Gaussian Fredholm Processes

Tommi Sottinen
University of Vaasa, Finland

(Based on a joint work with Lauri Viitasaari, Aalto University, Finland)

Ukraine Mathematics Conference At the End of the Year 2025, 18-19 December, Kyiv, Ukraine (online)

REFERENCES

- SOTTINEN, T. and VIITASAARI, L. (2015) Fredholm representation of multi-parameter Gaussian processes with applications to equivalence in law and series expansions.
 - Modern Stochastics: Theory and Applications, **2**, No 3 (Proceedings of PRESTO-2015 conference), 287–295.
- SOTTINEN, T. and VIITASAARI, L. (2014) Stochastic Analysis of Gaussian Processes via Fredholm Representation.
 International Journal of Stochastic Analysis
 - International Journal of Stochastic Analysis, doi:10.1155/2016/8694365.

ABSTRACT

MOTTO: Gaussian processes are difficult, Brownian motion is easy.

We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion.

We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. In particular, we prove an Itô formula that is, as far as we know, the most general Skorohod-type Itô formula for Gaussian processes so far.

Finally, we give applications to equivalence in law and series expansions of Gaussian processes.

- 1 Fredholm Representation
- 2 Transfer Principle
- 3 Applications
- 4 The Moral of the Story
- 5 An Open Question

- 1 Fredholm Representation
- 2 Transfer Principle
- 3 Applications
- 4 The Moral of the Story
- 5 An Open Question

THEOREM (FREDHOLM REPRESENTATION)

Let $X = (X_t)_{t \in [0,T]}$ be a separable centered Gaussian process. Then there exists a kernel $K_T \in L^2([0,T]^2)$ and a Brownian motion $W = (W_t)_{t \geq 0}$, independent of T, such that

$$X_t = \int_0^T K_T(t,s) \,\mathrm{d}W_s$$

if and only if the covariance R of X satisfies the trace condition

$$\int_0^T R(t,t)\,\mathrm{d}t < \infty.$$

Some General Remarks

- The Fredholm Kernel K_T usually depends on T even if R does not.
- \blacksquare K_T may be assumed to be symmetric.
- K_T is unique in the sense that if there is another representation with kernel \tilde{K}_T , then $\tilde{K}_T = UK_T$ for some unitary operator U on $L^2([0,T])$.
- \blacksquare The Fredholm Representation Theorem holds also for the parameter space \mathbb{R}_+ , but the trace condition seldom holds, i.e. typically

$$\int_0^\infty R(t,t)\,\mathrm{d}t = \infty.$$

■ If the covariance *R* is degenerate, one needs to extend the probability space to carry the Brownian motion.

Some Square-Root Remarks

• K_T (operator) can be constructed from R_T (operator) as the unique positive symmetric square-root, i.e. the operator K_T is a limit of polynomials:

$$K_T = \lim_{n \to \infty} P_n(R_T).$$

 The positive symmetric square-root is different from the Cholesky square-root. Indeed, the Cholesky square-root would correspond the Volterra representation

$$X_t = \int_0^t K(t,s) \, \mathrm{d}W_s.$$

The Volterra representation does not hold for Gaussian processes in general.

Consider a truncated series expansion

$$X_t = \sum_{k=1}^n \int_0^t \mathbf{e}_k^T(t) \,\mathrm{d}t \; \xi_k,$$

where ξ_k are i.i.d. $\sim N(0,1)$ and e_k^T , $k \in \mathbb{N}$, is an orthonormal basis in $L^2([0,T])$.

X is not PURELY NON-DETERMINISTIC. Consequently, X does not admit Volterra representation.

Choosing e_k^T to be the trigonometric basis, X is a finite-rank approximation of the Karhunen–Loève representation of standard Brownian motion on [0,T]. Hence by letting $n\to\infty$ we obtain a standard Brownian motion, and hence a Volterra process.

EXAMPLE II

Let W be the Brownian motion and B the Brownian bridge B. The ORTHOGONAL REPRESENTATION of B is

$$B_t = W_t - \frac{t}{T}W_T.$$

Thus, B has a Fredholm representation with kernel

$$K_T(t,s) = \mathbf{1}_{[0,t)}(s) - \frac{t}{T}.$$

The CANONICAL REPRESENTATION of the Brownian bridge is

$$B_t = (T - t) \int_0^t \frac{1}{T - s} \, \mathrm{d}W_s.$$

Hence B has also a Volterra representation with kernel

$$K(t,s)=\frac{T-t}{T-s}.$$

THE PROOF

By the Mercer's theorem

$$R(t,s) = \sum_{i=1}^{\infty} \lambda_i^T e_i^T(t) e_i^T(s),$$

where $(\lambda_i^T)_{i=1}^{\infty}$ and $(e_i^T)_{i=1}^{\infty}$ are the eigenvalues and the eigenfunctions of the covariance operator

$$R_T f(t) = \int_0^T f(s) R(t,s) ds.$$

Moreover, $(e_i^T)_{i=1}^{\infty}$ is an orthonormal system on $L^2([0, T])$.

Since R_T is a covariance-operator, it admits a square-root operator K_T . By the trace condition R_T is trace-class, and hence K_T is Hilbert-Schmidt. Thus, K_T admits a Kernel.

THE PROOF

Indeed,

$$K_T(t,s) = \sum_{i=1}^{\infty} \sqrt{\lambda_i^T} e_i^T(t) e_i^T(s).$$

Now K_T is obviously symmetric and we have

$$R(t,s) = \int_0^T K_T(t,u) K_T(s,u) du$$

from which the Fredholm Representation follows by enlarging the probability space, if needed.

This shows that the Fredholm representation holds in law. To make it hold in $L^2(\Omega)$ one can construct the Brownian motion associated with X by using $L^2(\Omega)$ isometries by starting from an i.i.d. $\sim N(0,1)$ sequence.

- 1 Fredholm Representation
- 2 Transfer Principle
- 3 Applications
- 4 The Moral of the Story
- 5 An Open Question

Transfer Principle

ADJOINT OPERATORS

The adjoint operator Γ^* of a kernel $\Gamma \in L^2([0, T]^2)$ is defined by linearly extending the relation

$$\Gamma^* \mathbf{1}_{[0,t)} = \Gamma(t,\cdot).$$

Remark

If $\Gamma(\cdot, s)$ is of bounded variation for all s and f is nice enough, then

$$\Gamma^* f(s) = \int_0^T f(t) \Gamma(\mathrm{d}t, s).$$

TRANSFER PRINCIPLE

FOR MALLIAVIN DERIVATIVES AND SKOROHOD INTEGRALS

THEOREM (TRANSFER PRINCIPLE)

Let X be Gaussian Fredholm process with kernel K_T . Let D_T , δ_T , D_T^W and δ_T^W be the Malliavin derivative and the Skorohod integral with respect to X and to the Brownian motion W. Then

$$\delta_T = \delta_T^W K_T^*$$
 and $K_T^* D_T = D_T^W$.

Proof: Trivial.

Transfer Principle

Itô Formula

THEOREM (ITÔ FORMULA)

Let X be centered Gaussian process with covariance R and let $f \in C^2$. Then

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) \, \delta X_s + \frac{1}{2} \int_0^t f''(X_s) \, dR(s, s),$$

if anything.

Proof: Trivial.

- 1 Fredholm Representation
- 2 Transfer Principle
- 3 Applications
- 4 The Moral of the Story
- 5 An Open Question

EQUIVALENCE OF LAWS

Let us show how to use the Fredholm Representation and the Transfer Principle to analyze equivalence of Gaussian laws.

Recall the HITSUDA REPRESENTATION THEOREM: A centered Gaussian process \tilde{W} is equivalent to a Brownian motion W if and only if there exists a Volterra kernel $\ell \in L^2([0,T]^2)$ such that

$$\mathrm{d} \tilde{W}_t = \mathrm{d} W_t + \int_0^t \ell(t,s) \, \mathrm{d} W_s \cdot \mathrm{d} t.$$

Now, let \tilde{X} and X be Gaussian Fredholm processes with

$$ilde{X}_t = \int_0^T ilde{K}_T(t,s) dW_s,$$
 $X_t = \int_0^T K_T(t,s) dW_s.$

EQUIVALENCE OF LAWS

Suppose then that \tilde{X} has (also) representation

$$ilde{X}_t = \int_0^T K_T(t,s) \,\mathrm{d} ilde{W}_s$$

where \tilde{W} and W are equivalent.

Then, obviously \tilde{X} and X are equivalent.

By plugging in the Hitsuda connection we obtain

$$\tilde{X}_t = \int_0^T \left[K_T(t,s) + \int_s^T K_T(t,u) \ell(u,s) \, \mathrm{d}u \right] \mathrm{d}W_s.$$

EQUIVALENCE OF LAWS

THEOREM (EQUIVALENCE OF LAWS)

Let X and \tilde{X} be two Gaussian process with Fredholm kernels K_T and \tilde{K}_T , respectively. If there exists a Volterra kernel $\ell \in L^2([0,T]^2)$ such that

$$ilde{\mathcal{K}}_{\mathcal{T}}(t,s) = \mathcal{K}_{\mathcal{T}}(t,s) + \int_{s}^{\mathcal{T}} \mathcal{K}_{\mathcal{T}}(t,u)\ell(u,s)\,\mathrm{d}u,$$

then X and \tilde{X} are equivalent in law. If the kernel K_T satisfies appropriate non-degeneracy property, then the condition above is also necessary.

SERIES REPRESENTATION

In the same way, as in the case of equivalence of laws, we see that:

THEOREM (SERIES REPRESENTATION)

Let X be a Gaussian Fredholm process with kernel K_T and let φ_k^T , $k \in \mathbb{N}$, be any orthonormal basis in $L^2([0,T])$. Then

$$X_t = \sum_{k=1}^{\infty} \int_0^T K_T(t, s) \varphi_k^T(s) \, \mathrm{d} s \cdot \xi_k,$$

where ξ_k , $k \in \mathbb{N}$, are i.i.d. standard Gaussian random variables. The series above converges in $L^2(\Omega)$; and also almost surely uniformly if and only if X is continuous.

- 1 Fredholm Representation
- 2 Transfer Principle
- 3 Applications
- 4 The Moral of the Story
- 5 An Open Question

THE MORAL OF THE STORY

- In general it is difficult, if not impossible, to construct the K_T satisfying $R_T = K_T^2$ ANALYTICALLY.
- There is an ALGORITHM to construct K_T as a limit of polynomials of R_T : Set

$$Y_0 = 0$$
, $Y_1 = \frac{1}{2}(I - R_T)$, $Y_{n+1} = \frac{1}{2}(I - R_T + Y_n^2)$.

Then

$$K_T = I - Y_{\infty}$$

since

$$Y_{\infty}=\frac{1}{2}(I-R_{T}+Y_{\infty}^{2}).$$

■ Why not start the modeling with the Fredholm representation!

- 1 Fredholm Representation
- 2 Transfer Principle
- 3 Applications
- 4 The Moral of the Story
- 5 An Open Question

An Open Question

It is clear that the Fredholm representation

$$X_t = \int_0^T K_T(t,s) \, \mathrm{d}W_s$$

cannot, in general, be inverted for the Brownian Motion W.

But is it possible to find a GAUSSIAN MARTINGALE M such that we have both Fredholm and inverse Fredholm representations

$$X_t = \int_0^T K_T(t,s) \, \mathrm{d}M_s,$$

$$M_t = \int_0^T K_T^{-1}(t,s) \, \mathrm{d}X_s?$$

Is it possible to make the relations above VOLTERRA?

Thank you for listening! Any questions?