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Abstract

We introduce the long-range dependent completely correlated
mixed fractional Brownian motion (ccmfBm). This is a process
that is driven by a mixture of Brownian motion (Bm) and a
long-range dependent completely correlated fractional Brownian
motion (fBm, ccfBm) that is constructed from the Brownian
motion via the Molchan–Golosov representation. Thus, there is a
single Bm driving the mixed process. In the short time-scales the
ccmfBm behaves like the Bm (it has Brownian Hölder index and
quadratic variation). However, in the long time-scales it behaves
like the fBm (it has long-range dependence governed by the fBms
Hurst index). We provide a transfer principle for the ccmfBm and
use it to construct the Cameron–Martin–Girsanov–Hitsuda theorem
and prediction formulas. Finally, we illustrate the ccmfBm by
simulations.
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Construction of ccmfBm

Take a Brownian motion (Bm) W = (Wt)t∈[0,T ]. Construct a
completely correlated fractional Brownian motion (ccfBm, fBm)
with H > 1/2 from the Bm by using the Molchan–Golosov kernel

BH
t =

∫ t

0
KH(t, s) dWs ,

KH(t, s) = c(H)
1

sH− 1
2

∫ t

s

uH− 1
2

(u − s)
3
2
−H

du,

and then, from the same Bm construct the long-range dependent
completely correlated mixed fractional Brownian motion (ccmfBm):

Xt = X a,b,H
t = aWt + bBH

t .
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Motivation

The ccmfBm does not have stationary increments. A more natural
mixed fractional Brownian motion (mfBm) would be

Mt = aWt + bBH
t ,

where W and BH are independent. This process has been studied
in many articles.

However, ccmfBm is more convenient than mfBm because, as we
will see, it has easier inverse transfer principle. Also, the
ccmfBm and the mfBm are similar in the sense that their
short-time and long-time behaviors are mostly same (Hölder
continuity, quadratic variation, long-range dependence).
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(Inverse) Transfer Principle

Let L2 = L2([0,T ]). For a kernel K : [0,T ]2 → R its associated
operator is

Kf (t) =

∫ T

0
f (s)K (t, s) du.

The adjoint associated operator K∗ of a kernel K is
defined by linearly extending the relation

K∗1t(s) = K (t, s),

where 1t = 1[0,t) is the indicator function.
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(Inverse) Transfer Principle

If K (·, t) has bounded variation, then (more or less)

K∗f (t) = f (t)K (T , t) +

∫ T

t
[f (u)− f (t)] K (du, t).

Since the Molchen–Golosov kernel KH(t, s) for H > 1/2 is
differentiable in t and KH(t, t−) = 0, its adjoint associated
operator can be written as

K∗
H f (t) =

∫ T

t
f (u)

∂KH

∂u
(u, t) du.
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(Inverse) Transfer Principle

Let Λ be the closure of the indicator functions 1t , t ∈ [0,T ], under
the inner product generated by the relation

⟨1t , 1s⟩Λ = R(t, s),

where R is the covariance of the ccmfBm.

Let H1 be the linear space, or first chaos, of X , i.e., the closure of
the random variables Xt , t ∈ [0,T ], in L2(Ω).

For f ∈ Λ the abstract Wiener integral∫ T

0
f (t)dXt

is the image of the isometry 1t 7→ Xt from Λ to H1.

Denote L(t, s) = a1t(s) + bKH(t, s) and let L and L∗ be the
associated and adjoint associated operators of L.
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(Inverse) Transfer Principle

Lemma (1)

L∗ is a bounded operator on L2 and it can be represented as

L∗f (t) = af (t) + b

∫ T

t
f (u)

∂KH

∂u
(u, t)du

= af (t) +
bc(H)

tH− 1
2

∫ T

t
f (u)

uH− 1
2

(u − t)
3
2
−H

du.
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(Inverse) Transfer Principle

Beef of Proof: K∗
H is bounded on L2, because

∥K∗
H f ∥

2
2 =

∫ T

0

∫ T

0
f (t)f (s)

∂2RH

∂s∂t
(t, s) dsdt

= H(2H − 1)

∫ T

0

∫ T

0

f (t)f (s)

|t − s|2−2H
dsdt

≤ H(2H − 1)

∫ T

0

∫ T

0

f (t)2

|t − s|2−2H
dsdt

≤ H(2H − 1)
T 2H−1

H − 1
2

∥f ∥22,

where we have used the elementary estimate

2|f (t)f (s)| ≤ f (t)2 + f (s)2

and symmetry.
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(Inverse) Transfer Principle

Lemma (2)

For each t ∈ [0,T ], the integral equation

1t(s) = aL−1(t, s) + b

∫ T

s
L−1(t, u)

∂KH

∂u
(u, s)du

admits the unique L2-solution given by

L−1(t, s) =
1

a
1t(s) +

1

a

∞∑
k=1

(−1)k
(
b

a

)k

γk(t, s)

where

γk(t, s) =
c(H)kΓ(H − 1

2)
k

Γ
(
k
(
H − 1

2

)) 1

sH− 1
2

∫ t

s
uH− 1

2 (u − s)k(H− 1
2
)−1 du.

15 / 21



(Inverse) Transfer Principle

Beef of Proof: Denote

G (s, u) = −bc(H)

a

uH− 1
2

sH− 1
2 (u − s)

3
2
−H

.

Then Lemma 2 has the anti-Volterra equation of the second kind

1

a
1t(s) = L−1(t, s)−

∫ t

s
L−1(t, u)G (s, u) du.

Lemma 1 implies that the solution of the equation in Lemma 2 is

L−1(t, s) =
∞∑
k=1

Gk

[
1

a
1t

]
(s),

where G0 is the identity operator and Gk+1 = GGk . Finally, we
use induction with the formula (α = H − 1

2)∫ u

s
(v − s)kα−1(u − v)α−1 dv =

Γ(kα)Γ(α)

Γ((k + 1)α)
(u − s)(k+1)α−1.
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(Inverse) Transfer Principle

Theorem (1)

The ccmfBm X is an invertible Gaussian Volterra process in the
sense that the process W defined as the abstract Wiener integral

Wt =

∫ t

0
L−1(t, s)dXs

is the Bm from which the ccmfBm is constructed:

Xt =

∫ t

0
L(t, s)dWs .
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(Inverse) Transfer Principle

Theorem ((Inverse) Transfer Principle)

Let f ∈ L2. Let X be the ccmfBm constructed from the Bm W.
Then ∫ T

0
f (t) dXt =

∫ T

0
L∗f (t) dWt ,∫ T

0
f (t) dWt =

∫ T

0
(L∗)−1f (t)dXt ,

where

L∗f (t) = af (t) + b

∫ T

t
f (s)

∂KH

∂s
(s, t)ds,

(L∗)−1f (t) = f (t)L−1(T , t) +

∫ T

t
[f (s)− f (t)] L−1(ds, t).
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Applications

Cameron–Martin–Girsanov–Hitsuda theorem, equivalence of
laws

Maximum likelihood estimation

Prediction laws, bridges, conditional laws

Simulation

Malliavin calculus

...
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Thank you for listening!

Any questions?
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