
Parameter Estimation for the
Langevin Equation with

Stationary-Increment Gaussian Noise

Tommi Sottinen
University of Vaasa, Finland

65th ISI World Statistics Congress, The Hague, the
Netherlands, 05 October 2025 - 09 October 2025

1 / 32



References

Hu, Y. and Nualart, D. (2010)
Parameter estimation for fractional Ornstein-Uhlenbeck
processes.
Statist. Probab. Lett., 80, pp. 1030–1038.

Peccati, G. and Taqqu, M.S. (2011)
Wiener chaos: moments, cumulants and diagrams.
Bocconi University Press, Milan.

Sottinen, T. and Viitasaari, L. (2018)
Parameter Estimation for the Langevin Equation with
Stationary-Increment Gaussian Noise.
Statistical Inference for Stochastic Processes 21 (3), 569–601.

2 / 32



Abstract

We study the Langevin equation with stationary-increment
Gaussian noise. We show the strong consistency and the
asymptotic normality with Berry–Esseen bound of the so-called
alternative estimator (AE) of the mean reversion parameter. The
conditions and results are stated in terms of the variance function
of the noise. We consider both the case of continuous and discrete
observations.

As examples we consider fractional and bifractional
Ornstein–Uhlenbeck processes.

We discuss the maximum likelihood and the least squares
estimators.

This is joint work with Lauri Viitasaari (Aalto University, Finland).

3 / 32



Outline

1 Langevin Equation

2 Alternative Estimator

3 Examples

4 Discussion on Other Estimators

4 / 32



Outline

1 Langevin Equation

2 Alternative Estimator

3 Examples

4 Discussion on Other Estimators

5 / 32



Langevin Equation
General Setting

We consider statistical parameter estimation for the unknown
parameter θ > 0 in the (generalized) Langevin equation

dUθ,ξ
t = −θUθ,ξ

t dt + dGt , t ≥ 0,

Uθ,ξ
0 = ξ.

The solution of the Langevin equation above is

Uθ,ξ
t = e−θtξ +

∫ t

0
e−θ(t−s) dGs ,

which can be seen by using the integration by parts.

Nothing was assumed here, except the finiteness of G !
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Langevin Equation
General Setting

Our estimation will be based on the solution that starts from zero.
We denote X θ = Uθ,0.

For the existence of the stationary solution, G must have
stationary increments. By extending G to the negative
half-line with an independent copy, the stationary solution is

Uθ
t =

∫ t

−∞
e−θ(t−s) dGs , t ≥ 0.

In other words, the stationary solution is Uθ = Uθ,ξstat , with

ξstat =

∫ 0

−∞
e−θt dGt .

In particular, the stationary solution exists if and only if the
integral above converges (almost surely), and in this case

X θ
t = Uθ

t − e−θtUθ
0 .
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Langevin Equation
Gaussian Stationary-Increment Setting

Assume that the noise G is centered Gaussian process with
stationary increments. Denote

v(t) = E[G 2
t ] and rθ(t) = E[Uθ

0U
θ
t ].

Then

rθ(t) = θ

∫ 0

−∞
eθsg(t, s)ds

−θ2e−θt

∫ t

−∞

∫ 0

−∞
eθ(s+u)g(s, u) dsdu,

where

g(t, s) =
1

2

[
v(t) + v(s)− v(t − s)

]
is the covariance of G .
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Langevin Equation
Assumptions on the Noise

The following assumption ensures the Existence of the AE

Assumption (E)

The variance function v is strictly increasing.

The following assumption ensures the strong Consistency of the
AE

Assumption (C)

lim
T→∞

1

T

∫ T

0
|rθ(t)|dt = 0.
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Langevin Equation
Assumptions on the Noise

Denote

wθ(T ) =
2

T 2

∫ T

0

∫ T

0
rθ(t − s)2 dsdt,

Rθ(T ) =

∫ T
0 |rθ(t)|dt
T
√

wθ(T )
.

wθ is the asymptiotic variance.
Rθ is the Berry–Esseen bound.

For the asymptotic Normality of the AE, we assume

Assumption (N)

lim
T→∞

Rθ(T ) = 0.
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Alternative Estimator
Construction of the Estimator

If (E) holds, then θ 7→ rθ(0) is invertible, and we can define:

Definition (Alternative Estimator)

The alternative estimator (AE) is

θ̃T = ψ−1

(
1

T

∫ T

0
(X θ

t )
2 dt

)
,

where

ψ(θ) = rθ(0) =
θ

2

∫ ∞

0
e−θtv(t)dt

is the variance of the stationary solution.
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Alternative Estimator
Strong Consistency

If, in addition to (E), (C) holds, then Uθ is ergodic, and we obtain:

Theorem (Strong Consistency)

Suppose (E) and (C) hold. Then θ̃T → θ almost surely.

Remark

Theorem (Strong Consistency) hold also without Gaussianity, if
Assumption (C) is replaced by a suitable assumption ensuring the
ergodicity of the stationary solution Uθ.
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Alternative Estimator
Asymptotic Normality

If (E), (C) and (N) hold, then we can invoke the Fourth
Moment Theorem, and we obtain

Theorem (Asymptotic Normality)

Suppose (E) and (C) hold. Then for all K > 0,

sup
|x |≤K

∣∣∣∣∣P
[

|ψ′(θ)|√
wθ(T )

(
θ̃T − θ

)
≤ x

]
− Φ(x)

∣∣∣∣∣ ≤ Cθ,KRθ(T ).

In particular, if (N) holds, then

|ψ′(θ)|√
wθ(T )

(
θ̃T − θ

)
d→ N (0, 1).
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Alternative Estimator
Asymptotic Normality

Corollary (Classical Rate)

Suppose (E) holds. Assume
∫∞
0 rθ(t)

2 dt <∞. Then θ̃T is

asymptotically normal with rate
√
T.

Corollary (Mixed Models)

Let G i ’s be independent, each satisfying (E) and (C), with
rθ,i ≥ 0. Then, for the mixed model

sup
x∈[−K ,K ]

∣∣∣∣∣P
[

|ψ′(θ)|√
wθ(T )

(
θ̃T − θ

)
≤ x

]
− Φ(x)

∣∣∣∣∣
≤ Cθ,K max

i=1,...,n

∫ T
0 rθ,i (t) dt√∫ T

0

∫ T
0 rθ,i (t − s)2 dsdt

.
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Alternative Estimator
Discrete Observations

In practice continuous observations are rarely available. Therefore,
it is important to consider the case of discrete observations. To
control the error introduced by the unobserved time-points, we
assume that the driving noise G is Hölder continuous with
some index H ∈ (0, 1). The general idea is, that the smaller the H
the more care must be taken in choosing the time-mesh of the
observations. The following assumption is necessary and sufficient
for the Hölder continuity.

Assumption (H)

Let H ∈ (0, 1). For all ε > 0 there exists a constant Cε such that

v(t) ≤ Cε t
2H−ε.
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Alternative Estimator
Discrete Observations

Let tk = k∆N , k = 0, . . . ,N. Denote TN = N∆N and assume that
∆N → 0 with TN → ∞. The AE based on the discrete
observations is

θ̃N = ψ−1

(
1

TN

N∑
k=1

(X θ
k∆N

)2∆N

)
.

Assumption (M)

Assume that
N∆β

N → 0,

where

β = β(H) =
2H + 1

2

H + 1
2

− δ

for some δ > 0.
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Alternative Estimator
Discrete Observations

Theorem (Discrete Observations)

Suppose (E), (C), (H) and (M) hold. Then,

θ̃N → θ a.s.

Moreover, if (N) holds, then

|ψ′(θ)|√
wθ(TN)

(
θ̃N − θ

)
d→ N (0, 1) .

Remark (Bounds for Discrete Asymptotic Normality)

Berry–Esseen type upper bounds for the asymptotic normality are
possible, but complicated.

18 / 32



Outline

1 Langevin Equation

2 Alternative Estimator

3 Examples

4 Discussion on Other Estimators

19 / 32



Examples
Fractional Ornstein–Uhlenbeck Process of the First Kind

The fractional Brownian motion BH with Hurst index
H ∈ (0, 1) is the stationary-increment Gaussian process with
variance function

vH(t) = t2H .

The Hurst index H is both the index of self-similarity and the
Hölder continuity.

The fractional Ornstein–Uhlenbeck process (of the
first kind) is the stationary solution to the Langevin equation

dUH,θ
t = −θUH,θ

t dt + dBH
t , t ≥ 0.
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Examples
Fractional Ornstein–Uhlenbeck Process of the First Kind

We have

rH,θ(t) ∼ H(2H − 1)

θ2
t2H−2,

ψH(θ) =
HΓ(2H)

θ2H
.

Consequently, (E), (C) and (H) are satisfied for all H, and (N) is
satisfied for H ≤ 3/4.

For H < 3/4, ∫ ∞

0
rH,θ(t)

2 dt = θ−2Hσ2H ,

where we have denoted

σ2H =

∫ ∞

0
rH,1(t)

2 dt.
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Examples
Fractional Ornstein–Uhlenbeck Process of the First Kind

Proposition (Fractional Ornstein–Uhlenbeck Process
of the First Kind)

1 Let H ∈ (0, 1/2]. Then

supx∈[−K ,K ]

∣∣∣P [√ T
θσ2

H

(
θ̃HT − θ

)
≤ x

]
− Φ(x)

∣∣∣ ≤ CH,θ,K√
T
.

2 Let H ∈ (1/2, 3/4). Then

supx∈[−K ,K ]

∣∣∣P [√ T
θσ2

H

(
θ̃HT − θ

)
≤ x

]
− Φ(x)

∣∣∣ ≤ CH,θ,K√
T 3−4H

.

3 Let H = 3/4. Then

supx∈[−K ,K ]

∣∣∣P [√ T
θσ2 logT

(
θ̃
3/4
T − θ

)
≤ x

]
− Φ(x)

∣∣∣ ≤
C3/4,θ,K√

logT
.
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Examples
Fractional Ornstein–Uhlenbeck Process of the Second Kind

The fractional Ornstein–Uhlenbeck process of the
second kind is the stationary solution of the Langevin equation
with the noise

GH
t =

∫ t

0
e−sdBH

Hes/H
.

The idea of the construction above is to use the self-similarity
of the fractional Brownian motion and the associated Lamperti
transform (a.k.a. Doob transform).

For Brownian motion the Ornstein–Uhlenbeck processes of the first
and second kind are the same. In general they are different.
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Examples
Fractional Ornstein–Uhlenbeck Process of the Second Kind

The autocovariance rH,θ of the fractional Ornstein–Uhlenbeck
process of the second kind has exponential decay. Therefore,
we have the following:

Proposition (Fractional Ornstein–Uhlenbeck Process
of the Second Kind)

sup
x∈[−K ,K ]

∣∣∣∣∣P
[ √

T

σH,θ(θ)

(
θ̃HT − θ

)
≤ x

]
− Φ(x)

∣∣∣∣∣ ≤ CH,θ,K√
T

,

where

σ2H,θ(θ) = 4

∫ ∞

0
rH,θ(t)

2 dt.

24 / 32



Examples
Bifractional Ornstein–Uhlenbeck Process of the Second Kind

The bifractional Brownian motion BH,K with parameters
H ∈ (0, 1) and K ∈ (0, 1] is the Gaussian process with covariance

E
[
BH,K
t BH,K

t

]
=

1

2K

[
(t2H + s2H)K − |t − s|2HK

]
.

It does not have stationary increments, except for K = 1.
Consequently, there is no way to define the bifractional
Ornstein–Uhlenbeck process of the first kind that would have a
stationary version.

The bifractional Brownian motion is HK -self-similar. Consequently,
we can define the bifractional Ornstein–Uhlenbeck
process by replacing BHK with BH,K in the case for fractional
Ornstein–Uhlenbeck process of the second kind.
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Examples
Bifractional Ornstein–Uhlenbeck Process of the Second Kind

The autocovariance rH,K ,θ of the bifractional Ornstein–Uhlenbeck
process of the second kind has exponential decay. Therefore:

Proposition (The bifractional Ornstein–Uhlenbeck
processes of the second Kind)

sup
x∈[−L,L]

∣∣∣∣∣P
[ √

T

σH,K ,θ(θ)

(
θ̃H,K ,θ
T − θ

)
≤ x

]
− Φ(x)

∣∣∣∣∣ ≤ CH,K ,θ,L√
T

,

where

σ2H,K ,θ(θ) = 4

∫ ∞

0
rH,K ,θ(t)

2 dt.
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Discussion on Other Estimators
Least Squares Estimator (LSE)

One the one hand, the LSE

θ̂T = −
∫ T
0 X θ

t δX
θ
t∫ T

0 (X θ
t )

2 dt

arises heuristically by minimizing∫ T

0
|Ẋ θ

t + θX θ
t |2 dt.

On the other hand, one would hope that∫ T

0
X θ
t δX

θ
t = −θ

∫ T

0
(X θ

t )
2 dt +

∫ T

0
X θ
t δGt .

This would lead to the LSE

θ̂T = θ −
∫ T
0 X θ

t δGt∫ T
0 (X θ

t )
2 dt

.
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Discussion on Other Estimators
Least Squares Estimator (LSE)

Unfortunately, the Skorohod integral is not (bi)linear. In particular,
the equation for it in the previous slide does not hold.
Consequently, θ̂T and θ̂T not the same.

θ̂T has been shown to be consistent for some fractional
Ornstein–Uhlenbeck processes. However, the θ̂T depends on θ, the
parameter we want to estimate! θ̂T is even worse: it will fail under
rather general assumptions:

Proposition (θ̂T Failure)

Assume that Uθ is ergodic. If (X θ
T )

2/T → 0 in L1(Ω) and almost
surely, then

θ̂T → 0 a.s.
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Discussion on Other Estimators
Maximum Likelihood Estimator (MLE)

Assume the following (Inverse) Volterra representation: There
exists a Gaussian martingale M with bracket ⟨M⟩ and a kernel
k ∈ L2loc(R2

+,d⟨M⟩ × d⟨M⟩) such that

Gt =

∫ t

0
k(t, s)dMs ,

Mt =

∫ t

0
k∗(t, s) dGt .

The authors have very little idea, when such representations exist!

Moreover, assume the existence of

Mθ
t =

∫ t

0
k∗(t, s) dX θ

t ,

Ξθ
t =

d

d⟨M⟩t

∫ t

0
k∗(t, s)X θ

s ds.
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Discussion on Other Estimators
Maximum Likelihood Estimator (MLE)

Proposition (MLE)

Assume that Ξθ ∈ L2(Ω× [0,T ], dP× d⟨M⟩). Then the MLE
based on the observations X θ

t , t ∈ [0,T ], is

θ̄T = −
∫ T
0 Ξθ

t dM
θ
t∫ T

0 (Ξθ
t )

2 d⟨M⟩t
.

Moreover, if
∫ T
0 (Ξθ

t )
2 d⟨M⟩t → ∞ almost surely, then the MLE is

strongly consistent.
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Thank you for listening!

Any questions?
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