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ABSTRACT

We study the Langevin equation with stationary-increment
Gaussian noise. We show the strong consistency and the
asymptotic normality with Berry—Esseen bound of the so-called
alternative estimator (AE) of the mean reversion parameter. The
conditions and results are stated in terms of the variance function
of the noise. We consider both the case of continuous and discrete
observations.

As examples we consider fractional and bifractional
Ornstein—Uhlenbeck processes.

We discuss the maximum likelihood and the least squares
estimators.

This is joint work with Lauri Viitasaari (Aalto University, Finland).
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LANGEVIN EQUATION

GENERAL SETTING

We consider statistical parameter estimation for the unknown
parameter 6 > 0 in the (generalized) LANGEVIN EQUATION

auvc = —ou¥tdt+dG, t>0,
0
Ut = ¢
The solution of the Langevin equation above is
t
o — 69t€+/ 09 4G,
0
which can be seen by using the integration by parts.

NOTHING WAS ASSUMED HERE, EXCEPT THE FINITENESS OF G!

6/32



LANGEVIN EQUATION

GENERAL SETTING

Our estimation will be based on the solution that starts from zero.
We denote X? = U990,

For the existence of the STATIONARY SOLUTION, G must have
STATIONARY INCREMENTS. By extending G to the negative
half-line with an independent copy, the stationary solution is

t
u? :/ e =) 4G, t>0.

In other words, the stationary solution is U? = U?&stat | with

0
fstatz/ e 9 dG;.

In particular, the stationary solution exists if and only if the
integral above converges (almost surely), and in this case

0 _ 1,0 —0t 0
Xt—Ut—e Uo.
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LANGEVIN EQUATION

(GAUSSIAN STATIONARY-INCREMENT SETTING

Assume that the noise G is CENTERED (GAUSSIAN PROCESS WITH
STATIONARY INCREMENTS. Denote

v(t) = E[G3] and ry(t) = E[USUY].

Then

0
re(t) = 0/ eg(t,s)ds
2 91‘/ / 5+u) S U)deU,

g(t,5) = 5 [v(t) + ()~ v(t —9)]

is the covariance of G.

where
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LANGEVIN EQUATION

ASSUMPTIONS ON THE NOISE

The following assumption ensures the EXISTENCE of the AE

AssumpTION (E)

The variance function v is strictly increasing.

The following assumption ensures the strong CONSISTENCY of the
AE

AssumpPTION (C)

1 T
T@w?/o Ira(8)] dt = .
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LANGEVIN EQUATION

ASSUMPTIONS ON THE NOISE

Denote

2 T,T
wo(T) = 7'2// ro(t — )2 dsdt,

fO |I’9 |dt

Ry(T) TVwn(T)

m wy is the asymptiotic variance.
m Ry is the Berry—Esseen bound.

For the asymptotic NORMALITY of the AE, we assume

ASSUMPTION (N)
lim Ry(T)=0.
TI 9( ) 0
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ALTERNATIVE ESTIMATOR

CONSTRUCTION OF THE ESTIMATOR

If (E) holds, then 6 +— ry(0) is invertible, and we can define:

DEFINITION (ALTERNATIVE ESTIMATOR)

The alternative estimator (AE) is

where

v =) =5 [ v

is the variance of the stationary solution.
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ALTERNATIVE ESTIMATOR

STRONG CONSISTENCY

If, in addition to (E), (C) holds, then UY is ergodic, and we obtain:

THEOREM (STRONG CONSISTENCY)
Suppose (E) and (C) hold. Then 81 — 6 almost surely.

REMARK

Theorem (Strong Consistency) hold also without Gaussianity, if
Assumption (C) is replaced by a suitable assumption ensuring the
ergodicity of the stationary solution U?.
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ALTERNATIVE ESTIMATOR

ASYMPTOTIC NORMALITY

If (E), (C) and (N) hold, then we can invoke the FOUrTH
MoMENT THEOREM, and we obtain

THEOREM (ASYMPTOTIC NORMALITY)
Suppose (E) and (C) hold. Then for all K > 0,

sup
Ix|<K

< Co.kRo(T).

[0 (5
p [WH(T) (eT _ 9) < x] —o(x)

In particular, if (N) holds, then

[W'(0) (5
Wioreo (eT - 9) 4 N(0,1).
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ALTERNATIVE ESTIMATOR

ASYMPTOTIC NORMALITY

COROLLARY (CLASSICAL RATE)

Suppose (E) holds. Assume [ ry(t)?dt < co. Then 07 is
asymptotically normal with rate ﬁ .

COROLLARY (MIXED MODELS)

Let G''s be independent, each satisfying (E) and (C), with
rg,i > 0. Then, for the mixed model

YO (5 g\ <] o
xeF—UIE,K] P[ Fe(T) («9T Q)S ] d(x)

-
fB
< C()K max fo i

- R \/fofo rg,(t—szdsdt
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ALTERNATIVE ESTIMATOR

DISCRETE OBSERVATIONS

In practice continuous observations are rarely available. Therefore,
it is important to consider the case of discrete observations. To
control the error introduced by the unobserved time-points, we
assume that the driving noise G is HOLDER CONTINUOUS with
some index H € (0,1). The general idea is, that the smaller the H
the more care must be taken in choosing the time-mesh of the
observations. The following assumption is necessary and sufficient
for the Holder continuity.

AssumpPTION (H)
Let H € (0,1). For all € > 0 there exists a constant C. such that

v(t) < C t2H—=.

16 /32



ALTERNATIVE ESTIMATOR

DISCRETE OBSERVATIONS

Let t, = kApn, k=0,...,N. Denote Ty = NAp and assume that
Apn — 0 with Ty — oo. The AE based on the discrete
observations is

N

Oy =29" <;N Z(XﬁAN)%N) .

k=1

AssumpPTION (M)

Assume that

NAR, — 0,
where )
2H + 5
— B(H) = 2 _ 5
B=BH) = 3

for some § > 0.
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ALTERNATIVE ESTIMATOR

DISCRETE OBSERVATIONS

THEOREM (DISCRETE OBSERVATIONS)
Suppose (E), (C), (H) and (M) hold. Then,

éN — 6 a.s.

Moreover, if (N) holds, then

WL (5,—6) 4 M (0,1).

M@(?ﬁv)

REMARK (BOUNDS FOR DISCRETE ASYMPTOTIC NORMALITY)

Berry—Esseen type upper bounds for the asymptotic normality are
possible, but complicated.
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EXAMPLES

FRACTIONAL ORNSTEIN-UHLENBECK PROCESS OF THE FIRST KIND

The FRACTIONAL BROWNIAN MOTION B with Hurst index
H € (0,1) is the stationary-increment Gaussian process with
variance function

vi(t) = 21,
The Hurst index H is both the index of SELF-SIMILARITY and the
HOLDER CONTINUITY.

The FRACTIONAL ORNSTEIN-UHLENBECK PROCESS (OF THE
FIRST KIND) is the stationary solution to the Langevin equation

aui® = —gut®ar+aBf, t>o.
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EXAMPLES

FRACTIONAL ORNSTEIN-UHLENBECK PROCESS OF THE FIRST KIND

We have
H(2H —1
molt) ~ DD 2
HI(2H
Yu(0) = 0(2H)

Consequently, (E), (C) and (H) are satisfied for all H, and (N) is
satisfied for H < 3/4.

For H < 3/4,
/ ruo(t)?dt = 072Ha?2,
0

where we have denoted
o
o3 = / ra(t)? dt.
0
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EXAMPLES

FRACTIONAL ORNSTEIN-UHLENBECK PROCESS OF THE FIRST KIND

PROPOSITION (FRACTIONAL ORNSTEIN-UHLENBECK PROCESS

OF THE FIRST KIND)

Let H € (0,1/2]. Then
i 5 G
supel—k k1 |P [ /7 (0’; - 9) < x] - ¢(x)} < Sk
Let H € (1/2,3/4). Then

SUPye[—k,k] | P _\/% (5’# - 9) < x] - ¢(X)’

Let H=3/4. Then

SUPxe—k,k] |P R /W (53}/4 — 9) < x} = (D(X)’ <

C3/4,0,K

Vieg T *

IN
Q)
I
>
X

22 /32



EXAMPLES

FRACTIONAL ORNSTEIN-UHLENBECK PROCESS OF THE SECOND KIND

The FRACTIONAL ORNSTEIN-UHLENBECK PROCESS OF THE
SECOND KIND is the stationary solution of the Langevin equation

with the noise .
H — H
G/ :/O eSB! .

The idea of the construction above is to use the SELF-SIMILARITY
of the fractional Brownian motion and the associated LAMPERTI
TRANSFORM (a.k.a. Doob transform).

For Brownian motion the Ornstein—Uhlenbeck processes of the first
and second kind are the same. In general they are different.
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EXAMPLES

FRACTIONAL ORNSTEIN-UHLENBECK PROCESS OF THE SECOND KIND

The autocovariance ry ¢ of the fractional Ornstein—-Uhlenbeck
process of the second kind has EXPONENTIAL DECAY. Therefore,
we have the following:

PROPOSITION (FRACTIONAL ORNSTEIN-UHLENBECK PROCESS
OF THE SECOND KIND)
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EXAMPLES

BIFRACTIONAL ORNSTEIN—UHLENBECK PROCESS OF THE SECOND KIND

The BIFRACTIONAL BROWNIAN MOTION BK with parameters
H € (0,1) and K € (0, 1] is the Gaussian process with covariance

HKpHK] 1 [ on | 2H\K 2HK
E[Bt B! } - % [(t 4 s2HYK g g2HK]
It does not have stationary increments, except for K = 1.
Consequently, there is no way to define the bifractional
Ornstein—Uhlenbeck process of the first kind that would have a
stationary version.

The bifractional Brownian motion is HK-self-similar. Consequently,
we can define the BIFRACTIONAL ORNSTEIN—UHLENBECK
PROCESS by replacing BK with BMK in the case for fractional
Ornstein—Uhlenbeck process of the second kind.

25 /32



EXAMPLES

BIFRACTIONAL ORNSTEIN—UHLENBECK PROCESS OF THE SECOND KIND

The autocovariance ry k ¢ of the bifractional Ornstein-Uhlenbeck
process of the second kind has exponential decay. Therefore:

PROPOSITION (THE BIFRACTIONAL ORNSTEIN—UHLENBECK

PROCESSES OF THE SECOND KIND)

v T “H.K.0 CHkoL
su P|l—— (07" —0) <x| —d(x)| < LTl
xe[—IZ,L] oH,k.0(0) ( T ) = (x)| < T
where

0%k o(6) = /0 o o(£)2 dt.

26 /32



LANGEVIN EQUATION

ALTERNATIVE ESTIMATOR

EXAMPLES

Di1scussioN ON OTHER ESTIMATORS

27 /32



Di1scuUsSION ON OTHER ESTIMATORS

LEAST SQUARES ESTIMATOR (LSE)

One the one hand, the LSE
Jo XEox?
Jo (X¢)2dt

arises heuristically by minimizing

;
/ IX? + X712 dt.
0

by —

On the other hand, one would hope that

T T T
/ xfaxf:—e/ (xf)2dt+/ X! 656G,
0 0 0
This would lead to the LSE
~ J x¢ 56,
Or =0 =Lt~
Jo (X)2dt
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Di1scuUsSION ON OTHER ESTIMATORS

LEAST SQUARES ESTIMATOR (LSE)

Unfortunately, the Skorohod integral is not (bi)linear. In particular,
the equation for it in the previous slide does not hold.
Consequently, 81 and 01 not the same.

57 has been shown to be consistent for someiractional
Ornstein—Uhlenbeck processes. However, the 61 depends on 6, the
parameter we want to estimate! HAT is even worse: it will fail under
rather general assumptions:

PROPOSITION (61 FAILURE)

Assume that U% is ergodic. If (X%)?/T — 0 in L}(Q) and almost
surely, then
0 -0 a.s.
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Di1scuUsSION ON OTHER ESTIMATORS

MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

Assume the following (Inverse) Volterra representation: There
exists a Gaussian martingale M with bracket (M) and a kernel
ke L2 (R2,d(M) x d(M)) such that

loc

t
G = /k(t,s)dMs,
0

t
Mt = / k*(t,S)th
0
The authors have very little idea, when such representations exist!

Moreover, assume the existence of

t
Mé = /k*(t,s)dxf,
0

d t

—0 * 0

= = k*(t,s) X ds.
‘ d<M>t/0 (’S) ° °
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Di1scuUsSION ON OTHER ESTIMATORS

MAXIMUM LIKELIHOOD ESTIMATOR (MLE)

ProposiTiION (MLE)

Assume that =% € [2(Q x [0, T],dP x d(M)). Then the MLE
based on the observations X{, t € [0, T], is

T —
I = — fo :? the
T
Jo (E8)?d(M):
Moreover, /ffo =92 d(M); — oo almost surely, then the MLE is

strongly cons:stent
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Thank you for listening!
Any questions?
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