NO-ARBITRAGE WITH NON-SEMIMARTINGALES

CONTINUOUS SIMPLE ARBITRAGE CASE

Tommi Sottinen

University of Vaasa, Finland

Ascona, May 23–27, 2011
Seventh Seminar on Stochastic Analysis, Random Fields and Applications
We discuss some recent notions and results connected to simple arbitrage with general continuous pricing models. The discussion is based on the following works (and other works):

Outline

1 Simple Arbitrage

2 Conditional Full Support

3 Delay-Simple Arbitrage
Outline

1. Simple Arbitrage

2. Conditional Full Support

3. Delay-Simple Arbitrage
$S = (S_t)_{t \in [0,T]}$ is a continuous \textbf{DISCOUNTED STOCK-PRICE PROCESS} on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, P)$.

Definition (\(\mathcal{T}\)-Simple Strategy)

A \textbf{\(\mathcal{T}\)-simple strategy} is a trading strategy where the number of stocks owned by the investor at time t is

$$\Phi_t = \varphi_0 \mathbf{1}_{\{0\}}(t) + \sum_{j=0}^{n-1} \varphi_j \mathbf{1}_{(\tau_j, \tau_{j+1}]}.$$

\(\varphi_j\) are \mathcal{F}_{τ_j}-measurable, $n \in \mathbb{N}$ is fixed, $\tau_0 \leq \tau_1 \leq \cdots \leq \tau_n$ are stopping times, satisfying some additional condition \mathcal{T} to be specified later. If there are no additional conditions, we omit the \mathcal{T}.

Simple Arbitrage

(0-Admissible) \mathcal{T}-Simple Arbitrage

The **wealth process** associated with strategy Φ with initial endowment v is

$$V_t(\Phi, v) = v + \sum_{j=0}^{n-1} \Phi_{\tau_{j+1}} (S_{t \wedge \tau_{j+1}} - S_{t \wedge \tau_j}).$$

Definition ((0-Admissible) \mathcal{T}-Simple Arbitrage)

A \mathcal{T}-Simple strategy is

- a **\mathcal{T}-Simple Arbitrage** if $V_T(\Phi, 0) \geq 0$ \mathbb{P}-a.s. and $\mathbb{P}[V_T(\Phi, 0) > 0] > 0$.
- **c-Admissible** if $V_t(\Phi, 0) \geq -c$ for all $t \in [0, T]$ \mathbb{P}-a.s.
Simple Arbitrage
Conditional Up’n’Down (CUD)

Definition (\mathcal{T}-CUD)

The stock-price S satisfies the **\mathcal{T}-conditional Up’n’Down Property (\mathcal{T}-CUD)**, if, \mathbf{P}-a.s.,

\[
\mathbf{P} \left[S_{\tau_{j+1}} - S_{\tau_j} > 0 | \mathcal{F}_{\tau_j} \right] > 0, \text{ and } \\
\mathbf{P} \left[S_{\tau_{j+1}} - S_{\tau_j} < 0 | \mathcal{F}_{\tau_j} \right] > 0,
\]

or $\mathbf{P}[S_{\tau_{j+1}} = S_{\tau_j} | \mathcal{F}_{\tau_j}] = 1$ for all $\tau_j \leq \tau_{j+1}$ satisfying \mathcal{T}.

Lemma (CUD Characterization of Simple Arbitrage)

The model S admits \mathcal{T}-simple arbitrage if and only if it does not satisfy \mathcal{T}-CUD.
Definition (No Obvious Arbitrage (NOA))

S satisfies **No Obvious Arbitrage (NOA)** if for all stopping times τ and $\varepsilon > 0$

$$P \left[\inf_{t \in [\tau, T]} X_t - X_\tau > -\varepsilon \right] > 0 \text{ and } P \left[\sup_{t \in [\tau, T]} X_t - X_\tau < \varepsilon \right] > 0$$

Remark

If NOA is violated, then there exists 0-admissible **Obvious Arbitrage** of the type $\Phi = \pm 1_{[\tau_1, \tau_2]}$.
Simple Arbitrage
Infinitesimal Up’n’Down (IUD)

Definition (Infinitesimal Up’n’Down (IUD))

Let τ be a stopping time. Let

$$\tau^\pm = \inf\{t \geq \tau; \pm S_t > \pm S_{\tau}\}.$$

S satisfies **Infinitesimal Up’n’Down (IUD)** if $\tau^+ = \tau^- \ P\text{-a.s.}$ for all stopping times.

Theorem (No Simple arbitrage, NOA and IUD)

1. S satisfies IUD iff S does not admit 0-admissible simple arbitrage.
2. S satisfies IUD and NOA iff S does not admit simple arbitrage.
Checking if a model satisfies NOA seems very difficult, since it involves stopping times. Ditto for IUD. There is the following though:

Theorem (Bender 2010)

Let $S = M + Y$, where M is a continuous martingale with bracket $\langle M \rangle$ and Y is $1/2$-Hölder continuous w.r.t. $\langle M \rangle$. Then S satisfies IUD.

Sketch of Proof.

By time-change, consider the Brownian case $M = W$, and use the strong Markov property together with the law of iterated logarithm.
Outline

1. **Simple Arbitrage**

2. **Conditional Full Support**

3. **Delay-Simple Arbitrage**
Definition (Conditional Full Support (CFS))

S satisfies **Conditional Full Support (CFS)** if, \mathbb{P}-a.s.,

$$\text{supp} \left(\text{Law} \left((S_u)_{u \in [t,T]} \mid \mathcal{F}_t \right) \right) = C^+_S([t,T])$$

Remark

- In CFS one can replace t by a stopping time τ!!
- There are host of theorems for checking CFS for given models.
- CFS implies NOA.
- **Unfortunately, CFS does not seem to imply IUD.**
Outline

1. Simple Arbitrage
2. Conditional Full Support
3. Delay-Simple Arbitrage
Since CFS does not (probably) imply IUD, we need to restrict the class of simple strategies. Here the condition \mathcal{T} comes into play.

Definition (Class $\mathcal{T}_{\text{delay}}$ of Stopping Times)

For any stopping time τ, let $C_{S_\tau}^+([\tau, T])$ be the random space of continuous positive paths $\omega = (\omega_t)_{t\in[\tau(\omega), T]}$ with $\omega_\tau(\omega) = S_\tau(\omega)(\omega)$ fixed.

A sequence of non-decreasing stopping times $\tau = (\tau_j)_{j=0}^n$ satisfies the **delay** property $\mathcal{T}_{\text{delay}}$ if for all τ_k there is an \mathcal{F}_{τ_j}-measurable open delay set $U_k \subset C_{S_{\tau_j}}^+([\tau_j, T])$ and an \mathcal{F}_{τ_j}-measurable a.s. positive random variable ε_k such that $\tau_{j+1} - \tau_j \geq \varepsilon_j$ in the set $U_j \cap \{\tau_{j+1} > \tau_j\}$.

Delay-Simple Arbitrage
Examples of Stopping Times with or without Delay

Example (Positive Example)

Let a^j, b^j be continuous functions with $a^j_{\tau_j} < 0 < b^j_{\tau_j}$ and let

$$\tau_{j+1} = \inf \left\{ t > \tau_j; S_t - S_{\tau_j} \leq a^j_t \text{ or } S_t - S_{\tau_j} \geq b^j_t \right\}.$$

Example (Negative Example)

Let $(\tau_1, \tau_2) = (0, \tau)$ with

$$\tau = \inf \left\{ t > 0; S_t = e^{W_t + t^a} = 1 \right\}$$

for some $a < 1/2$. By the law of iterated logarithm $\tau > 0$, but any open set in $C_1^+([0, T])$ contains sequences (ω^n) with $\tau(\omega^n) \to 0$.
Delay-Simple Arbitrage
Delay and Local Continuity

Definition (Local Continuity (LC))

Let \(\mathcal{X} \) and \(\mathcal{Y} \) be metric spaces. A function \(f : \mathcal{X} \to \mathcal{Y} \) is **Locally Continuous (LC)** if for all \(x \in \mathcal{X} \) there exists an open \(U_x \subset \mathcal{X} \) such that \(x \in \overline{U_x} \) and \(\lim f(x_n) = f(x) \) whenever \(\lim x_n = x \) in \(U_x \).

The function \(f \) is **Locally Lower-Semicontinuous (LLSC)**, if in the above, \(\lim \inf f(x_n) \geq f(x) \).

Remark

LC at \(x \) is continuity from the “direction” \(U_x \). However, LC is not directional continuity in the classical sense. If \(x \in U_x \) then LC is classical continuity.
Example

A functional \(\tau : C_0^+(0, T] \rightarrow [0, T] \) defined by

\[
\tau(\omega) = \min \{ t; \omega(t) = c \}
\]

is LC. Indeed, for \(\omega_0 \in C_0^+([0, T]) \), take

\[
U_{\omega_0} = \{ \omega; \omega(t) > \omega_0(t) \text{ for all } t \in [0, T] \}.
\]

Lemma (Local Lower Semicontinuity and Delay)

If a stopping time \(\tau \) is LLSC, then it has the delay property.
Theorem

CFS implies no delay-simple arbitrage.

Proof.

We need to show that the $\mathcal{T}_{\text{delay}}$-CUD is satisfied. We may assume $\tau_{j+1} > \tau_j$. We show that $\mathbb{P}[S_{\tau_{j+1}} > S_{\tau_j}|\mathcal{F}_{\tau_j}] > 0$ a.s.; the proof for $\mathbb{P}[S_{\tau_{j+1}} < S_{\tau_j}|\mathcal{F}_{\tau_j}] > 0$ a.s. follows analogously.

By the CFS it is enough to show that $\{S_{\tau_{j+1}} > S_{\tau_j}\} \subset C_{S_{\tau_j}}^+([\tau_j, T])$ contains an open set. Let U_j be an ε_j-delay set for τ_j.

We first assume that U_j contains a strictly increasing paths ω^0 on $[\tau_j, T]$. Denote by $B_{\omega^0}(\eta_j)$ the open η_j-ball around ω^0. Choosing η_j sufficiently small we have $B_{\omega^0}(\eta_j) \subset U_j$ and $\omega^0_{\tau_j + \varepsilon_j} > \omega^0_{\tau_j} + \eta_j$.
Hence,

\[\omega_{\tau_{j+1}}(\omega) - S_{\tau_j} > \omega^0_{\tau_{j+1}}(\omega) - \eta_j - S_{\tau_j} \]
\[\geq \omega^0_{\tau_j + \epsilon_j} - S_{\tau_j} - \eta_j \]
\[= \omega^0_{\tau_j + \epsilon_j} - \omega^0_{\tau_j} - \eta_j \]
\[> 0, \]

So, \(B_{\omega^0}(\eta_j) \subset \{ S_{\tau_{j+1}} > S_{\tau_j} \} \), and the claim follows, if \(U_j \) contains a strictly increasing paths.

If \(U_j \) does not contain a strictly increasing path, we proceed as follows:
Proof, cont., cont.

Being an open set in $C_{S_{\tau_j}}^+ ([\tau_j, T])$, U_j contains paths that are strictly increasing on a small enough interval $[\tau_j, \tau_j + 2\eta_j]$.

Hence, there is a strictly increasing path ω^0 and an open ball B_j around ω^0 in $C_{S_{\tau_j}}^+ ([\tau_j, T])$ such that any $\omega \in B_j$ coincides with some path $\bar{\omega} \in U_j$ on the segment $[\tau_j, \tau_j + \eta_j]$.

Hence, $\tau_{j+1}(\omega) - \tau_j \geq (\tau_{j+1}(\bar{\omega}) - \tau_j) \wedge \eta_j \geq \epsilon_j \wedge \eta_j =: \epsilon^0_j$ for every $\omega \in B_j$.

Therefore B_j is an ϵ^0_j-delay set which contains a strictly increasing path and so the first case applies. \square