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Abstract. The panharmonic measure is a generalization of the har-
monic measure for the solutions of the Yukawa partial differential equa-
tion. We show that the panharmonic measure shares many of the im-
portant properties of the classical harmonic measure. In particular, we
show that there are natural stochastic definitions for the panharmonic
measure in terms of the Brownian motion and that the harmonic and
the panharmonic measures are all mutually equivalent. Furthermore,
we calculate their Radon–Nikodym derivatives explicitly for some balls.

1. Introduction and Preliminaries

The harmonic measure is a fundamental tool in geometric function the-
ory, and it has interesting applications in the study of bounded analytic
functions, quasiconformal mappings and potential theory. For example, the
harmonic measure has proven very useful in study of quasidisks and re-
lated topics (see e.g. [1, 12, 17]). Results involving the harmonic measure
have been given by numerous authors since 1930’s (see [11] and references
therein). In this paper we shall consider the panharmonic measure, which is
a natural counterpart of the classical harmonic measure, where the harmonic
functions related are replaced with the smooth solutions to the Yukawa equa-
tion

(1.1) ∆u(x) = µ2u(x), µ2 ≥ 0.

The equation (1.1) first arose from the work of the Japanese physicist Hideki
Yukawa in particle physics. Here u : D → R is a two times differentiable
function and D ⊂ Rn , n ≥ 2, is a domain. The Yukawa equation was first
studied in order to describe the nuclear potential of a point charge. This
model led to the concept of the Yukawa potential (also called a screened
Coulomb potential), which satisfies an equation of the type (1.1). The
Yukawa equation also arises from certain problems related to optics, see
[14]. Obviously, when µ→ 0 we have the Laplace equation and, indeed, the
results given in this paper reduce to the classical ones.

Suppose that a function u : D → R . Using terminology of Duffin [8, 9],
we call the function u panharmonic in a domain D if its second derivatives
are continuous and it satisfies the Yukawa equation (1.1) for all x ∈ D . The
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function u is called panharmonic at x0 ∈ D if there is a neighborhood of
x0 where u is panharmonic.

The panharmonic, or µ-panharmonic measure, is a generalization of the
harmonic measure:

1.2. Definition. Let D ⊂ Rn be a regular domain and let µ2 ≥ 0. The
µ-panharmonic measure on a boundary ∂D with a pole at x ∈ D is the
measure Hx

µ(D; ·) such that any µ-panharmonic function u on D admits
the representation

u(x) =

∫
y∈∂D

u(y)Hx
µ(D; dy).

The existence and uniqueness of panharmonic measure, and the notion of
regularity of a domain, will be established by Theorem 2.4 later.

In Definition 1.2 above, and in all that follows, we shall always assume
that n ≥ 2, although some results are true in the dimension n = 1, also.

Note that if we replace the ‘killing parameter’ µ2 in the Yukawa equa-
tion (1.1) with a ‘creation parameter’ λ < 0 we obtain another important
partial differential equation, the Helmholtz equation. In principle, the sto-
chastic approaches taken in this paper can be applied to the solutions of
the Helmholtz equation if the domain D is small enough compared to the
parameter λ . For details, we refer to Chung and Zhao [4]. If we replace
µ2 by a (positive) function, we obtain the Schrödinger equation. Again, the
stochastic approaches taken in this paper can be applied, in principle, to
the Schrödinger equation, but the results may not be mathematically very
tractable. Again, we refer to Chung and Zhao [4] for details.

The rest of the paper is organized as follows: In Section 2 we show three
different connections between the panharmonic measures and the Brown-
ian motion. The first two (Theorem 2.4 and Corollary 2.10) are essentially
well-known. The third one (Corollary 2.14) is new. In Section 3 we show
that the panharmonic measures and the harmonic measures are all mutually
equivalent (Theorem 3.2) and provide some corollaries, viz. we provide a
domination principle for the Dirichlet problem related to the Yukawa equa-
tion (Corollary 3.5) and analogs of theorems of Riesz–Riesz, Makarov and
Dahlberg for the panharmonic measures (Corollary 3.6). In section 4 we
consider the panharmonic measures on balls and prove an analogue of the
Gauss mean value theorem, or the average property, for the panharmonic
functions (Theorem 4.2) and as a corollary we obtain the Liouville theorem
for panharmonic functions (Corollary 4.5). Finally, in Section 5 we list some
open problems and avenues for further research.

2. Yukawa Equation and Brownian motion

Let us first recall the celebrated connection between the harmonic measure
and the Brownian motion first noticed by Kakutani [15] in the 1940’s: Let W
be a n-dimensional standard Brownian motion for some n ≥ 2. A domain
D ⊂ Rn is regular if the Brownian motion does not dwell on its boundary;
more precisely, D is regular if

Px [τDc = 0] = 1, for all x ∈ ∂D,
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where Px is the probability measure under which Px[W (0) = x] = 1 and

τD = inf {t > 0;W (t) ∈ Dc}

is the first hitting time of the Brownian motion in the set Dc . Then the
harmonic measure is the hitting measure:

(2.1) Hx(D; dy) = Px [W (τD) ∈ dy, τD <∞] .

Theorem 2.4 below is a variant of the Kakutani connection (2.1). A
key ingredient in the variant is the following disintegration of the harmonic
measure on the time the associated Brownian motion hits the boundary ∂D :

2.2. Lemma. Let D ⊂ Rn be a regular domain and x ∈ D . Then

Hx(D; dy) =

∫ ∞
t=0

hx(D; dy, t) dt,

where

(2.3) hx(D; dy, t) = Px [W (τD) ∈ dy | τD = t]
dPx

dt
[τD ≤ t]

is the harmonic kernel.

Proof. Let us first show that the distribution of the hitting time τD is abso-
lutely continuous with respect to the Lebesgue measure. Let ε > 0 be small
enough so that B = B(x, ε) ⊂ D . Then τD = τB + (τD − τB). Now, the
distribution of τB is continuous; see, e.g., the section of Bessel processes in
Borodin and Salminen [2]. Also, due to the rotation symmetry of the Brow-
nian motion, τB and τD − τB are independent. Hence, by disintegration
and independence, we obtain that

P[τD ∈ dt] = P[τB + (τD − τB) ∈ dt]

=

∫ ∞
s=0

P[t+ (τD − τB) ∈ ds | τB = t]P[τB ∈ dt]

=

∫ ∞
s=0

P[t+ (τD − τB) ∈ ds]P[τB ∈ dt]

= ϕ(t)P[τB ∈ dt].

Thus, the distribution of τD is continuous, when the distribution of τB is
continuous.

Now, by disintegrating and conditioning, and by using the continuity of
the distribution of τD , we obtain that

Px [W (τD) ∈ dy, τD <∞]

=

∫ ∞
t=0

Px [W (τD) ∈ dy, τD ∈ dt]

=

∫ ∞
t=0

Px [W (τD) ∈ dy | τD = t]Px [τD ∈ dt]

=

∫ ∞
t=0

Px [W (τD) ∈ dy | τD = t]
dPx

dt
[τD ≤ t] dt.

The claim follows now from the Kakutani connection (2.1). �
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2.4. Theorem. Let D ⊂ Rn be a regular domain and let f : ∂D → R be
bounded. Then

(2.5) u(x) = Ex
[
e−

µ2

2
τDf(W (τD)) ; τD <∞

]
is a solution to the Yukawa equation ∆u = µ2u on D and u = f on
∂D . Moreover, if u ∈ C2(D̄) then (2.5) is the only solution to the Yukawa
equation.

As a consequence, the harmonic measure admits the representation

(2.6) Hx
µ(D; dy) =

∫ ∞
t=0

e−
µ2

2
t hx(D; dy, t) dt,

where hx(D; ·, ·) is the harmonic kernel defined in (2.3).

Proof. The first paragraph of Theorem 2.4 is classical; see, e.g., [4] or [10].

To see the representation (2.6), we condition on {τD = t} and use the
law of total probability:

u(x) = Ex
[
e−

µ2

2
τDf(W (τD))

]
=

∫ ∞
t=0

Ex
[
e−

µ2

2
tf(W (t))

∣∣∣ τD = t

]
Px [τD ∈ dt]

=

∫ ∞
t=0

e−
µ2

2
t Ex

[
f(W (t))

∣∣∣ τD = t
]
Px [τD ∈ dt]

=

∫ ∞
t=0

e−
µ2

2
t

∫
y∈Rn

f(y)Px
[
W (t) ∈ dy

∣∣ τD = t
]
Px [τD ∈ dt]

=

∫
y∈∂D

f(y)

∫ ∞
t=0

e−
µ2

2
t Px

[
W (t) ∈ dy

∣∣ τD = t
]
Px [τD ∈ dt]

=

∫
y∈∂D

f(y)

∫ ∞
t=0

e−
µ2

2
t Px [W (t) ∈ dy , τD ∈ dt]

=

∫
y∈∂D

f(y)

∫ ∞
t=0

e−
µ2

2
t hx(D; dy, t) dt

=

∫
y∈∂D

f(y)Hx
µ(D; dy).

�

2.7. Remark. For smooth boundaries ∂D the harmonic kernel hx(D; dy, t)
is absolutely continuous with respect to the Lebesgue measure dy . Indeed,
define p : R+ × Rn → R+ by

(2.8) p(t, x) =
1

(2πt)n/2
exp

(
−‖x‖

2

2t

)
.

Then p is the Brownian transition kernel :

p(t, x− y) dy = Px [W (t) ∈ dy]

and the harmonic kernel can be written as

hx(D; dy, t) =
1

2

∂p

∂ny
(D; t, x− y) dy,
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where ny is the inward normal at y ∈ ∂D and p(D; ·, ·) is the transition
density of a Brownian motion that is killed when it hits the boundary ∂D :

(2.9) p(D; t, x− y) = p(t, x− y)− Ex
[
p
(
t− τD,W (τD)− y

)
; τD < t

]
(see, e.g., [20] for the derivation of the formula (2.9)).

Consequently, for C3 boundaries the harmonic measure admits a Pois-
son kernel representation and therefore, due to the representation (2.6) the
panharmonic measure also admits a Poisson kernel representation:

Hx
µ(D; dy) =

∫ ∞
t=0

e−
µ2

2
thx(D; dy, t) dt

=

∫ ∞
t=0

e−
µ2

2
t 1

2

∂p

∂ny
(D; t, x− y) dy dt

=

[
1

2

∫ ∞
t=0

e−
µ2

2
t ∂p

∂ny
(D; t, x− y) dt

]
dy.

Theorem 2.4 gives an interpretation of the panharmonic measure in terms
of exponentially discounted Brownian motion. Let us give a second interpre-
tation in terms of exponentially killed Brownian motion. Indeed, exponential
discounting is closely related to exponential killing. The exponentially killed
Brownian motion Wµ is

Wµ(t) = W (t)1{Yµ>t} + †1{Yµ≤t},

where † is a coffin state1 and Yµ is an independent exponential random

variable with mean 2/µ2 , i.e. P [Yµ > t] = e−
µ2

2
t. Let

τµD = inf {t > 0 ; Wµ(t) ∈ Dc} .

Then we have the following representation of the panharmonic measure:

2.10. Corollary. Let D ⊂ Rn be a regular domain. Then the panharmonic
measure admits the representation

(2.11) Hx
µ(D; dy) = Px

[
Wµ(τµD); τµD <∞

]
.

1By convention f(†) = 0 for all functions f .
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Proof. Let f : ∂D → R be bounded. Then, by Theorem 2.4 and the inde-
pendence of W and Yµ ,∫

y∈∂D
f(y)Hx

µ(D; dy)

= Ex
[
e−

µ2

2
τDf (W (τD)) ; τD <∞

]
=

∫
y∈∂D

f(y)

∫ ∞
t=0

e−
µ2

2
t Px [W (t) ∈ dy, τD ∈ dt]

=

∫
y∈∂D

f(y)

∫ ∞
t=0

Px [Yµ > t]Px [W (t) ∈ dy, τD ∈ dt]

=

∫
y∈∂D

f(y)

∫ ∞
t=0

Px [Yµ > t,W (t) ∈ dy, τD ∈ dt]

=

∫
y∈∂D

f(y)

∫ ∞
t=0

Px
[
Wµ(t) ∈ dy, τµD ∈ dt

]
= Ex

[
f
(
Wµ(τµD)

)
; τµD <∞

]
.

Since f was arbitrary, the claim follows. �

The two representations, Theorem 2.4 and Corollary 2.10, for the pan-
harmonic measures are, at least in spirit, classical. Now we give a third rep-
resentation for the panharmonic measure in terms of an escaping Brownian
motion. This representation is apparently new in spirit. The representation
is due to the following Duffin correspondence [8]: Let D ⊂ Rn be a regular
domain and let u : D → R . Let I ⊂ R be any open interval that contains
0. Set D̄ = D × I and define ū : D̄ → R by

(2.12) ū(x̄) = ū(x, x̃) = u(x) cos(µx̃).

2.13. Theorem. The function ū defined by (2.12) is harmonic on D̄ if and
only if u is µ-panharmonic on D .

Proof. Let us first show that D is regular if and only if D̄ is regular. Let
W̄ = (W, W̃ ) be (n+ 1)-dimensional Brownian motion. Denote

τ = inf{t > 0 ; W (t) ∈ Dc},
τ̃ = inf{t > 0 ; W̃ (t) ∈ Ic},
τ̄ = inf{t > 0 ; W̄ (t) ∈ D̄c}.

Now, by independence of W and W̃ ,

Px,x̃[τ̄ = 0] = Px,x̃[τ = 0, τ̃ = 0]

= Px[τ = 0]Px̃[τ̃ = 0]

= Px[τ = 0],

since I is obviously regular. This shows that D̄ is regular if and only if D
is regular.
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Let us then show that u satisfies the Laplace equation if and only if ū
satisfies the Yukawa equation. But this is straightforward calculus:

∆x̄ū(x̄) = ∆x,x̃ [u(x) cos(µx̃)]

= cos(µx̃)∆xu(x) + u(x)
d2

dx̃2
cos(µx̃)

= cos(µx̃)∆xu(x)− µ2 cos(µx̃)

= cos(µx̃)
(
∆xu(x)− µ2u(x)

)
= 0

if and only if ∆xu(x) = µ2u(x). �

Let W̃ be a 1-dimensional standard Brownian motion that is independent
of W . Then W̄ = (W, W̃ ) is a (n + 1)-dimensional standard Brownian
motion.

2.14. Corollary. Let D ⊂ Rn be a regular domain. Then the panharmonic
measure admits the representation

Hx
µ(D; dy)

= Ex,0
[
cos
(
µW̃ (τD)

)
;W (τD) ∈ dy, sup

t≤τD
|W̃ (t)| < π

2µ

]
=

∫ π
2µ

ỹ=− π
2µ

cos (µỹ)Hx,0

(
D ×

(
− π

2µ
,
π

2µ

)
; dy ⊗ dỹ

)
.(2.15)

Proof. The claim follows by combining the Kakutani connection (2.1) with
the Duffin correspondence (2.12) by noticing that it is enough to inte-
grate over ∂D × (−π/(2µ), π/(2µ)) since cos(µỹ) = 0 on the boundary
∂(−π/(2µ), π/(2µ)). �

2.16. Remark. Representation (2.15) is exceptionally well-suited for calcu-
lations of the panharmonic measures on upper half-spaces Hn

+ = {x ∈
Rn;xn > 0} . Indeed, Duffin [8, Theorem 5] used it to calculate the Poisson
kernel representation for panharmonic measures in the dimension n = 2.
Similar calculations can be carried out for the general case n ≥ 2, also.

3. Equivalence of Harmonic and Panharmonic Measures

The probabilistic interpretation provided by Corollary 2.10 implies that
the harmonic measure and the panharmonic ones are equivalent. Indeed, the
harmonic measure counts the Brownian particles on the boundary and the
panharmonic measures count the killed Brownian particles on the boundary.
But the killing happens with independent exponential random variables. So,
if the Brownian motion can reach the boundary with positive probability, so
can the killed Brownian motion; and vice versa. Also, it does not matter,
as far as the equivalence is concerned, what is the starting point of the
Brownian motion, killed or not.

Theorem 3.2 below makes the heuristics above precise. As corollaries of
Theorem 3.2 we obtain a domination principle for the Dirichlet problem
related to the Yukawa equation (Corollary 3.5) and analogs of theorems of
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Riesz–Riesz, Makarov and Dahlberg for the panharmonic measures (Corol-
lary 3.6).

Denote

(3.1) Zxµ(D; y) = Ex
[
e−

µ2

2
τD
∣∣∣W (τD) = y

]
.

3.2. Theorem. Let D be a regular domain. Then all the panharmonic
measures Hx

µ(D; ·), µ ≥ 0, x ∈ D , are mutually equivalent. The Radon-
Nikodym derivative of Hx

µ(D; ·) with respect to Hx(D; ·) is the function
Zxµ(D; ·) given by (3.1). Moreover Zxµ(D; y) is strictly decreasing in µ, and
0 < Zxµ(D; y) ≤ 1.

3.3. Remark. By Corollary 2.10 the Radon–Nikodym derivative Zxµ(D; ·) in
(3.1) can be interpreted as the probability that a Brownian motion killed
with intensity µ2/2, that would exit the domain D at y ∈ ∂D , survives to
the boundary ∂D :

(3.4) Zxµ(D; y) = Px [Yµ > τD |W (τD) = y] ,

where Yµ is exponentially distributed random variable with mean 2/µ2 that
is independent of the Brownian motion W .

Proof of Theorem 3.2. Let x, y ∈ D and let D0 ⊂ D be a subdomain of
D such that x ∈ D0 and y ∈ ∂D0 . Then, the Markov property of the
Brownian motion and the Kakutani connection (2.1), we have

Hx(D;A) =

∫
y∈∂D0

Hy(D;A)Hx(D0; dy)

for all measurable A ⊂ ∂D . This shows the harmonic measures Hx(D; ·),
x ∈ D , are mutually equivalent.

To see that Zxµ(D; ·) is the Radon–Nikodym derivative, note that, by the
representation (2.6) and the Kakutani connection (2.1),

Hx
µ(D; dy) =

∫ ∞
t=0

e−
µ2

2
t hx(D; dy, t) dt

=

∫ ∞
t=0

e−
µ2

2
t Px [W (τD) ∈ dy, τD ∈ dt]

=

∫
y∈∂D

Ex
[
e−

µ2

2
τD
∣∣∣W (τD) = y

]
Px [W (τD) ∈ dy]

=

∫
y∈∂D

Zxµ(D; y)Hx(D; dy).

Finally, the fact that 0 < Zxµ(D; ·) ≤ 1 is obvious from the representation
(3.1). The fact that Zzµ(D; ·) is strictly decreasing follows immediately from
the representation (3.4). �

From Theorem 3.2 we obtain immediately the following domination prin-
ciple for the Dirichlet problem related to panharmonic functions:

3.5. Corollary. Let D be a regular domain and let uµ by µ-panharmonic
and uν be ν -panharmonic, respectively, on D with ν ≤ µ. Then, uν ≤ uµ
on ∂D implies uν ≤ uµ on D .
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Since domains with rectifiable boundary are regular, we obtain immedi-
ately from Theorem 3.2 the following analogs of the theorems of F. Riesz
and M. Riesz, Makarov and Dalhberg (see [21], [19] and [6], respectively).

3.6. Corollary. Let Hs(D; ·) be the s-dimensional Hausdorff measure on
∂D .

(i) Let D ⊂ R2 is a simply connected planar domain bounded by a
rectifiable curve. Then Hx

µ(D; ·) and H1(D; ·) are equivalent for
all µ ≥ 0 and x ∈ D .

(ii) Let D ⊂ R2 be a simply connected planar domain. If E ⊂ ∂D and
Hs(D;E) = 0 for some s < 1, then Hx

µ(D;E) = 0 for all µ ≥ 0

and x ∈ D . Moreover, Hx
µ(D; ·) and Ht(D; ·) are singular for all

µ ≥ 0 and x ∈ D if t > 1.
(iii) Let D ⊂ Rn is a bounded Lipschitz domain. Then Hx

µ(D; ·) and

Hn−1(D; ·) are equivalent for all µ ≥ 0 and x ∈ D .

4. The Average Property for Panharmonic Measures and
Functions

By using the representation (2.6) one can calculate he panharmonic mea-
sures if one can calculate the corresponding harmonic kernels. Or, equiv-
alently, one can calculate the panharmonic measures if one can calculate
the corresponding harmonic measures and the Radon–Nikodym derivatives
given by (3.1).

The harmonic kernels for balls are calculated in [13]. We do not, how-
ever, present the general formula here. Instead, we confine ourselves in the
case where the center of the ball and the pole of the panharmonic measure
coincide, and give the Gauss mean value theorem, or the average property,
for panharmonic measures. As a corollary we have the Liouville theorem for
the panharmonic measures.

Let D ⊂ Rn be a regular domain. For the harmonic measure the Gauss
mean value theorem states that a function u : D → R is harmonic if and
only if for all balls Bn(x, r) ⊂ D we have the average property

u(x) =

∫
y∈∂Bn(x,r)

u(y)σn(r; dy),

where

σn(r; dy) =
Γ(n/2)

2πn/2
r1−n dy

is the uniform probability measure on the sphere ∂Bn(x, r).

For the panharmonic measures the situation is similar to the harmonic
measure: the only difference is that the uniform probability measure has
to be replaced by a uniform sub-probability measure that depends on the
killing parameter µ and the radius of the ball r . Indeed, denote

(4.1) ψn(µ) =
µν

2νΓ(ν + 1)Iν(µ)
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where ν = (n− 2)/2 and

Iν(x) =
∞∑
m=0

1

m!Γ(m+ ν + 1)

(x
2

)2m+ν

is the modified Bessel function of the first kind of order ν .

4.2. Theorem. Let D ⊂ Rn be a regular domain and let µ > 0. A function
u : D → R is µ-panharmonic if and only if it has the average property:

u(x) = ψn(µr)

∫
y∈∂Bn(x,r)

u(y) σn(r; dy).

for all open balls Bn(x, r) ⊂ D . Equivalently,

Hx
µ (Bn(x, r); dy) = ψn(µr)σn(r; dy).

4.3. Remark. Theorem 4.2 states that ψn(µr) is the Radon–Nikodym deriv-
ative:

ψn(µr) = Zxµ (Bn(x, r); y) = Ex
[
e−

µ2

2
τBn(x,r)

∣∣∣W (
τBn(x,r)

)
= y

]
.

Proof of Theorem 4.2. Note that we may assume that x = 0.

Denote by τnr the first hitting time of the Brownian motion W on the
boundary ∂Bn(0, r). I.e., τnr is the first time the Bessel process with index
ν = (n− 2)/2 reaches the level r when it starts from zero.

From the rotation symmetry of the Brownian motion it follows that the
hitting place is uniformly distributed on ∂Bn(0, r) for all hitting times t .
Consequently, by Theorem 2.4 and the independence of the hitting time τnr
and place W (τnr )

H0
µ (Bn(0, r); dy) = E0

[
e−

µ2

2
τnr ;W (τnr ) ∈ dy

]
= E0

[
e−

µ2

2
τnr

]
P0 [W (τnr ) ∈ dy]

= E0

[
e−

µ2

2
τnr

]
σn(r; dy).

The hitting time distributions for the Bessel process are well-known. By,
e.g., Wendel [22, Theorem 4],

E0

[
e−

µ2

2
τnr

]
=

(µr)ν

2νΓ(ν + 1)Iν(µr)
.

The claim follows from this. �

4.4. Remark. The Radon–Nikodym derivative, or the ‘killing constant’,
ψn(µ) is rather complicated. However, some of its properties are easy to
see:

(i) ψn(µ) is continuous in µ ,
(ii) ψn(µ) is strictly decreasing in µ ,
(iii) ψn(µ)→ 0 as µ→∞ ,
(iv) ψn(µ)→ 1 as µ→ 0,
(v) ψn(µ) is increasing in n .
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The items (i)–(iv) are clear since ψn(µ) is the probability that an exponen-
tially killed Brownian motion started from the origin with killing intensity
µ2/2 is not killed before it hits the boundary of the unit ball. The item (v)
is somewhat surprising: the higher the dimension n , the more likely it is
for the killed Brownian motion to survive to the boundary of the unit ball.
A possible intuitive explanation is that the higher the dimension the more
transitive the unit ball is combined with the remarkable result by Ciesielski
and Taylor [5] that probability distribution for the total time spent in a
ball by (n+ 2)-dimensional Brownian motion is the same as the probability
distribution of the hitting time of n-dimensional Brownian motion on the
boundary of the ball.

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

Function ψn with (from bottom to top) n = 2, 3, 4, 10.

4.5. Corollary. Let u be panharmonic on the entire space Rn . If u is
bounded, then u is constant.

Proof. By Theorem 4.2

|u(x)− u(0)|

= ψn(µr)
Γ(n/2)

2πn/2
r1−n

∣∣∣∣∣
∫
∂B(x,r)

u(y) dy −
∫
∂Bn(0,r)

u(y) dy

∣∣∣∣∣
≤ ‖u‖∞

∫
Dn(x,r) dy∫
Bn(0,r) dy

,

where Dn(x, r) is the symmetric difference of Bn(x, r) and Bn(0, r). The
claim follows by letting r →∞ . �
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5. Discussion and Open Problems

Let us list some open problems and avenues for further studies:

I. Schrödinger equation. The Yukawa equation (1.1) is a special case of
the Schrödinger equation

(5.1) ∆u(x) = q(x)u(x).

The Schrödinger equation and its connection to the Brownian motion has
been studied e.g. by Chung and Zhao [4]. Our investigation here can be seen
as a special case of their studies. For example, analogs of Theorem 2.4 and
Corollary 2.10 are known for the Schrödinger equation. However, the Duffin
correspondence (2.12) and Corollary 2.14 are not known. Moreover, the
results given here cannot easily be calculated for the Schrödinger equation.
The problem is that the prospective Radon–Nikodym derivate of the measure
associated with the solutions of the Schrödinger equation with respect to the
harmonic measure take the form

(5.2) Zxq (D; y) = Ex
[
eq(τD)

∣∣W (τD) = y
]
,

where

eq(t) = e−
1
2

∫ t
0 q(W (s)) ds

is the so-called Feynman–Kac functional. Thus, we see that in order to
calculate the Radon–Nikodym derivative we need to know the joint density of
the Feynman–Kac functional and the Brownian motion when the Brownian
motion hits the boundary ∂D . If q is constant, i.e., we have either the
Yukawa equation or the Helmholtz equation, then it is enough to know the
joint distribution of the hitting time and place of the Brownian motion on
the boundary ∂D . These distributions are well-studied, see e.g. [2, 5, 7, 13,
16, 18], but few joint distributions involving the Feynman–Kac functionals
are known.

It would be interesting to calculate the Radon–Nikodym derivative (5.2)
for, say, balls and half-spaces, and thus reproduce the related results of this
paper to the Schrödinger equation.

II. Helmholtz equation. In the case of the other important special case
of the Schrödinger equation (5.1), Helmholtz equation,

(5.3) ∆u(x) = −λu(x), λ ≥ 0,

there is a recent result by Chen et al. [3] that provides the Duffin correspon-
dence. Thus, it is reasonable to assume that our results can be extended to
the Helmholtz equation (5.3) for domains that are small enough with respect
to the creation parameter λ so that the associated Feynman–Kac functional
is finite:

(5.4) Ex
[
e
λ
2
τD
]
<∞.

It would be interesting to see if one can reproduce the results of this paper
to the Helmholtz equation (5.3) for domains satisfying (5.4).
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III. Panharmonic Measures on Balls. Let Bn = Bn(0, 1) be the n-
dimensional unit ball. The harmonic measure has a nice tractable formula
for (unit) balls:

Hx (Bn; dy) =
1− |x|2

|x− y|n
σn(1; dy)

To have a tractable formula for the panharmonic measures on balls we need
a tractable formula for the exit time and place distribution

Px [W (τBn) ∈ dy , τBn ∈ dt] .

There is a formula for this joint distribution due to Hsu [13]. The formula
is rather complicated, so the calculations for the panharmonic measures
Hx
µ(Bn; dy) may turn out to be rather demanding and it is unclear if a

tractable formula can be found.

IV. Kelvin Transformation. The Kelvin transformation is

Kn[u](x) = |x|2−nu(x∗),

where

x∗ =

 x/|x|2, if x 6= 0,∞,
0, if x =∞,
∞, if x = 0.

The Kelvin transformation preserves the harmonic functions and it can be
used, e.g., to calculate harmonic measures for balls from the harmonic mea-
sures for half-spaces, and vice versa.

It would be interesting to find out a similar transformations Kµ,n for the
panharmonic functions. In principle, this should be possible by using the
Radon–Nikodym derivative (3.1).

V. Simulation and Importance Sampling. Theorem 2.4, Corollary
2.10 and Corollary 2.14 give three different ways to simulate the pan-
harmonic measures. It would be interesting to investigate their relative
strengths and weaknesses in different domains (where explicit tractable
formulas are difficult or impossible to obtain).

Also, in the simulations one would like to use importance sampling in or-
der to have more Brownian paths in the target set in the boundary, and thus
speeding up the convergence of the simulation. To use importance sampling
in the three different simulation schemes provided by Theorem 2.4, Corollary
2.10 and Corollary 2.14, respectively, one must have a Girsanov-type theo-
rem for the killed, discounted and escaping Brownian motion, respectively.
This in turn would involve knowing the hitting time and place distribution
of a Brownian motion with drift, which is studied e.g. in Yin and Wang
[23].
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