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Eugene Dynkin
11 May 1924, Leningrad, USSR — 11 November 2014, Ithaca, USA

Yevgenij “Eugene” Borisovich
Dynkin was a Soviet–American
mathematician. He was a rare
example of a mathematician who
made fundamental contributions to
two very distinct areas: algebra and
probability theory.

Dynkin was one of the founders of the
modern theory of Markov processes.

The Dynkin diagram, the Dynkin
system, and Dynkin’s formula are
named for him.

The Dynkin’s formula builds a bridge
between differential equations and
Markov processes. Eugene Dynkin (1924–2014)
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The ODE to be solved

Consider the 2nd order ordinary differential equation (ODE)

µ(x)u′(x) +
1

2
σ2(x)u′′(x) = 0, x ∈ (a, b) ⊂ R,

with boundary conditions u(a) and u(b), and parameter functions
µ(x) and 1

2σ
2(x), given; u(x) is the function to be solved.

The probabilistic approach we use solve the ODE will not only give
a way to simulate the solution, but also provides a physical
interpretation of the ODE.

Actually, the probabilistic method will easily extend to partial
differential equations (PDE’s) of even more general nature.
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Markov processes
The Chapman–Kolmogorov way: Transition measures

The Markov property of a stochastic process X = (Xt)t≥0

states that “the past is independent of the future, given the
present”.

Thus, a time-homogeneous Markov process is characterized by
its transition probabilities

pt(x ,dy) = Px [Xt ∈ dy ] = P[Xt ∈ dy |X0 = x ],

and by the Chapman–Kolmogorov equations

pt+s(x ,dy) =

∫
ξ∈R

pt(x ,dξ)ps(ξ,dy).
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Markov processes
The Dynkin way: Transition semigroups

Instead of transition probabilities, consider the transition
semigroup

Pt f (x) = Ex [f (Xt)] = E[f (Xt) |X0 = x ].

Then the Chapman–Kolmogorov equations translate into
the semigroup property

Pt+s = PtPs

Then, the semigroup Pt has a generator A, such that

Pt = et A.

Of course, here

Af (x) = P ′0+f (x) = lim
t→0+

Pt f (x)− P0f (x)

t
.
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Martingales
Definitions

A martingale is a stochastic process M = (Mt)t≥0, where “the
best prediction for the future is the present”:

E[Mt+s |Mu, u ≤ t] = EMt [Mt+s ] = Mt .

Another characterization of martingales is via stopping times.

An X -stopping time is a random time τ such that observing the
stochastic process X on the time interval upto time t, you know
whether τ ≤ t, or not.

A stochastic process M is a martingale if and only if

E[Mτ ] = M0

for all M-stopping times τ .
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Martingales
Quadratic variation

Martingales (we assume that all our stochastic processes are
continuous) have very erratic paths. Indeed the paths are typically
nowhere differentiable.

It is a deep result in martingale theory, that martingales M admit
quadratic variation:

〈M〉t = lim
n→∞

∑
tk∈Πn[0,t]

(
Xtk − Xtk−1

)2
.

The existence of (non-trivial) quadratic variation makes stochastic
calculus different from classical calculus.

We will use the informal, but suggestive notation

(dM)2 = d〈M〉 .
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Brownian motion

The Brownian motion (or Wiener process) W is the most
important stochastic process in all science.

The Brownian motion can be characterized as the unique Markov
process with generator

Af (x) =
1

2
f ′′(x).

=⇒

Gaussian:

pt(x ,dy) =
1√
2π

e−
1
2

(x−y)2

t dy .

stationary, independent increments; martingale

(dW )2 = dt.
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Stochastic differential equations (SDE’s)
Stochastic integral

Let M be a martingale and let F be a process such that Ft is
observable from Ms , s ≤ t. The stochastic integral

Yt =

∫ t

0
Fs dMs

is defined by linearly extending and closing in L2(R+ × Ω) the
relation ∫ t2

t1

Ft1 dMs = Ft1 (Mt2 −Mt1) .

Y is a martingale with

(dY )2 = F 2 (dM)2.
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Stochastic differential equations (SDE’s)
Ito diffusions

An Ito diffusion is the solution of the SDE

dX = µ(X ) dt + σ(X ) dW .

The solution can be simulated easily by using the
Euler–Maruyama method.

X is a semi-martingale (a martingale + differentiable drift) with

(dX )2 = σ2(X )dt.

X is a Markov process with generator

Lf (x) = µ(x)f ′(x) +
1

2
σ2(x)f ′′(x).

Conversely, a Markov process with generator L is the Ito diffusion
X .
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Ito’s formula
Or Change-of-Variables

Theorem (Ito’s formula)

Let g ∈ C 2 and let X be a semi-martingale. Then

dg(X ) = g ′(X )dX +
1

2
g ′′(X )(dX )2.

Proof: Use the Taylor’s formula

g(Xtk )− g(Xtk−1
) = g ′(Xtk−1

)(Xtk − Xtk−1
)

+
1

2
g ′′(Xtk−1

)(Xtk − Xtk−1
)2

+ε(g ′′)(Xtk − Xtk−1
)2.

�
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Examples of Ito Diffusions
Geometric Brownian motion

The geometric Brownian motion is the solution of the
geometric SDE

dX

X
= µdt + σ dW .

By Ito’s formula the solution is

X = X0eµt+σW− 1
2
σ2t .

The geometric Brownian motion is important in finance; financial
assets, e.g. stocks, are modeled by using it.
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Examples of Ito Diffusions
Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck process is the solution to the
linear SDE

dX = θ(µ− X ) dt + σ dW

By Ito’s formula the solution is

X = X0e−θt + µ(1− e−θt) + σe−θt
∫ t

0
eθs dW .

The Ornstein–Uhlenbeck process is important in particle Physics; it
describes the velocity of a particle under friction. Also, it describes
the position of a string under thermal fluctuations.

It is also important in finance; FX rates, e.g. EUR/CNY, are
modeled by using it.
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Dynkin’s formula

Theorem (Dynkin’s formula)

Let f ∈ C 2. Let X be Ito diffusion with generator

Lf (x) = µ(x)f ′(x) +
1

2
σ2(x)f ′′(x).

Then the process
df (X )− Lf (X )dt

is a martingale.

Proof: Use the Ito’s formula. �.
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Probabilistic solution to the ODE to be solved
Solution as expectation at exit time

Recall, we want to solve

µ(x)u′(x) +
1

2
σ2(x)u′′(x) = 0, x ∈ (a, b) ⊂ R,

which boundary values u(a) and u(b) given.

Let X be the Ito diffusion

dX = µ(X ) dt + σ(X ) dW .

It follows from the Dynkin’s formula that

u(x) = Ex [u(Xτ )],

where τ is the first exit time of X from the interval (a, b).
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Probabilistic solution to the ODE to be solved
Simulation algorithm

Simulate N independent trajectories X n, n = 1, . . . ,N, of the Ito
diffusion (by using the Euler–Maruyama method) starting from
point x . Let τn be the time the trajectory X n leaves the domain
(a, b).

Then approximative solution to the ODE is

ûN(x) =
1

N

N∑
n=1

u(X n
τn).
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The full glory of Dynkin’s formula
Dirichlet problem with a 2nd order PDE

Consider the 2nd order PDE operator

Af (x) =
1

2

n∑
i ,j=1

σ
(2)
ij (x)

∂2

∂xi∂xj
f (x) +

n∑
i=1

µi (x)
∂

∂xi
f (x) + w(x)f (x).

Here σ(2)(x) is the square of some σ(x):

σ
(2)
ij (x) =

n∑
k=1

σik(x)σkj(x).

Let D ⊂ Rd be a domain. Consider the PDE boundary value
problem {

Au(x) = 0, x ∈ D,
u(y) = f (y), y ∈ ∂D (given).
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The full glory of Dynkin’s formula
Probabilistic solution with physical interpretation

Let X be the d-dimensional Ito diffusion moving in D according to
the dynamics

dX = µ(X)dt + σ(X) dW.

Let τ be the exit time of X from D. Then the solution is

u(x) = Ex
[
e
∫ τ

0 w(X)dt f (Xτ )
]
.

Physical interpretation: Consider a particle system in a
stationary state. Small particles (think of molecules and heat) X
move randomly in D. They gain/lose weight with rate w(x),
have drift µ(x), and volatility σ(x); f (y) is the observed total
weight of the particles that exit at y ∈ ∂D; u(x) is the number of
particles that originate from x.

Thank you for listening! Any questions?
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