WALK ON SPHERES ALGORITHMS FOR HELMHOLTZ AND LINEARIZED POISSON-BOLTZMANN EQUATIONS

Tommi Sottinen

University of Vaasa, Finland

Joint work with Antti Rasila, Aalto University, Finland Xuxin Yang, Hunan First Normal University, PRC

The Fifth Chinese-Finnish Seminar, Espoo, Finland February 9, 2016

We show that a constant-potential time-independent Schrödinger equation with Dirichlet boundary data can be reformulated as a Laplace equation with Dirichlet boundary data.

With this reformulation, which we call the Duffin correspondence, we provide a classical Walk On Spheres algorithm for Monte Carlo simulation of the solutions of the said boundary value problem.

2 DUFFIN CORRESPONDENCE

3 Walk On Spheres (WOS) algorithms

2 Duffin correspondence

3 Walk On Spheres (WOS) algorithms

Let $x = (x_1, \ldots, x_n)$. Denote

$$\Delta_x = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$$

We consider the Dirichlet-type boundary value problem of the Schrödinger equation with constant potential $\lambda \in \mathbb{R}$:

$$\begin{cases} \frac{1}{2}\Delta_x u(x) - \lambda u(x) &= 0 \quad \text{on } x \in D, \\ u(y) &= f(y) \quad \text{on } y \in \partial D. \end{cases}$$

Here *D* is a domain and *f* is (continuous and) bounded on ∂D . The case $\lambda > 0$ corresponds to the Yukawa equation, or the linearized Poisson–Boltzmann equation. The case $\lambda = 0$ is the Laplace equation. The case $\lambda < 0$ is the Helmholtz equation. Conditions for the domain D of a Helmholtz–Yukawa problem to admit a unique bounded (strong) solution are best expressed by using probabilistic tools:

Let W be the *n*-dimensional Brownian motion, i.e., the unique Markov process with the generator $\frac{1}{2}\Delta_x$.

Let

$$\tau_D = \inf\{t > 0; W_t \notin D\}.$$

Let \mathbf{P}^{x} denote the probability measure under which $W_{0} = x$.

PRELIMINARIES

Assumptions

1 The domain *D* is *Wiener regular*, i.e.,

 $\mathbf{P}^{y}[\tau_{D}=0]$ for all $y \in \partial D$.

2 The domain D is Wiener small, i.e.,

$$\mathbf{P}^{x}[\tau_{D} < \infty] = 1$$
 for all $x \in D$.

B Finally, we assume that the domain D is gaugeable, i.e.,

$$\sup_{x\in D}\mathbf{E}^{x}\left[e^{-\lambda\tau_{D}}\right]<\infty.$$

PRELIMINARIES

- **I** All domains with piecewise C^1 boundary are Wiener regular.
- 2 If any projection of the domain D on any subspace $\mathbb{R}^{n'}$, $n' \leq n$ is bounded, then D is Wiener small.
- B The gauge condition is satisfied if

$$\lambda > -\frac{1}{2} \mathrm{Leb}(D)^{-2/n} \left(\frac{\pi^{n/2}}{\Gamma(n/2+1)} \right)^{2/n} j_{n/2-1,1}^2.$$

PROPOSITION (STOCHASTIC REPRESENTATION)

The Helmholtz-Yukawa equation admits the bounded solution

$$u(x) = \mathbf{E}^{x} \left[e^{-\lambda \tau_{D}} f(W_{\tau_{D}}) \right].$$

2 DUFFIN CORRESPONDENCE

3 Walk On Spheres (WOS) Algorithms

Set $\bar{x} = (x, x') \in \mathbb{R}^n imes \mathbb{R}$ and

$$\begin{split} g(\lambda; x') &= \begin{cases} \cos\left(\sqrt{2\lambda} \, x'\right), & \text{for } \lambda > 0, \\ \cosh\left(\sqrt{-2\lambda} \, x'\right), & \text{for } \lambda < 0, \end{cases}, \\ I(\lambda) &= \begin{cases} \left(-\frac{\pi}{2\sqrt{2\lambda}}, \frac{\pi}{2\sqrt{2\lambda}}\right), & \text{for } \lambda > 0, \\ \mathbb{R}, & \text{for } \lambda > 0, \end{cases}, \\ \bar{D}(\lambda) &= D \times I(\lambda), \\ \bar{u}(\lambda; \bar{x}) &= u(x)g(\lambda; x'), \\ \bar{f}(\lambda; \bar{y}) &= f(y)g(\lambda; y'). \end{cases} \\ \begin{cases} \frac{1}{2}\Delta_{\bar{x}}\bar{u}(\lambda; \bar{x}) &= 0 & \text{on } \bar{x} \in \bar{D}(\lambda), \\ \bar{u}(\lambda; \bar{y}) &= \bar{f}(\lambda; \bar{y}) & \text{on } \bar{y} \in \partial \bar{D}(\lambda). \end{cases}$$

DUFFIN CORRESPONDENCE

THEOREM (DUFFIN CORRESPONDENCE)

u is the bounded solution to the Helmholtz–Yukawa equation iff \bar{u} is the bounded solution to the Laplace equation.

Let $\overline{W} = (W, W')$ be an (n + 1)-dimensional Brownian motion and let $\tau_{I(\lambda)} = \inf\{t > 0; W'_t \notin I(\lambda)\}.$

COROLLARY (SIMPLE STOCHASTIC REPRESENTATION)

The Helmholtz-Yukawa equation admits the bounded solution

$$u(x) = \mathbf{E}^{x,0} \left[f\left(W_{\tau_D} \right) g\left(\lambda; W'_{\tau_D} \right) ; \tau_{I(\lambda)} > \tau_D \right].$$

2 DUFFIN CORRESPONDENCE

3 WALK ON SPHERES (WOS) ALGORITHMS

WALK ON SPHERES (WOS) ALGORITHMS DUFFIN WALK ON SPHERES (DWOS)

Denote

$$\begin{aligned} \tau_{\mathbf{x}} &= \inf \left\{ t > 0 \, ; \, W_t \not\in D \right\}, \\ \tau_{\mathbf{x}'}' &= \inf \left\{ t > 0 \, ; \, W_t' \not\in I(\lambda) \right\}, \\ \bar{\tau}_{\bar{\mathbf{x}}} &= \inf \left\{ t > 0 \, ; \, \bar{W} \not\in \bar{D}(\lambda) \right\}. \end{aligned}$$

Note that τ_x and $\tau'_{x'}$ are independent, and $\overline{\tau}_{\overline{x}} = \min(\tau_x, \tau'_{x'})$. For $x \in D$, denote $\overline{x} = (x, 0) \in \overline{D}(\lambda)$.

The stochastic approximation for u(x) is

$$\hat{u}_{K}(x) = \frac{1}{K} \sum_{k=1}^{K} \bar{f}\left(\lambda \; ; \; \bar{w}_{\bar{x}}^{k}(\bar{\tau}_{\bar{x}}^{k})\right).$$

Here $\overline{\tau}_{\overline{X}}^{k}$ is the termination-step of the trajectory k. The trajectories are generated by the following DWOS Algorithm:

WALK ON SPHERES (WOS) ALGORITHMS DUFFIN WALK ON SPHERES (DWOS)

Algorithm (DWOS)

Fix a small parameter $\varepsilon > 0$.

- Initialize: $\bar{w}_{\bar{x}}(0) = (w_x(0), (w')_0(0)) = (x, 0).$
- 2 While dist $(\bar{w}_{\bar{x}}(j), \partial \bar{D}(\lambda)) > \varepsilon$:
 - **1** Set $r(j) = \operatorname{dist}(\bar{w}_{\bar{x}}(j), \partial \bar{D}(\lambda)).$
 - **2** Sample $\xi(j)$ independently from the unit sphere $\partial B_{n+1}(0,1)$.

3 Set
$$\bar{w}_{\bar{x}}(j+1) = \bar{w}_{\bar{x}}(j) + r(j)\xi(j)$$

- **3** When dist $(\bar{w}_{\bar{x}}(j), \partial \bar{D}(\lambda)) \leq \varepsilon$:
- Set pr $\bar{w}_{\bar{x}}(j)$ to be the orthogonal projection of $\bar{w}_{\bar{x}}(j)$ to $\partial \bar{D}(\lambda)$.
- **5** Return $\operatorname{pr} \bar{w}_{\bar{x}}(j)$.

WALK ON SPHERES (WOS) ALGORITHMS DUFFIN WALK ON SPHERES (DWOS)

Suppose we want use the WOS algorithm directly without the Duffin correspondence. To do this, we must estimate the term $e^{-\lambda\tau_D}$. Suppose the WOS algorithm takes T steps to hit the boundary with balls of radii r_1, r_2, \ldots, r_T . The Weighted Walk On Spheres (WWOS) algorithm is based on the fact that the term $e^{-\lambda\tau_D}$ can be decomposed into independent terms

$$e^{-\lambda au_D} = e^{-\lambda au_{r_1}} e^{-\lambda au_{r_2}} \cdots e^{-\lambda au_{r_T}}$$

where the τ_{r_j} 's are the exit times of the Brownian motion from balls of radius r_j , and these exit times are also independent of the exit locations from the ball. Consequently, at each step j of the WOS algorithm, the Brownian particle gains (or loses) an independent multiplicative weight that is given by

$$\mathbf{E}^{W_{\tau_{j-1}}}\left[e^{-\lambda\tau_{r_j}}\right] = \mathbf{E}^0\left[e^{-\lambda\tau_{r_j}}\right]$$

By using the 1/2-self-similarity of the Brownian motion we see that

$$\mathbf{E}^{0}\left[e^{-\lambda\tau_{r}}\right] = \mathbf{E}^{0}\left[e^{-\lambda r^{2}\tau_{1}}\right] = \psi(\lambda r^{2}).$$

For $\mu > 0$ the function ψ is well-known:

$$\psi(\mu) = \begin{cases} \frac{\mu^{\nu}}{2^{\nu} \Gamma(\nu+1) I_{\nu}(\mu)}, & n = 2\nu - 2 \ge 2, \\ \frac{1}{\cosh(\sqrt{2\lambda})}, & n = 1. \end{cases}$$

For $\mu < 0$, as far as we know, no simple formula for $\psi(\mu)$ is known. However, the distribution function of τ_1 is well-known:

$$\mathbf{P}^{0}\left[\tau_{1} \leq t\right] = 1 - \frac{1}{2^{\nu-1} \Gamma(\nu+1)} \sum_{i=1}^{\infty} \frac{j_{\nu,i}^{\nu-1}}{J_{\nu+1}(j_{\nu,i})} \exp\left\{-\frac{1}{2} j_{\nu,i}^{2} t\right\},$$

where $j_{\nu,i}$'s are the positive zeros J_{ν} in the increasing order.

FIGURE : The function $\psi(\lambda)$ for $\lambda \in (-1,5)$ for n = 1, 2, 3, 4, where n = 1 on the top (left). The function $\psi(-2r^2)$, r > 0, where the dimension are n = 1, 2, 3, 4, where n = 1 on the top (right).

The approximation for u(x) is

$$\hat{u}_{\mathcal{K}}(x) = rac{1}{\mathcal{K}}\sum_{k=1}^{\mathcal{K}} c_x^k(\lambda) f\left(w_x^k(\tau_x^k)
ight).$$

Here τ_x^k is the exit time for the each individual particle and $c_x^k(\lambda) = e^{-\lambda \tau_x^k}$.

The individual particle exit locations $w_x(\tau_x)$ and weights c_x^k are generated by the following WWOS algorithm:

WALK ON SPHERES (WOS) ALGORITHMS WEIGHTED WALK ON SPHERES (WWOS)

Algorithm (WWOS)

Fix a small parameter $\varepsilon > 0$.

- **1** Initialize: $w_x(0) = x$, $c_x(0) = 0$
- **2** While $dist(w_x(j), D) > \varepsilon$:
 - **1** Set $r(j) = \operatorname{dist}(w_x(j), \partial D)$.
 - **2** Sample $\xi(j)$ independently from the unit sphere $\partial B_n(0,1)$.

B Set
$$w_x(j+1) = w_x(j) + r(j)\xi(j)$$
 and $c_x(j+1) = c_x(j)\psi(\lambda r(j)^2)$.

3 When dist $(w_x(j), \partial D) \leq \varepsilon$:

- 4 Set $\operatorname{pr} w_{x}(j)$ to be the orthogonal projection of $w_{x}(j)$ to ∂D .
- 5 Return $\operatorname{pr} w_x(j)$ and $c_x(j)$.

For the Yukawa case $\lambda > 0$, the weight loss $e^{-\lambda \tau_D}$ of the particle can be interpreted as independent exponential killing of the particle.

Our estimator for u(x) is

$$\hat{u}_{\mathcal{K}}(x) = \frac{1}{\mathcal{K}} \sum_{k \in \mathcal{K}^*(\lambda)} f(w_x^k(\tau_x^k)),$$

where w_x^k , k = 1, ..., K are independent simulations of the trajectories Brownian particles starting from point x, and the set $K^*(\lambda) \subset \{1, ..., K\}$ contains the particles that are not killed; τ_x^k is the termination-step time of the algorithm. The individual particles are generated by the following KWOS algorithm:

WALK ON SPHERES (WOS) ALGORITHMS KILLING WALK ON SPHERES (KWOS)

Algorithm (KWOS)

Fix a small parameter $\varepsilon > 0$.

- 1 Initialize: $w_x(0) = x$.
- **2** While dist $(w_x(j), D) > \varepsilon$:
 - 1 Set $r(j) = \operatorname{dist}(w_x(j), \partial D)$.
 - 2 Kill the particle with probability $1 \psi(\lambda r(j)^2)$. If the particle is killed, the algorithm terminates and returns 0.

3 Sample $\xi(j)$ independently from the unit sphere $\partial B_n(0,1)$.

- 4 Set $w_x(j+1) = w_x(j) + r(j)\xi(j)$.
- **3** When dist $(w_x(j), \partial D) \leq \varepsilon$:
- **4** Set $\operatorname{pr} w_{x}(j)$ to be the orthogonal projection of $w_{x}(j)$ to ∂D .
- **5** Return pr $w_x(j)$.

Thank you for listening! Any questions?