
Lecture 1

Poisson Distribution

The Poisson distribution is named after the French math-
ematician Siméon Denis Poisson (1781–1840) who intro-
duced the distribution in 1837 in his work Recherches sur la
probabilité des jugements en matiére criminelle et en matiére
civile (“Research on the Probability of Judgments in Crimi-
nal and Civil Matters”). In his work the Poisson distribution
describes the probability that a random event will occur in
a time and/or space interval under the condition that the
probability of any single event occurring is very small p ,
but the number of trials is very large N . So, for Siméon
Denis Poisson, the Poisson(λ ) distribution was a limit of
binomial( p,N ) distributions in the sense of the Law of Small
Numbers 1.9: p→ 0 and N →∞ , but pN → λ > 0 .

Another pioneer of the Poisson distribution was
the Polish–German economist–statistician Ladislaus
Bortkiewicz (1868–1931) who coined the term “Law of
Small Numbers” in his 1898 investigation of the number of
soldiers in the Prussian army killed accidentally by horse
kick. Some have suggested that the Poisson distribution
should be renamed the “Bortkiewicz distribution”.

Siméon Denis Poisson (1781–1840)

The Poisson distribution is, in some sense, the uniform distribution on the natural numbers
� = {0,1,2, . . .} . Indeed, the Poisson distribution is a discrete probability distribution that
expresses the probability of a given number of events occurring in a fixed interval of time
and/or space if these events occur with a known average rate and independently. In the
key example of this lecture, Example 1.1 below, the events are scattered in space, not in
time.

1.1 Example (Malus Particles)
The Lake Diarrhea has, on average, 7 Malus particles per one liter. Magnus Flatus lives on
the shore of the Lake Diarrhea. He drinks daily 2 liters of water from the Lake Diarrhea.
The lethal daily intake of Malus particles is 30. What is the probability that Magnus
Flatus will have a lethal intake of Malus particles in a given day?
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Qualitative Approach to Poisson Distribution

To answer the question of Example 1.1 we need to know the distribution of the random
variable X that denotes the number of Malus particles in a 2 liter sample from the Lake
Diarrhea. To fix the distribution of X we have to assume something about the distribution
of the Malus particles in the lake. We know the average of the Malus particles: 7 per
liter. Without any additional information, it is natural to assume that the particles are
independently and homogeneously scattered in the lake. This means that knowledge
of the amount of Malus particles in one sample does not help in predicting the amount of
Malus particles in another sample (independence) and that samples taken from different
parts of the lake are statistically the same (homogeneity). This leads us to the qualitative
definition of the Poisson distribution, or actually the Poisson point process:

1.2 Definition (Poisson Point Process)
Let � be a collection of subsets of the Euclidean space �d and let vol(A) denote the
volume of the set A of �d . The family X (A) , A ∈ � , is a Poisson point process with
parameter λ > 0 if

(i) X (A) takes values in � = {0,1,2, . . .} .
(ii) The distribution of X (A) depends only on λvol(A) .
(iii) If A and B are disjoint, then X (A) and X (B) are independent.
(iv) �[X (A)] = λvol(A) for each A in � .

In the context of Example 1.1 � a is the collection of water samples from the Lake
Diarrhea and X (A) is the number of Malus particles in the water sample A. The Lake
Diarrhea itself is a subset of �3 .

Samples of point processes. See point_processes.m to see which one is the Poisson point process.

Quantitative Approach to Poisson Distribution

The qualitative definition 1.2 does not, yet, allow calculations of probabilities, although
some expectations can be calculated. Indeed, we already did calculate some expectations
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in Exercise 1.4. However, it turns out that the qualitative definition 1.2 actually fixes the
distributions completely as Theorem 1.4 will show. Before that, let us recall the Poisson
distribution.

1.3 Definition (Poisson Distribution)
A random variable X has the Poisson distribution with parameter λ > 0 if it has the
probability mass function

� [X = x] = e−λ
λx

x!
, x = 0,1,2, . . . .
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Probability mass functions of Poisson distribution with different parameters λ .

The plots above were generated with Octave with the following code:

1 ###############################################################################
2 ## FILE : poisson_pmfs .m
3 ##
4 ## P lo t s some p r o b ab i l i t y mass func t i on s (pmf) of Poisson d i s t r i b u t i o n s .
5 ###############################################################################
6
7 ## Data fo r p l o t s .
8 lambda = [2 .4 , 5 .2 , 10 .0] ; # I n t e n s i t i e s f o r the p l o t s .
9 x = 0:20; # The x ’ s f o r Px=prob (x ) to be p lo t t ed .
10 w = 1; # Width of the bar in the bar p lo t .
11 Px (1 , : ) = poisspdf (x , lambda (1) ) ; # 1 s t row fo r lambda (1) .
12 Px (2 , : ) = poisspdf (x , lambda (2) ) ; # 2nd row fo r lambda (2) .
13 Px (3 , : ) = poisspdf (x , lambda (3) ) ; # 3rd row fo r lambda (3) .
14
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15 ## P l o t t i n g ( bar p l o t s ) .
16 p l o t l ims = [0 , 20 , 0 , 0 .265] ; # P l o t t i n g window [x1 , x2 , y1 , y2 ] .
17 subplot (1 ,3 ,1) ; # 1 row , 3 columns , 1 s t p l o t .
18 bar (x , Px (1 , : ) , w) ;
19 text (12 , 0.225 , ’ \ lambda=2.4 ’ ) ;
20 axis ( p l o t l ims ) ;
21 subplot (1 ,3 ,2) ; # 1 row , 3 columns , 2nd p lo t .
22 bar (x , Px (2 , : ) , w) ;
23 text (12 , 0.225 , ’ \ lambda=5.2 ’ ) ;
24 axis ( p l o t l ims ) ;
25 subplot (1 ,3 ,3) ; # 1 row , 3 columns , 3rd p lo t .
26 bar (x , Px (3 , : ) , w) ;
27 text (12 , 0.225 , ’ \ lambda=10.0 ’ ) ;
28 axis ( p l o t l ims ) ;
29
30 ## Crop the borders of the cur ren t f i gu r e and p r i n t landscape or i en ted PDF .
31 orient ( ’ landscape ’ ) ;
32 paper s i ze = get ( gcf , ’ paper s i ze ’ ) ;
33 paper s i ze (2) = 0.75∗ paper s i ze (2) ;
34 set ( gcf , ’ paper s i ze ’ , paper s i ze ) ;
35 border = −0.75;
36 set ( gcf , ’ paperpos i t i on ’ , [ border , 0 , paper s i ze (1)−2∗border , paper s i ze (2) ]) ;
37 print ( ’ poisson_pmfs . pdf ’ ) ;

www.uva.fi/∼tsottine/sp_with_octave/poisson_pmfs.m

1.4 Theorem (Poisson Point Process is Poisson Distributed)
For the Poisson point process X (A) , A∈� , of Definition 1.2 it must hold true that

� [X (A) = x] = e−λvol(A)
(λvol(A))x

x!
for all A in� and x = 0,1, . . . ,

where vol(A) is the volume of the set A.

Let us argue how the Poisson distribution arises from the Poisson point process, i.e, let
us argue why Theorem 1.4 holds. Denote

p
�
x; vol(A)
�
= � [X (A) = x] .

The key idea in the argument is the following: Split A into two parts with volumes v and
w . Then, because of independence and homogeneity, we obtain the functional equation

p(x; v + w) =
�
y

p(x − y; v)p(y;w).

We argue by using probability generating functions that this functional equation implies
that p(x; v) is a Poisson distribution.

Recall that the probability generating function of an � -valued random variable X is

G(θ ) =
�
x
�[X = x]θ x .
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Moreover, recall the following facts of the probability generating functions that we state
here as a lemma.

1.5 Lemma (Properties of Probability Generating Functions)
The probability generating function G(θ ) of an � -valued random variable X determines
the distribution of X . In particular:

(i) G(x)(0) = x!�[X = x]
(ii) G(1) = 1
(iii) G�(1) = �[X ]
(iv) G��(1) + G�(1)− G�(1)2 = �ar[X ]

The proof of Lemma 1.5 is left as an exercise.

Let G(θ ; v + w) be the probability generating function of the random variable X (A) .
Then, by the functional equation coming from the splitting argument we obtain that

G(θ ; v + w) =
�
x

p(x; v + w)θ x

=
�
x

�
y

p(x − y; v)p(y;w)θ x

=
�
y

�
x

p(x − y; v)θ x−y p(y;w)θ y

=
�
z

�
x

p(z; v)θ z p(y;w)θ y

= G(θ ; v)G(θ ;w).

Denote g(θ ; v) = logG(θ ; v) . Then from the above we obtain the Cauchy’s functional
equation

g(θ ; v + w) = g(θ ; v) + g(θ ;w).

So, g(θ ; v) is additive in v . Since g(θ ; v) is also increasing in v , it follows that g(θ ; v) =
vψ(θ ) for some ψ(θ ) . So G(θ ; v) = evψ(θ ) . Since G(θ ; v) is a probability generating
function we must have, by Exercise 1.3

G(1; v) = 1,

G�(1; v) = �[X (A)] = λv.

Thus, we must have ψ(θ ) = λ(θ − 1) . So,
G(θ ; v) = eλv(θ−1).

Since probability generating functions determine probabilities, the claim follows from the
following exercise.
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1.6 Example (Malus Particles, Solution)
Now we know that the number of Malus particles Magnus Flatus consumes daily has the
distribution

� [X = x] = e−14
e14x

x!
.

The probability in question is

� [X ≥ 30] = 1− � [X ≤ 29]

= 1−
29�
x=0

e−14
e14x

x!
.

Since we do not want to calculate all the 30 terms of the sum above by hand, we use
Octave. The simplest way of doing this is to call the Octave function poisscdf. So,
typing 1-poisscdf(29,14) we get the answer 0.01358 %.

Sums of Independent Poisson Distributions

From the qualitative approach to the Poisson process it is intuitively clear that if X1 and
X2 are independent Poisson distributed with parameters λ1 and λ2 , respectively, then
their sum X1+ X2 is also Poisson distributed with parameter λ1+λ2 . Rigorously this can
be seen from the following calculations:

�
�
X1+ X2 = x
�
=

∞�
x1=0

�
�
X1 = x1,X2 = x − x1

�

=
x�

x1=0

�
�
X1 = x1
�
�
�
X2 = x − x1
�

=
x�

x1=0

e−λ1
λ
x1
1

x1!
e−λ2

λ
x−x1
2

(x − x1)!

= e−(λ1+λ2)
x�

x1=0

λ
x1
1

x1!

λ
x−x1
2

(x − x1)!

= e−(λ1+λ2)
1

x!

x�
x1=0

x!

x1!(x − x1)!
λ
x1
1 λ

x−x1
2

= e−(λ1+λ2)
(λ1+λ2)x

x!
.

Here the last equality followed from the binomial formula
n�

k=0

�
n

k

�
akbn−k = (a+ b)n.
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Repeating the arguments above for n summands, we obtain the following:

1.7 Proposition (Poisson Sum)
Let X1,X2, . . . ,Xn be independent Poisson distributed random variables with parameters
λ1,λ2, . . . ,λn , respectively. Then their sum X1+X2+ · · ·+Xn is Poisson distributed with
parameter λ1+λ2+ · · ·+λn .

Let us then consider a reverse of Proposition 1.7. Suppose X1 and X2 are independent
Poisson distributed random variables with parameters λ1 and λ2 , respectively. Suppose
further that we know the value of their sum: X1 + X2 = x . What can we say about X1 ?
Intuitively, we can argue as follows: each point of the Poisson point process X1 + X2
comes independently from either X1 or X2 . The relative contribution of X1 to the points
is λ1/(λ1+λ2) . So, this is the probability of success, if success means that the point comes
from the random variable X1 . Since these successes are independent we arrive at the
binomial distribution: X1 is binomially distributed with parameters x and λ1/(λ1 + λ2) .
Rigorously, the educated guess above is seen to be true from the following calculations:
First, simple use of definitions yield

�
�
X1 = x1 | X1+ X2 = x

�
=
�
�
X1 = x1,X2 = x − x1

�
�
�
X1+ X2 = x
�

=
�
�
X1 = x1
�
�
�
X2 = x − x1
�

�
�
X1+ X2 = x
�

= e−λ1
λ
x1
1

x1!
e−λ2

λ
x−x1
2

(x − x1)!

�
e−(λ1+λ2)

(λ1+λ2)x

x!

Then rearranging the terms in the result above yields

�
�
X1 = x1 | X1+ X2 = x

�
=
�

x

x1

��
λ1

λ1+λ2

�x1 �
1− λ1

λ1+λ2

�x−x1
.

So, we see that X1 given X1 + X2 = x is binomially distributed with parameters x and
λ1/(λ1+λ2) . Repeating the arguments above for n summands, we obtain the following:

1.8 Proposition (Reverse Poisson Sum)
Let X1,X2, . . . ,Xn be independent Poisson distributed random variables with parameters
λ1,λ2, . . . ,λn , respectively. Let X = X1 + X2 + · · · + Xn and λ = λ1 + λ2 + · · · + λn .
Then, conditionally on X = x the random variables Xk , k = 1,2, . . . ,n , are binomially
distributed with parameters x and λk/λ .

Proposition 1.8 gave one important connection between the Poisson and the binomial
distributions. There is another important connection between these distributions. This
connection, the Law of Small Numbers 1.9 below, is why Siméon Denis Poisson introduced
the Poisson distribution.
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1.9 Theorem (Law of Small Numbers)
Let Xn , n ∈ � , be binomially distributed with parameters n and pn . Suppose that
npn → λ as n → ∞ . Then the distribution of Xn converges to the Poisson distribution
with parameter λ , i.e.,
�
n

x

�
px
n(1− pn)

n−x → e−λ
λx

x!
for all x = 0,1,2, . . . ,

whenever npn→ λ .

The proof of Theorem 1.9 is Exercise 1.13. Maybe the easiest way to prove Theorem
1.9 is to use the Stirling’s formula for the factorial:

n! ∼ �2πn
�n
e

�n
.

Here the asymptotic notation an ∼ bn means that

lim
n→∞

an
bn
= 1.
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Illustration of how the Binomial becomes Poisson by the Law of Small Numbers.
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The plots above were generated with Octave with the following code:

1 ###############################################################################
2 ## FILE : poisson_binomia l .m
3 ##
4 ## An i l l u s t r a t i o n of the Law of Small Numbers , i . e . , how binomial
5 ## d i s t r i b u t i o n s approximate the Poisson d i s t r i b u t i o n , or v i c e versa .
6 ##
7 ## This i s quick and very d i r t y coding . No−one should learn t h i s s t y l e !
8 ###############################################################################
9
10
11 lambda = 4; # Limi t lambda=p∗n i s f i x ed .
12 w = 1; # The width of the column fo r the bar p lo t .
13 p l o t l ims = [− 0.4, 13 , 0 , 0 .28 ] ; # P l o t t i n g window [x1 , x2 , y1 , y2 ] .
14
15 ## The 2x3 subp lo t s .
16 x = 0:8 ;
17 n = 8;
18 P = binopdf (x , n , lambda/n) ;
19 subplot (2 ,3 ,1)
20 bar (x , P , w) ;
21 text (5 , 0.25 , ’ Bin (8 ,1/2) ’ ) ;
22 axis ( p l o t l ims ) ;
23
24 x=0:15;
25 n = 16;
26 P = binopdf (x , n , lambda/n) ;
27 subplot (2 ,3 ,2)
28 bar (x , P , w) ;
29 text (5 , 0.25 , ’ Bin (16 ,1/4) ’ ) ;
30 axis ( p l o t l ims ) ;
31
32 x = 0:15;
33 n = 32;
34 P = binopdf (x , n , lambda/n) ;
35 subplot (2 ,3 ,3)
36 bar (x , P , w) ;
37 text (5 , 0.25 , ’ Bin (32 ,1/8) ’ ) ;
38 axis ( p l o t l ims ) ;
39
40 x = 0:15;
41 n = 64;
42 P = binopdf (x , n , lambda/n) ;
43 subplot (2 ,3 ,4)
44 bar (x , P , w) ;
45 text (5 , 0.25 , ’ Bin (64 ,1/16) ’ ) ;
46 axis ( p l o t l ims ) ;
47
48 x = 0:15;
49 n = 256;
50 P = binopdf (x , n , lambda/n) ;
51 subplot (2 ,3 ,5)
52 bar (x , P , w) ;
53 text (5 , 0.25 , ’ Bin (128 ,1/32) ’ ) ;
54 axis ( p l o t l ims ) ;
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55
56 x= 0:15;
57 P = poisspdf (x , lambda) ;
58 subplot (2 ,3 ,6) ;
59 bar (x , P , w) ;
60 text (5 , 0.25 , ’ Po isson (4) ’ ) ;
61 axis ( p l o t l ims ) ;
62
63
64 ## Crop the borders of the cur ren t f i gu r e and p r i n t landscape or i en ted PDF .
65 orient ( ’ landscape ’ ) ;
66 paper s i ze = get ( gcf , ’ paper s i ze ’ ) ;
67 #paper s i ze (2) = 0.75∗ paper s i ze (2) ; # I ma not sure i f t h i s works as i t should !
68 set ( gcf , ’ paper s i ze ’ , paper s i ze ) ;
69 border = −0.75;
70 set ( gcf , ’ paperpos i t i on ’ , [ border , 0 , paper s i ze (1)−2∗border , paper s i ze (2) ]) ;
71 print ( ’ po isson_binomia l . pdf ’ ) ;

www.uva.fi/∼tsottine/sp_with_octave/poisson_binomial.m

Exercises

In the exercises “calculate” has the 21st century meaning. I.e., you can calculate with pen
and paper, with pocket calculator, with Excel, or with Octave (recommended). So, in the
modern tongue “calculate” means “program”.

1.1 Exercise
Let X be Poisson distributed with parameter 1.5. Calculate

(a) �[X = 1.5]
(b) �[X = 0]

(c) �[X = 0 or X = 10]
(d) �[X < 1.5]

(e) �[X > 1.5] ,
(f) �[1< X ≤ 10]

1.2 Exercise
The probability generating function is named thus because the probabilities �[X = x]
of an � -valued random variable X can be recovered from the probability generating
function G(θ ) of X by differentiating:

�[X = x] =
1

x!
G(x)(0),(1.10)

where G(x)(0) is the x th derivative of the function G(θ ) evaluated at point θ = 0.
Prove the formula (1.10), and conclude from it that the probability generating func-

tion determines the distribution of an � -valued random variable uniquely.
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1.3 Exercise
Let G(θ ) be the moment generating function of and � -valued random variable X . Show
that

(a) 1= G(1)
(b) �[X ] = G�(1)

(c) �[X (X−1)] = G��(1)
(d) �ar[X ] = G��(1) + G�(1)− G�(1)2

1.4 Exercise
Consider Example 1.1.

(a) How many Malus particles, on average, would Magnus Flatus get daily if he would
drink only 1 liter per day?

(b) Suppose Magnus Flatus wants to get, on average, only 10 Malus particles per day.
How many liters can he drink from the Lake Diarrhea daily?

(c) Suppose Magnus Flatus wants to get, on average, only 30 Malus particles per year.
How many liters can he drink from the Lake Diarrhea daily?

1.5 Exercise
Show that the definition for the probability mass function of the Poisson distribution in
Definition 1.3 is correct, i.e., it is non-negative and sums up to one.

1.6 Exercise
Let X be Poisson distributed with parameter λ . Show that

(a) �[X ] = λ (b) �ar[X ] = λ .

1.7 Exercise
Show that the probability generating function of a Poisson distribution with parameter λ
is G(θ ) = eλ(θ−1) .

1.8 Exercise
Consider Magnus Flatus from Example 1.1.
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(a) How much can Magnus Flatus drink daily from the Lake Diarrhea so that his prob-
ability of daily overdose of 30 particles is still under 1 %?

(b) Magnus Flatus drinks 2 liters from the Lake Diarrhea for 40 years. What is the
probability that his daily intake of Malus particles will never exceed the lethal level
of 30 particles?

(c) How many liters of water from the Lake Diarrhea can Magnus Flatus drink daily
for 40 years so that the probability of a lethal daily intake is still less than 1 %?

1.9 Exercise
Let X1 , X2 and X3 be Poisson distributed with parameters 2.4, 5.2 and 10.0, respec-
tively. Calculate the probabilities

(a) �[X1+ X2 = 0]
(b) �[X1+ X2 = 1]
(c) �[X1+ X2+ X3 = 5]

(d) �[X1+ X2 ≤ 10]
(e) �[1≤ X1+ X2 ≤ 10]
(f) �[5< X1+ X2+ X3 ≤ 10]

1.10 Exercise
Let X1 , X2 and X3 be Poisson distributed with parameters 2.4, 5.2 and 10.0, respec-
tively. Calculate the conditional probabilities

(a) �[X1 = 0 |X1+ X2+ X3 = 1]
(b) �[X1 = 3 |X2+ X2+ X3 = 3]
(c) �[X3 = 1 |X1+ X2+ X3 = 2]

(d) �[X1 ≤ 1 |X1+ X2+ X3 = 1]
(e) �[2≤ X1 ≤ 3 |X2+ X2+ X3 = 3]
(f) �[X3 > 0 |X1+ X2+ X3 = 10]

1.11 Exercise
Let X1 be Poisson distributed with parameter 2 and let X2 be Poisson distributed with
parameter 5. Suppose X1+ X2 = 10. What is the probability that X1 > X2 ?

1.12 Exercise
Consider Magnus Flatus from Example 1.1. Magnus Flatus has sampled 10 liters from
the Lake Diarrhea. He analyzed the sample and found 50 Malus particles. Nevertheless,
Magnus Flatus bottles the 10 liter sample into 20 half-liter bottles and takes one of the
bottles with him when he goes hiking in the next weekend. What is the probability that
the bottle contains a lethal dose of Malus particles?
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1.13 Exercise �
Explain why Law of Small Numbers 1.9 is named thus and prove the law.


