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Abstract

Motto: Gaussian processes are difficult, Brownian motion is easy.

We show that every separable Gaussian process with integrable
variance function admits a Fredholm representation with respect to
a Brownian motion.

We extend the Fredholm representation to a transfer principle and
develop stochastic analysis by using it. In particular, we prove an
Itô formula that is, as far as we know, the most general
Skorohod-type Itô formula for Gaussian processes so far.

Finally, we give applications to equivalence in law and series
expansions of Gaussian processes.

2 / 21



Outline

1 Fredholm Representation

2 Transfer Principle

3 Applications

3 / 21



Outline

1 Fredholm Representation

2 Transfer Principle

3 Applications

4 / 21



Fredholm Representation
The Theorem

Theorem (Fredholm Representation)

Let X = (Xt)t∈[0,T ] be a separable centered Gaussian process.
Then there exists a kernel KT ∈ L2([0,T ]2) and a Brownian
motion W = (Wt)t≥0, independent of T , such that

Xt =

∫ T

0
KT (t, s)dWs

if and only if the covariance R of X satisfies the trace condition∫ T

0
R(t, t)dt <∞.
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Fredholm Representation
Some General Remarks

The Fredholm Kernel KT usually depends on T even if R
does not.

KT may be assumed to be symmetric.

KT is unique in the sense that if there is another
representation with kernel K̃T , then K̃T = UKT for some
unitary operator U on L2([0,T ]).

The Fredholm Representation Theorem holds also for the
parameter space R+, but the trace condition seldom holds,
i.e. typically ∫ ∞

0
R(t, t)dt =∞.

If the covariance R is degenerate, one needs to extend the
probability space to carry the Brownian motion.
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Fredholm Representation
Some Square-Root Remarks

KT (operator) can be constructed from RT (operator) as the
unique positive symmetric square-root, i.e. the operator KT is
a limit of polynomials:

KT = lim
n→∞

Pn(RT ).

The positive symmetric square-root is different from the
Cholesky square-root. Indeed, the Cholesky square-root would
correspond the Volterra Representation theorem

Xt =

∫ t

0
K (t, s) ds.

The Volterra representation does not hold for Gaussian
processes in general.
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Fredholm Representation
Example I

Consider a truncated series expansion

Xt =
n∑

k=1

eTk (t)ξk ,

where ξk are independent standard normal random variables and
eTk (t) =

∫ t
0 ẽTk (s)ds, where ẽTk , k ∈ N, is an orthonormal basis in

L2([0,T ]). This process is not purely non-deterministic and
consequently, X cannot have Volterra representation while X
admits a Fredholm representation. On the other hand, by choosing
ẽTk to be the trigonometric basis on L2([0,T ]), X is a finite-rank
approximation of the Karhunen–Loève representation of standard
Brownian motion on [0,T ]. Hence by letting n→∞ we obtain a
standard Brownian motion, and hence a Volterra process.
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Fredholm Representation
Example II

Let W be a standard Brownian motion and consider the Brownian
bridge B. The orthogonal representation of B is

Bt = Wt −
t

T
WT .

Consequently, B has a Fredholm representation with kernel

KT (t, s) = 1[0,t)(s)− t

T
.

The canonical representation of the Brownian bridge is

Bt = (T − t)

∫ t

0

1

T − s
dWs .

Hence B has also a Volterra representation with kernel

K (t, s) =
T − t

T − s
.
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Fredholm Representation
The Proof

By the Mercer’s theorem

R(t, s) =
∞∑
i=1

λTi eTi (t)eTi (s),

where (λTi )∞i=1 and (eTi )∞i=1 are the eigenvalues and the
eigenfunctions of the covariance operator

RT f (t) =

∫ T

0
f (s)R(t, s)ds.

Moreover, (eTi )∞i=1 is an orthonormal system on L2([0,T ]).

Since RT is a covariance-operator, it admits a square-root operator
KT . By the trace condition RT is trace-class, and hence KT is
Hilbert-Schmidt. Thus, KT admits a Kernel.
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Fredholm Representation
The Proof

Indeed,

KT (t, s) =
∞∑
i=1

√
λTi eTi (t)eTi (s).

Now KT is obviously symmetric and we have

R(t, s) =

∫ T

0
KT (t, u)KT (s, u)du

from which the Fredholm Representation follows by enlarging the
probability space, if needed.
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Transfer Principle
Adjoint Operators

The adjoint operator Γ∗ of a kernel Γ ∈ L2([0,T ]2) is defined by
linearly extending the relation

Γ∗1[0,t) = Γ(t, ·).

Remark

If Γ(·, s) is of bounded variation for all s and f is nice enough, then

Γ∗f (s) =

∫ T

0
f (t) Γ(dt, s).
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Transfer Principle
for Malliavin Derivatives and Skorohod Integrals

Theorem (Transfer Principle)

Let X be Gaussian Fredholm process with kernel KT . Let DT , δT ,
DW
T and δWT be the Malliavin derivative and the Skorohod integral

with respect to X and to the Brownian motion W . Then

δT = δWT K ∗T and K ∗TDT = DW
T .

Proof: Trivial.
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Transfer Principle
Itô Formula

Theorem (Itô Formula)

Let X be centered Gaussian process with covariance R and let
f ∈ C 2. Then

f (Xt) = f (X0) +

∫ t

0
f ′(Xs) δXs +

1

2

∫ t

0
f ′′(Xs) dR(s, s),

if anything.
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Applications
Equivalence of Laws

Let us show how to use the Fredholm Representation and the
Transfer Principle to analyze equivalence of Gaussian laws.

Recall the Hitsuda Representation Theorem: A centered Gaussian
process W̃ is equivalent to a Brownian motion W if and only if
there exists a Volterra kernel ` ∈ L2([0,T ]2) such that

dW̃t = dWt +

∫ t

0
`(t, s)dWs · dt.

Now, let X̃ and X be Gaussian Fredholm processes with

X̃t =

∫ T

0
K̃T (t, s)dWs ,

Xt =

∫ T

0
KT (t, s)dWs .
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Applications
Equivalence of Laws

Suppose then that X̃ has (also) representation

X̃t =

∫ T

0
KT (t, s)dW̃s

where W̃ and W are equivalent.

Then, obviously X̃ and X are equivalent. By plugging in the
Hitsuda connection we obtain

X̃t =

∫ T

0

[
KT (t, s) +

∫ T

s
KT (t, u)`(u, s)du

]
dWs .

Thus, we have shown the following:

18 / 21



Applications
Equivalence of Laws

Theorem (Equivalence of Laws)

Let X and X̃ be two Gaussian process with Fredholm kernels KT

and K̃T , respectively. If there exists a Volterra kernel
` ∈ L2([0,T ]2) such that

K̃T (t, s) = KT (t, s) +

∫ T

s
KT (t, u)`(u, s) du,

then X and X̃ are equivalent in law.

If the kernel KT satisfies appropriate non-degeneracy property,
then the condition above is also necessary.
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Applications
Equivalence of Laws

In the same way, as in the case of equivalence of laws, we see that:

Theorem (Series representation)

Let X be a Gaussian Fredholm process with kernel KT and let ϕT
k ,

k ∈ N, be any orthonormal basis in L2([0,T ]). Then

Xt =
∞∑
k=1

∫ T

0
KT (t, s)ϕT

k (s) ds · ξk ,

where ξk , k ∈ N, are i.i.d. standard Gaussian random variables.

The series above converges in L2(Ω); and also almost surely
uniformly if and only if X is continuous.
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Thank you for listening!

Any questions?
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