Representing Gaussian Processes via Brownian Motion

with Applications to Stochastic Analysis

Tommi Sottinen
University of Vaasa, Vaasa, Finland
www.uva.fi/~tsottine/

South Central University, Changsha, PRC October 30, 2015
Motto: Gaussian processes are difficult, Brownian motion is easy. We show that “almost all” Gaussian processes admit a Fredholm representation with respect to a Brownian motion.

Moral: Analysis is easier, if you model directly via the Fredholm representation, and you lose “almost no” generality.

We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. In particular, we prove an Itô formula that is, as far as we know, the most general Skorohod-type Itô formula for Gaussian processes so far.

Finally, we give applications to equivalence in law and series expansions of Gaussian processes.
Outline

1. Gaussian Processes
2. Fredholm Representation
3. Malliavin Calculus and Skorohod Integrals
4. Transfer Principle
5. Applications
6. References
1. Gaussian Processes

2. Fredholm Representation

3. Malliavin Calculus and Skorohod Integrals

4. Transfer Principle

5. Applications

6. References
Gaussian Processes
The Very Basics

- $X = (X_t)_{t \in [0, T]}$ is Gaussian if all its finite-dimensional projections $(X_{t_1}, \ldots, X_{t_n})$ are multivariate Gaussian.
- There is a correspondence between symmetric positive semidefinite functions R and centered Gaussian processes.

\[\Rightarrow \text{Knowing } X \text{ is knowing } R \text{ and knowing } R \text{ is knowing } X. \]

- Some classes of forms of $R(t, s)$:
 1. $f(t \wedge s)$ martingales
 2. $\rho(|t - s|)$ stationary processes
 3. $\nu(t) + \nu(s) - \nu(|t - s|)$ stationary-increment processes
 4. $R(s, u) = R(s, t)R(t, u)/R(t, t)$, $s < t < u$, Markov processes
 5. $R(at, as) = a^{2H}R(t, s)$, $a > 0$, H-selfsimilar processes

- The Brownian motion has $R(t, s) = t \wedge s$.

\[\Rightarrow (1), (3), (4), (5) \text{ and } (6) \text{ (with } H = \frac{1}{2} \text{) above hold.} \]

\[\Rightarrow \]
1 Gaussian Processes

2 Fredholm Representation

3 Malliavin Calculus and Skorohod Integrals

4 Transfer Principle

5 Applications

6 References
FREDHOLM REPRESENTATION
The Theorem

Theorem (Fredholm Representation)

Let $X = (X_t)_{t \in [0, T]}$ be a separable centered Gaussian process. Then there exists a kernel $K_T \in L^2([0, T]^2)$ and a Brownian motion $W = (W_t)_{t \geq 0}$, such that

$$X_t = \int_0^T K_T(t, s) \, dW_s$$

if and only if the covariance R of X satisfies the trace condition

$$\int_0^T R(t, t) \, dt < \infty.$$
Fredholm Representation
Some General Remarks

- The Fredholm Kernel K_T usually depends on T even if R does not.
- K_T may be assumed to be symmetric.
- K_T is unique in the sense that if there is another representation with kernel \tilde{K}_T, then $\tilde{K}_T = UK_T$ for some unitary operator U on $L^2([0, T])$. (And some other Brownian motion \tilde{W}.)
- The Fredholm Representation Theorem holds also for the parameter space \mathbb{R}_+, but the trace condition seldom holds, i.e. typically

$$\int_0^\infty R(t, t) \, dt = \infty.$$

- If the covariance R is degenerate, one needs to extend the probability space to carry the Brownian motion.
Fredholm Representation
Some Square-Root Remarks

- K_T (operator) can be constructed from R_T (operator) as the unique positive symmetric square-root, i.e. the operator K_T is a limit of polynomials:

$$K_T = \lim_{n \to \infty} P_n(R_T).$$

- The positive symmetric square-root is different from the Cholesky square-root. Indeed, the Cholesky square-root would correspond the Volterra Representation theorem

$$X_t = \int_0^t K_T(t, s) \, ds.$$

The Volterra representation does not hold for Gaussian processes in general.
Consider a truncated series expansion

\[X^n_t = \sum_{k=1}^{n} \int_0^t e_k^T(s) \, ds \cdot \xi_k, \]

where \((\xi_k)\) is i.i.d. \(\sim N(0, 1)\) sequence, and \((e_k^T)\) is an orthonormal basis in \(L^2([0, T])\).

\(X^n\) is not purely non-deterministic \((F_{0+}^{X^n} \text{ is not trivial})\) \(\implies X\) cannot have Volterra representation.

On the other hand, by choosing \((e_k^T)\) to be the trigonometric basis on \(L^2([0, T])\), \(X^n\) is a finite-rank approximation of the Karhunen–Loève representation of standard Brownian motion on \([0, T]\).

\(\implies \text{ as } n \to \infty, X^n \to W\) (a Volterra process, obviously).
Fredholm Representation
Example II (Brownian Bridge)

Let B be the Brownian bridge, i.e., formally $B_t = W_t | \{ W_T = 0 \}$. The orthogonal representation of B is

$$B_t = W_t - \frac{t}{T} W_T.$$

\implies B has a Fredholm representation with kernel

$$K_T(t, s) = 1_{[0, t)}(s) - \frac{t}{T}.$$

The canonical representation of the Brownian bridge is

$$B_t = (T - t) \int_0^t \frac{1}{T - s} \, dW_s.$$

\implies B has also a Volterra representation with kernel

$$K_T(t, s) = \frac{T - t}{T - s}.$$
Fredholm Representation
The Proof

The Mercer’s theorem (a.k.a. the eigenvalue decomposition) \(\implies \)

\[
R(t,s) = \sum_{i=1}^{\infty} \lambda_i T e_i^T(t)e_i^T(s),
\]

where \((\lambda_i T)\) and \((e_i^T)\) are the eigenvalues and the eigenfunctions of the covariance operator

\[
R_T f(t) = \int_0^T f(s)R(t,s)\,ds,
\]

and \((e_i^T)\) is an orthonormal basis on \(L^2([0, T])\).

\(R_T\) is a covariance operator \(\implies\) \(R_T\) admits a square-root operator \(K_T\). The trace condition \(\implies\) \(R_T\) is trace-class \(\implies\) \(K_T\) is Hilbert–Schmidt.

\(\implies\) \(K_T\) admits a Kernel.
Indeed,

\[K_T(t, s) = \sum_{i=1}^{\infty} \sqrt{\lambda_i} e_i^T(t)e_i^T(s). \]

Now \(K_T \) is obviously symmetric and we have (by simple calculations)

\[R(t, s) = \int_0^T K_T(t, u)K_T(s, u) \, du. \]

\[\Rightarrow \] the Fredholm Representation follows (in law), and \(\omega \)-by-\(\omega \) by enlarging the probability space, if needed (details omitted, just trust me).
The **Wiener integral** of a function f w.r.t. X, denoted by $\int_0^T f(t) \, dX_t$, extends linearly the relation

$$X_t - X_s = \int_0^T 1_{[s,t)}(u) \, dW_u,$$

closed under a suitable norm.

The **Malliavin derivative** of the random variable $\int_0^T f(t) \, dX_t$ is the process

$$D_s \int_0^T f(t) \, dX_t = f(s), \quad s \in [0, T].$$

Extend this under a suitable norm and obey the chain rule.

The **Skorohod integral** is the adjoint of the Malliavin derivative. It extends both the Wiener and the Itô integrals.
The adjoint operator Γ^* of a kernel $\Gamma \in L^2([0, T]^2)$ is defined by linearly extending the relation

$$\Gamma^* 1_{[0,t]} = \Gamma(t, \cdot).$$

This is not the same adjoint as in the Malliavin–Skorohod case before.

Remark

If $\Gamma(\cdot, s)$ is of bounded variation for all s and f is nice enough, then

$$\Gamma^* f(s) = \int_0^T f(t) \Gamma(dt, s).$$
Theorem (Transfer Principle)

Let X be a Gaussian Fredholm process with kernel K_T. Let D_T, δ_T, D^W_T and δ^W_T be the Malliavin derivative and the Skorohod integral with respect to X and to the Brownian motion W. Then

$$\delta_T = \delta^W_T K^*_T$$

and

$$K^*_T D_T = D^W_T.$$

Proof: Trivial.
Theorem (Itô Formula)

Let X be centered Gaussian process with covariance R and let $f \in C^2$. Then

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) \delta_t X_s + \frac{1}{2} \int_0^t f''(X_s) \, dR(s, s),$$

if anything.

Proof: Either trivial, straightforward or extremely technical, depending on the generality required.
Recall the Hitsuda Representation Theorem: A centered Gaussian process \tilde{W} is equivalent to a Brownian motion W if and only if there exists a Volterra kernel $\ell \in L^2([0, T]^2)$ such that

$$d\tilde{W}_t = dW_t + \int_0^t \ell(t, s) dW_s \cdot dt.$$

Now, let \tilde{X} and X be Gaussian Fredholm processes with

$$\tilde{X}_t = \int_0^T \tilde{K}_T(t, s) dW_s,$$

$$X_t = \int_0^T K_T(t, s) dW_s.$$
Suppose then that \tilde{X} has (also) representation

$$\tilde{X}_t = \int_0^T K_T(t, s) \, d\tilde{W}_s$$

where \tilde{W} and W are equivalent.

Then, obviously \tilde{X} and X are equivalent. By plugging in the Hitsuda connection we obtain

$$\tilde{X}_t = \int_0^T \left[K_T(t, s) + \int_s^T K_T(t, u) \ell(u, s) \, du \right] \, dW_s.$$

Thus, we have shown the following:
Theorem (Equivalence of Laws)

Let X and \tilde{X} be two Gaussian process with Fredholm kernels K_T and \tilde{K}_T, respectively. If there exists a Volterra kernel $\ell \in L^2([0, T]^2)$ such that

$$\tilde{K}_T(t, s) = K_T(t, s) + \int_s^T K_T(t, u)\ell(u, s) \, du,$$

then X and \tilde{X} are equivalent in law.

If the kernel K_T satisfies an appropriate non-degeneracy property, then the condition above is also necessary.
In the same way, as in the case of equivalence of laws, we see that:

Theorem (Series representation)

Let X be a Gaussian Fredholm process with kernel K_T and let (φ^T_k) be any orthonormal basis in $L^2([0, T])$. Then

$$X_t = \sum_{k=1}^{\infty} \int_{0}^{T} K_T(t, s) \varphi^T_k(s) \, ds \cdot \xi_k,$$

where (ξ_k) is i.i.d. sequence of standard Gaussian random variables.

The series above converges in $L^2(\Omega)$; and also almost surely uniformly if and only if X is continuous.
1 Gaussian Processes
2 Fredholm Representation
3 Malliavin Calculus and Skorohod Integrals
4 Transfer Principle
5 Applications
6 References

Thank you for listening!

Any questions?