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Abstract

We show that a constant-potential time-independent Schrödinger
equation with Dirichlet boundary data can be reformulated as a
Laplace equation with Dirichlet boundary data.

With this reformulation, which we call the Duffin correspondence,
we provide a classical Walk On Spheres algorithm for Monte Carlo
simulation of the solutions of the said boundary value problem.
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Preliminaries

Let x = (x1, . . . , xn). Denote

∆x =
n∑

i=1

∂2

∂x2
i

We consider the Dirichlet-type boundary value problem of the
Schrödinger equation with constant potential λ ∈ R:{

1
2 ∆xu(x)− λu(x) = 0 on x ∈ D,

u(y) = f (y) on y ∈ ∂D.

Here D is a domain and f is (continuous and) bounded on ∂D.
The case λ > 0 corresponds to the Yukawa equation, or the
linearized Poisson–Boltzmann equation. The case λ = 0 is the
Laplace equation. The case λ < 0 is the Helmholtz equation.
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Preliminaries

Conditions for the domain D of a Helmholtz–Yukawa problem to
admit a unique bounded (strong) solution are best expressed by
using probabilistic tools:

Let W be the n-dimensional Brownian motion, i.e., the unique
Markov process with the generator 1

2 ∆x .

Let
τD = inf{t > 0 ; Wt 6∈ D}.

Let Px denote the probability measure under which W0 = x .
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Preliminaries

Assumptions

1 The domain D is Wiener regular, i.e.,

Py [τD = 0] for all y ∈ ∂D.

2 The domain D is Wiener small, i.e.,

Px [τD <∞] = 1 for all x ∈ D.

3 Finally, we assume that the domain D is gaugeable, i.e.,

sup
x∈D

Ex
[
e−λτD

]
<∞.
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Preliminaries

1 All domains with piecewise C 1 boundary are Wiener regular.

2 If any projection of the domain D on any subspace Rn′ ,
n′ ≤ n is bounded, then D is Wiener small.

3 The gauge condition is satisfied if

λ > −1

2
Leb(D)−2/n

(
πn/2

Γ(n/2 + 1)

)2/n

j2
n/2−1,1.

Proposition (Stochastic representation)

The Helmholtz–Yukawa equation admits the bounded solution

u(x) = Ex
[
e−λτD f (WτD )

]
.
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Duffin correspondence

Set x̄ = (x , x ′) ∈ Rn × R and

g(λ; x ′) =

{
cos
(√

2λ x ′
)
, for λ > 0,

cosh
(√
−2λ x ′

)
, for λ < 0.

,

I (λ) =

{ (
− π

2
√

2λ
, π

2
√

2λ

)
, for λ > 0,

R, for λ < 0,

D̄(λ) = D × I (λ),

ū(λ; x̄) = u(x)g(λ; x ′),

f̄ (λ; ȳ) = f (y)g(λ; y ′).{
1
2 ∆x̄ ū(λ; x̄) = 0 on x̄ ∈ D̄(λ),

ū(λ; ȳ) = f̄ (λ; ȳ) on ȳ ∈ ∂D̄(λ).
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Duffin correspondence

Theorem (Duffin correspondence)

u is the bounded solution to the Helmholtz–Yukawa equation iff ū
is the bounded solution to the Laplace equation.

Let W̄ = (W ,W ′) be an (n + 1)-dimensional Brownian motion
and let τI (λ) = inf{t > 0 ; W ′

t 6∈ I (λ)}.

Corollary (Simple stochastic representation)

The Helmholtz–Yukawa equation admits the bounded solution

u(x) = Ex ,0
[
f (WτD ) g

(
λ; W ′

τD

)
; τI (λ) > τD

]
.
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Walk On Spheres (WOS) algorithms
Duffin Walk on Spheres (DWOS)

Denote

τx = inf {t > 0 ; Wt 6∈ D} ,
τ ′x ′ = inf

{
t > 0 ; W ′

t 6∈ I (λ)
}
,

τ̄x̄ = inf
{

t > 0 ; W̄ 6∈ D̄(λ)
}
.

Note that τx and τ ′x ′ are independent, and τ̄x̄ = min
(
τx , τ

′
x ′
)
.

For x ∈ D, denote x̄ = (x , 0) ∈ D̄(λ).

The stochastic approximation for u(x) is

ûK (x) =
1

K

K∑
k=1

f̄
(
λ ; w̄k

x̄

(
τ̄kx̄
))
.

Hereτ̄kx̄ is the termination-step of the trajectory k . The trajectories
are generated by the following DWOS Algorithm:
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Walk On Spheres (WOS) algorithms
Duffin Walk on Spheres (DWOS)

Algorithm (DWOS)

Fix a small parameter ε > 0.

1 Initialize: w̄x̄(0) = (wx(0), (w ′)0(0)) = (x , 0).

2 While dist(w̄x̄(j), ∂D̄(λ)) > ε:

1 Set r(j) = dist(w̄x̄(j), ∂D̄(λ)).
2 Sample ξ(j) independently from the unit sphere ∂Bn+1(0, 1).
3 Set w̄x̄(j + 1) = w̄x̄(j) + r(j)ξ(j).

3 When dist(w̄x̄(j), ∂D̄(λ)) ≤ ε:

4 Set pr w̄x̄(j) to be the orthogonal projection of w̄x̄(j) to
∂D̄(λ).

5 Return pr w̄x̄(j).
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Walk On Spheres (WOS) algorithms
Duffin Walk on Spheres (DWOS)
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Walk On Spheres (WOS) algorithms
Weighted Walk on Spheres (WWOS)

Suppose we want use the WOS algorithm directly without the
Duffin correspondence. To do this, we must estimate the term
e−λτD . Suppose the WOS algorithm takes T steps to hit the
boundary with balls of radii r1, r2, . . . , rT . The Weighted Walk On
Spheres (WWOS) algorithm is based on the fact that the term
e−λτD can be decomposed into independent terms

e−λτD = e−λτr1 e−λτr2 · · · e−λτrT ,

where the τrj ’s are the exit times of the Brownian motion from
balls of radius rj , and these exit times are also independent of the
exit locations from the ball. Consequently, at each step j of the
WOS algorithm, the Brownian particle gains (or loses) an
independent multiplicative weight that is given by

EWτj−1

[
e−λτrj

]
= E0

[
e−λτrj

]
.
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Walk On Spheres (WOS) algorithms
Weighted Walk on Spheres (WWOS)

By using the 1/2-self-similarity of the Brownian motion we see that

E0
[
e−λτr

]
= E0

[
e−λr

2τ1

]
= ψ(λr 2).

For µ > 0 the function ψ is well-known:

ψ(µ) =

{
µν

2νΓ(ν+1)Iν(µ) , n = 2ν − 2 ≥ 2,
1

cosh(
√

2λ)
, n = 1.

For µ < 0, as far as we know, no simple formula for ψ(µ) is
known. However, the distribution function of τ1 is well-known:

P0 [τ1 ≤ t] = 1− 1

2ν−1Γ(ν + 1)

∞∑
i=1

jν−1
ν,i

Jν+1(jν,i )
exp

{
−1

2
j2
ν,i t

}
,

where jν,i ’s are the positive zeros Jν in the increasing order.
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Walk On Spheres (WOS) algorithms
Weighted Walk on Spheres (WWOS)
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Figure : The function ψ(λ) for λ ∈ (−1, 5) for n = 1, 2, 3, 4, where
n = 1 on the top (left). The function ψ(−2r 2), r > 0, where the
dimension are n = 1, 2, 3, 4, where n = 1 on the top (right).

18 / 23



Walk On Spheres (WOS) algorithms
Weighted Walk on Spheres (WWOS)

The approximation for u(x) is

ûK (x) =
1

K

K∑
k=1

ck
x (λ)f

(
wk
x (τkx )

)
.

Hereτkx is the exit time for the each individual particle and

ck
x (λ) = e−λτ

k
x .

The individual particle exit locations wx(τx) and weights ck
x are

generated by the following WWOS algorithm:
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Walk On Spheres (WOS) algorithms
Weighted Walk on Spheres (WWOS)

Algorithm (WWOS)

Fix a small parameter ε > 0.

1 Initialize: wx(0) = x , cx(0) = 0

2 While dist(wx(j),D) > ε:

1 Set r(j) = dist(wx(j), ∂D).
2 Sample ξ(j) independently from the unit sphere ∂Bn(0, 1).
3 Set wx(j + 1) = wx(j) + r(j)ξ(j) and

cx(j + 1) = cx(j)ψ(λr(j)2).

3 When dist(wx(j), ∂D) ≤ ε:

4 Set prwx(j) to be the orthogonal projection of wx(j) to ∂D.

5 Return prwx(j) and cx(j).
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Walk On Spheres (WOS) algorithms
Killing Walk on Spheres (KWOS)

For the Yukawa case λ > 0, the weight loss e−λτD of the particle
can be interpreted as independent exponential killing of the
particle.

Our estimator for u(x) is

ûK (x) =
1

K

∑
k∈K∗(λ)

f (wk
x (τkx )),

where wk
x , k = 1, . . . ,K are independent simulations of the

trajectories Brownian particles starting from point x , and the set
K ∗(λ) ⊂ {1, . . . ,K} contains the particles that are not killed; τkx is
the termination-step time of the algorithm. The individual particles
are generated by the following KWOS algorithm:
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Walk On Spheres (WOS) algorithms
Killing Walk on Spheres (KWOS)

Algorithm (KWOS)

Fix a small parameter ε > 0.

1 Initialize: wx(0) = x .

2 While dist(wx(j),D) > ε:

1 Set r(j) = dist(wx(j), ∂D).
2 Kill the particle with probability 1− ψ(λr(j)2). If the particle

is killed, the algorithm terminates and returns 0.
3 Sample ξ(j) independently from the unit sphere ∂Bn(0, 1).
4 Set wx(j + 1) = wx(j) + r(j)ξ(j).

3 When dist(wx(j), ∂D) ≤ ε:

4 Set prwx(j) to be the orthogonal projection of wx(j) to ∂D.

5 Return prwx(j).
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Thank you for listening!

Any questions?
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