk

(
ln
�xk

2

)1/2
D

(ln(1 + 1/(�xk)))ε
<∞. (2.5)

The convergence of the series (2.5) is equivalent to the convergence of the series

∞∑
k=1

1

xk
(ln�xk)

1/2(�xk)
ε. (2.6)

Choose xk = ek. Thus, �xk = ek(e − 1) and (2.6) converges, since

∞∑
k=1

1

ek
(
ln ek

)1/2(
ek
)ε =

∞∑
k=1

1

ek
k1/2ekε =

∞∑
k=1

k1/2ek(ε−1) < ∞.

With this choice of (xk) the series (2.4) also converges. So, assumption B is satisfied. �

Example 2.10. Suppose the input traffic is composed of independent streams, each of
which is an fBm, with different Hurst indices, i.e.

Z =
∞∑
k=1

akB
Hk,

where 1 > H1 > H2 > H3 > · · · and Hk → 0 as k → ∞. Assume that

∞∑
k=1

a2
kH

−2ε
k < ∞

for some ε > max(1/2,H1). Now

EZ2
t =

∞∑
k=1

a2
k |t|2Hk = |t|2H1

∞∑
k=1

a2
k |t|2(Hk−H1).

So Z has regularly varying variance with index 2H1 with

L(t) =
∞∑
k=1

a2
k |t|2(Hk−H1)

and

σ̄ 2(t) = sup
0<s<t

sup
α�1

∑∞
k=1 a

2
k (αs)

2Hk∑∞
k=1 a

2
kα

2Hk
� sup

α�1

∑∞
k=1 a

2
k (αt)

2Hk∑∞
k=1 a

2
kα

2Hk
. (2.7)



PATH SPACE LARGE DEVIATIONS 121

Using the fact that 1/x < 1/ln(1 + x) for all positive x we obtain

tH <
1

ln(1 + 1/tH )
<

1

ln(1 + 1/t)H
= 1

H ln(1 + 1/t)
.

So, for any ε > max(1/2,H) we have

t2Hk = t (Hk/ε)2ε � 1

(Hk/ε)2ε(ln(1 + 1/t))2ε
.

Using this to (2.7) we obtain

σ̄ 2(t)� sup
α�1

ε2ε

∑∞
k=1 a

2
kH

−2ε
k α2Hk∑∞

k=1 a
2
kα

2Hk

1

(ln(1 + 1/t))2ε

� sup
α�1

ε2ε

∑∞
k=1 a

2
kH

−2ε
k α2H1∑∞

k=1 a
2
kα

2Hk

1

(ln(1 + 1/t))2ε

� ε2ε 1

a2
1

∞∑
k=1

a2
kH

−2ε
k

1

(ln(1 + 1/t))2ε
.

It follows now from proposition 2.9 that the process Z satisfies the assumptions C and B.

Remark 2.11. In example 2.10 above we have σ̄ 2(t) � |t|β as t → 0, where β is any
positive number. Therefore, the Kolmogorov criterion cannot be used to prove tightness
in this case.

2.2. Large deviations

Let us briefly define the large deviations framework. For details we refer to Dembo and
Zeitouni [5].

Definition 2.12. A rate function I is a lower semicontinuous mapping I :� → [0,∞].
If the level sets {ω: I (ω) � a}, a ∈ R, are compact then the rate function I is called
good. A set A ⊂ � is called good (with respect to I ) if infω∈A◦ I (ω) = infω∈A I (ω).
A scale is a mapping v : R+ → R+ such that limα→∞ v(α) = ∞.

Remark 2.13. In what follows the rate functions are always good.

Definition 2.14. A scaled family ((X(α), v(α)): α � 1) of �-valued random variables
satisfies the large deviations principle (LDP) on � if there exists a rate function I :� →
[0,∞] such that for all closed F ⊂ � and open G ⊂ �

lim sup
α→∞

1

v(α)
ln P

(
X(α) ∈ F

)
� − inf

ω∈F I (ω),

lim inf
α→∞

1

v(α)
ln P

(
X(α) ∈ G

)
� − inf

ω∈G I (ω).
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Remark 2.15. In the case of good sets the upper and lower bounds above coincide giving
a proper limit.

Motivated by [10] we define the scale v as

v(α) := α2−2H

L(α)
.

Our aim is to show that the scaled family((
1√
v(α)

Z(α), v(α)

)
: α � 1

)
(2.8)

satisfies the LDP on �.
In order to prove the LDP on the function space � we follow the usual approach

by first proving the LDP in the finite dimensional spaces R
d for all d ∈ N. Then we lift

the LDP to � by means of the so called inverse contraction principle. For details of this
approach see Dembo and Zeitouni [5], chapters 2 and 4.

Fix a dimension d ∈ N and a vector t = (t1, . . . , td ) ∈ R
d. Denote by Z(α)(t) the

projection

Z(α)(t) := (
Z
(α)
t1
, . . . , Z

(α)
td

)
.

The vector Z(α)(t) is a multivariate normal random variable. Let 0α(t) denote its co-
variance matrix. Similarly let 0(t) denote the covariance matrix of the corresponding
projection of the fBm and define the rate function I (·, t) by

I (x, t) := 1

2
‖x‖2

0−1(t) := 1

2

〈
0−1(t)x, x

〉
.

Remark 2.16. Recall the reproducting kernel Hilbert space (RKHS) associated to a co-
variance function, say R, of a centred Gaussian family (Xt : t ∈ T ) (for details see, e.g.,
Alder [1], p. 66). Let S(R) be the set of functions of the form

f =
n∑

k=1

fkR(tk, ·),

fk ∈ R, and define an inner product on S by

〈f, g〉H :=
n∑

k=1

m∑
&=1

fkg&R(tk, t&).

The closure of S(R) under the inner product 〈·, ·〉H, denoted by H(R), is called the
RKHS associated to the covariance R. The inner product 〈·, ·〉H has the “reproducing
kernel” property

f (t) = 〈
f,R(t, ·)〉H

for all f ∈ H(R).
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Now, it is easy to see that the norm ‖ · ‖0−1(t) is the RKHS norm associated to the
covariance 0(t) (there is no need to take the closure in this case, of course).

Lemma 2.17. For all d ∈ N and t ∈ R
d the scaled family((

1√
v(α)

Z(α)(t), v(α)
)

: α � 1

)

satisfies LDP in R
d with the good rate function I (·, t).

Proof. Let d ∈ N and t ∈ R
d be fixed and omitted in the notation. For any u ∈ R

d set

4α(u) := ln E exp

〈
u,

√
L(α)

α1−H Z(α)

〉
,

where 〈·, ·〉 denotes the usual inner product in R
d. Now

4α

(
α2−2H

L(α)
u
)

= 1

2

α2−2H

L(α)
〈0αu,u〉.

Since Z(α) converges weakly to the fBm, we have

〈0αu,u〉 → 〈0u,u〉,
for all u ∈ R

d. Hence

4(u) := lim
α→∞

1

v(α)
4α

(
v(α)u

)
exists and is finite for all u ∈ R

d. In particular,

4(u) = 1

2
〈0u,u〉.

Moreover, the Fenchel–Legendre transform 4∗ of 4 is of the familiar Gaussian form

4∗(x) = I (x) = 1

2
‖x‖2

0−1 := 1

2

〈
0−1x, x

〉
,

where ‖ · ‖0−1 is the norm on R
d induced by the covariance matrix 0.

The calculations above show that the assumptions of the Gärtner–Ellis theorem (cf.
Dembo and Zeitouni [5], theorem 2.3.6) are satisfied. The claim follows. �

Let us turn now to the infinite dimensional case. Since we have proved the LDP
for all finite dimensional projections of �, i.e. the R

d’s, we can lift it to � endowed
with the so-called projective limit topology, or the topology of pointwise convergence.
In particular, by the Dawson–Gärtner theorem (cf. Dembo and Zeitouni [5], theorem
4.6.1) we have the next lemma.
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Lemma 2.18. Let p be a finite dimensional projection on �, i.e. for a function x ∈ �

p(x) is a vector

p(x) = (
x(t1), x(t2), . . . , x(td )

) ∈ R
d

for some t1, t2, . . . , td ∈ R and d ∈ N. Let 5 denote the set of all finite dimensional
projections on �. The family (2.8) satisfies the LDP on � equipped with the projective
limit topology with the good rate function

I (x) = sup
p∈5

1

2

∥∥p(x)∥∥2
0−1
p
. (2.9)

Here 0p is the covariance matrix of p(BH) and BH is the fBm.

The rate function (2.9) above is that of the fBm in the generalised Schilder’s the-
orem concerning the norm topology in �. For details we refer to Deuschel and Stroock
[6] and Norros [10]. In particular, note that the rate function I is the same that appears
in [10], equation (2.2), where the RKHS norm is used.

It should be noted that this projective limit topology is not a very strong one.
Hence, the result of lemma 2.18 is rather inadequate. However, if we show that the
family (2.8) is exponentially tight with respect to the ‖ · ‖� topology the LDP follows
from the inverse contraction principle. For details see Dembo and Zeitouni [5], theo-
rem 4.2.4 and corollary 4.2.6.

Definition 2.19. A scaled family ((X(α), v(α)): α � 1) is exponentially tight in � if for
each & > 0 there exist pre-compact sets K& ⊂ � such that

lim
&→∞

lim sup
α→∞

1

v(α)
ln P

(
X(α) /∈ K&

) = −∞
holds.

Lemma 2.3 provides us the following characterisation of the exponential tightness
in �.

Lemma 2.20. The family (2.8) is exponentially tight if and only if

(i) for each T > 0

sup
α�1

1

v(α)
ln P

(
sup

s,t∈[−T ,T ]
|t−s|�δ

|Zαt − Zαs| � αε
)

� −&.

for all ε > 0 given δ = δ(ε, &) is small enough,

(ii)

sup
α�1

1

v(α)
ln P

(
sup
t�m

|Zαt |
1 + t

� αε

)
� −&

for all ε > 0 given m = m(ε, &) is big enough.
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Proof. If the family is exponentially tight, in the sense of definition 2.19, then (i) and
(ii) are immediate; to prove the converse note that (i) is just a formulation of the expo-
nential tightness of the family (2.8) on C([−T , T ]) using the Ascoli–Arzelà theorem. So
we can choose pre-compact sets K&,T from C([−T , T ]) satisfying

1

v(α)
ln P

(
1√
v(α)

Z(α) /∈ K&,T

)
� −&2T (2.10)

for all α � 1. Choose K&,∞ by (ii) setting & to 2&. For each & > 0 consider the set

K& =
∞⋂
T=1

K&,T ∩ K&,∞.

By lemma 2.3 it is pre-compact in �. Let Pα denote the law of Z(α)/
√
v(α) under P.

Using Boole’s inequality and the inequalities (ii) and (2.10) together with the fact that
v(α) tends to infinity as α increases we obtain

Pα
(
Kc
&

)
�

∞∑
T=1

Pα
(
Kc
&,T

)+ Pα
(
Kc
&,∞
)

�
∞∑
T=1

(
e−2&v(α))T + e−2&v(α)

= e−2&v(α)

1 − e−2&v(α)
+ e−2&v(α)

� const e−2&v(α)

� e−&v(α),

given sufficiently large &. It follows from this that

lim
&→∞ lim sup

α→∞
1

v(α)
lnPα(K

c
& ) = −∞,

which is to say that (2.8) is exponentially tight. �

Lemmas 2.7 and 2.8 which provided us tightness also imply the inequalities (i) and
(ii) of lemma 2.20, i.e. the exponential tightness. The main result of this section follows.

Theorem 2.21. If the assumptions C and B hold then the scaled family (2.8) satisfies
the LDP on � with the good rate function I.
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Proof. By lemma 2.7 we have

ln P
(

sup
s,t∈[0,T ]
|t−s|�δ

|Zαt − Zαs| � αε
)

= ln P
(

sup
s,t∈[0,T ]
|t−s|�δ

|Z(α)
t − Z(α)

s | �
√
v(α)ε

)

� ln 2 − (
√
v(α)ε − 8

p(1−p)J (σ̄ (δ), T ))
2

4σ̄ (δ)c(p)
.

Hence,

1

v(α)
ln P

(
sup

s,t∈[0,T ]
|t−s|�δ

|Zαt − Zαs| � αε
)

� ln 2

v(α)
− (ε − 8

p(1−p)J (σ̄ (δ), T )/
√
v(α))2

4σ̄ (δ)c(p)
.

Condition (i) of lemma 2.20 follows since v(α) tends to infinity as α increases to infinity
and σ̄ (δ) and J (σ̄ (δ), T ) can be made arbitrarily small by choosing a small enough δ.

Similarly, by lemma 2.8 we have

1

v(α)
ln P

(
sup
t�T

|Zαt |
1 + t

� αε

)
� ln 2

v(α)
− (ε − BT (p)/

√
v(α))2

2AT (p)
.

The inequality (ii) of lemma 2.20 follows since v(α) tends to infinity as α increases
to infinity and BT (p) and AT (p) converge to zero for all p ∈ (0, 1) as T increases to
infinity.

The claim follows now from the symmetry of the process Z. �

3. Large buffer and busy period asymptotics

Consider the storage process

Vt(ω) := sup
−∞<s�t

(
Zt(ω)− Zs(ω)− (t − s)

)
= sup

−∞<s�t

(
ω(t)− ω(s)− (t − s)

)
.

Note that if the conditions C and B are satisfied then Z ∈ �. Consequently, V is finite.
In the large buffer case the LDP gives us asymptotics of the sets

Qx = {V0 � x}. (3.1)

Lemma 3.1. For any x � 1

P(Z ∈ Qx) = P
(√

L(x)

x1−H Z(x) ∈ Q1

)
,

where Qx is defined by (3.1).
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Proof. A simple calculation yields

P(Z ∈ Qx)= P
(

sup
t�0

(Zt − t) � x
)

= P
(

sup
t�0

(Zxt − xt) � x
)

= P
(

sup
t�0

(
L(x)

x1−H Z
(x)
t − t

)
� 1

)

= P
(
L(x)

x1−H Z
(x) ∈ Q1

)
.

The claim follows. �

Proposition 3.2. Let Qx be as in (3.1) and suppose that the assumption C and B are
satisfied. Then

lim
x→∞

L(x)

x2−2H
ln P(Z ∈ Qx) = − inf

ω∈Q1

I (ω)

where I is the good rate function defined in (2.9). Moreover, for the constant
infω∈Q1 I (ω) we have

inf
ω∈Q1

I (ω) = (1 −H)2H−2

2H 2H
.

Proof. Since Q1 is a good set (cf. Norros [10]), i.e.

inf
ω∈Q1

I (ω) = inf
ω∈Q◦

1

I (ω),

the proposition follows from lemma 3.1 and the LDP. The constant infω∈Q1 I (ω) is iden-
tified, e.g., in Duffield and O’Connel [7] and in Norros [10]. �

Remark 3.3. The result of proposition 3.2 is not a new one. Indeed, it appears in Duffield
and O’Connel [7], equation (54). The conditions of [7] reduce in our case to

lim
t→∞ inf

c>(1−H)/H
(c + 1)2

c2−2H

L(ct)

L(t)
= (1 −H)2H−2

H 2H
,

i.e. their hypothesis 2.2(ii) on p. 367.

The busy periods of V are its positive excursions, i.e. stochastic intervals [D,E]
such that Vt > 0 for all t ∈ (D,E) and VD = 0 = VE. The busy period containing 0 is
defined as a stochastic interval

[A,B] := [
sup{t � 0: Vt = 0}, inf{t � 0: Vt = 0}],
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if A < 0 < B. Otherwise the system is not busy at time 0. For a T > 0 denote

KT := {A < 0 < B,B − A > T } (3.2)

the set of paths for which the ongoing busy period at 0 is strictly longer than T .

Lemma 3.4. For any T � 1

P(Z ∈ KT ) = P
(√

L(T )

T 1−H Z(T ) ∈ K1

)
,

where KT is defined by (3.2).

Proof. Since

P(Z ∈ KT )= P
(∃a < 0, b > (a + T )+ ∀t ∈ (a, b): Zt − Za > t − a

)
= P

(∃a < 0, b > (a + 1)+ ∀t ∈ (a, b): ZT t − ZTa > T t − T a
)

= P
(∃a < 0, b > (a + 1)+ ∀t ∈ (a, b): T −1(ZT t − ZTa) > t − a

)
= P

(√
L(T )

T 1−H Z(T ) ∈ K1

)
,

the lemma follows. �

Finally, for the asymptotics of the busy periods we have the following generalisa-
tion of theorem 4.5 of Norros [10].

Theorem 3.5. Let KT be as is (3.2) and suppose that the assumptions C and B are
satisfied. Then

lim
T→∞

L(T )

T 2−2H
ln P(Z ∈ KT ) = − inf

ω∈K1

I (ω),

where I is the rate function defined in (2.9). The constant infω∈K1 I (ω) lies in the interval
[1/2, c2

H /2], where

cH =
{
H(2H − 1)(2 − 2H)B

(
H − 1

2
, 2 − 2H

)}−1/2

and B is the Beta function

B(µ, ν) =
∫ 1

0
xµ−1(1 − x)ν−1 dx.

Proof. Since K1 is a good set by proposition 4.3 of [10], the theorem follows from
lemma 3.4 and the LDP. The bounds for the constant infω∈K1 I (ω) are proved in [10],
theorem 4.5. �
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Remark 3.6. The exact value of the constant infω∈K1 I (ω) is not known. However, Nor-
ros [10] indicates how one can numerically find arbitrarily good approximations to it. In
particular, ifH > 1

2 then the constant cH is close to one. Consequenty, infω∈K1 I (ω) ≈ 1
2

in this case.

Example 3.7. For the superposition process in example 2.10 we have the scaling func-
tion

L(T )

T 2−2H
=

∞∑
k=1

a2
kT

2Hk−2.
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