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Abstract

The Stein’s lemma characterizes the Gaussian distribution via an
integration-by-parts formula.

We show that a similar integration-by-parts formula characterizes a
wide class of Gaussian processes, the so-called Gaussian Fredholm
processes.
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Stein’s (Multivariate) Lemma

Stein’s Lemma, a.k.a. the Integration-by-Parts
Characterization, states that a random variable X is standard
normal if and only if

E
[
f ′(X )

]
= E [Xf (X )]

for all smooth and bounded enough f : R → R.

Multivariate Stein’s Lemma states that X = (X1, . . . ,Xd) is
centered Gaussian with covariance R if and only if

E

[
d∑

i=1

Xi
∂

∂xi
f (X )

]
= E

 d∑
i=1

d∑
j=1

Rij
∂2

∂xi∂xj
f (X )


for all smooth and bounded enough f : Rd → R
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Stein’s (Multivariate) Lemma

Let X = (Xt)t∈[0,1] be a centered process with covariance R. The
Multivariate Stein’s Lemma suggests us to guess (wrongly!)
that X is Gaussian if and only if

E

[∫ 1

0
XtDt f (X )dt

]
= E

[∫ 1

0

∫ 1

0
R(t, s)D2

t,s f (X )dsdt

]
,

where D is some kind of Malliavin Derivative.
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Fredholm Representation
The Theorem

Theorem (Fredholm Representation)

Let X = (Xt)t∈[0,1] be a separable centered Gaussian process.
Then there exists a kernel K ∈ L2 × L2 = L2([0, 1]2) and a
Brownian motion W = (Wt)t≥0 such that

Xt =

∫ 1

0
K (t, s) dWs

if and only if the covariance R of X satisfies the trace condition∫ T

0
R(t, t)dt < ∞.
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Pathwise Malliavin Differentiation

Let C∞
p (Rn) denote the space of all polynomially bounded

functions with polynomially bounded partial derivatives of all
orders. Consider functionals f : L2 → C of the form

f (x) = g (z1, . . . , zn) ,

where n ∈ N and g ∈ C∞
p (Rn), and

zk =

∫ 1

0
ek(t) dx(t)

for some elementary functions ek ∈ E . For such f we write f ∈ S.
We call the elements of class S the smooth functionals. The
pathwise Malliavin derivative of such f ∈ S is

Dt f (x) =
n∑

k=1

∂

∂zk
g(z1, . . . , zn) ek(t).
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Pathwise Malliavin Differentiation

More generally, by iteration for every m ∈ N, the pathwise
Malliavin derivative of order m is defined as follows: for every
t1, ..., tm ∈ [0, 1],

Dm
tm,...,t1f (x)

=
∑

1≤k1,...,km≤n

∂m

∂zk1 · · · ∂zkm
g(zk1 , ..., zkn) (ek1 ⊗ · · · ⊗ ekm) (t1, ..., tm).

Remark

Let f ∈ S and y ∈ L2. Then

⟨∇f (x), Iy⟩L2 = ⟨Df (x), y⟩L2
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Strong Form Integration-by-Parts
Characterization

Let K ∗ extend linearly the relation K ∗1t(s) = K (t, s), where
1t = 1[0,t).

Theorem

Let K ∈ L2 × L2. The co-ordinate process X : Ω → L2 is centered
Gaussian with Fredholm kernel K if and only if

E [XtDt f (X )] = E

[∫ 1

0
K (t, s)K ∗ [D2

t, · f (X )
]
(s) ds

]
for all t ∈ [0, 1] and f ∈ S.

14 / 23



Strong IBP, Proof of If Part

Suppose the co-ordinate process X : Ω → L2 satisfies the Strong
IBP Formula. We begin by considering the covariance function of
X , which will justify the use of the Fubini theorem later and make
a tedious variance calculations unnecessary. For this, take
f (X ) = 1

2X
2
u for some u ∈ [0, 1]. Then f ∈ S. We have

Dt f (X ) = Xu1u(t) and D2
t,s f (X ) = 1u(s)1u(t). Consequently,

E [XtXu] 1u(t) = E

[∫ 1

0
K (t, s)K ∗ [1u] (s)ds

]
1u(t)

=

∫ 1

0
K (t, s)K (u, s) ds 1u(t)

= R(t, u)1u(t).

This shows that X has the covariance function R given by the
Fredholm kernel K .
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Strong IBP, Proof of If Part

In particular, we have

E
[
X 2
t

]
=

∫ 1

0
K (t, s)2 ds,

and since K ∈ L2 × L2, we have
∫ 1
0 E

[
X 2
t

]
dt < ∞ which justifies

the use of the Fubini theorem in the rest of the proof. Next we are
going to show that any finite linear combination

Z =
n∑

k=1

ak
(
Xtk − Xtk−1

)
=

∫ 1

0
e(t) dXt

with e =
∑n

k ak1(tk−1,tk ] ∈ E is a Gaussian random variable. Now,
note that for every θ the complex-valued exponential functional
e iθZ = cos(θZ ) + i sin(θZ ) belongs to S, meaning that the real
and imaginary parts both belong to S.

16 / 23



Strong IBP, Proof of If Part

Let φ be the characteristic function of Z . Then

Dte
iθZ = iθe(t) eiθZ ,

D2
t,se

iθZ = −θ2e(t)e(s) eiθZ .

Hence E
[
XtDte

iθZ
]
= iθe(t)E

[
Xte

iθZ
]
. Also, by a direct

application of Fubini theorem

E

[∫ 1

0
K (t, s)K ∗

[
D2
t, · e

iθZ
]
(s) ds

]
= −E

[∫ 1

0
K (t, s)K ∗

[
θ2e(t)e(·)eiθZ

]
(s) ds

]
= −θ2e(t)E

[∫ 1

0
K (t, s)K ∗

[
e(·)eiθZ

]
(s) ds

]
= −θ2e(t)

∫ 1

0
K (t, s)e∗(s)ds E

[
eiθZ

]
,
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Strong IBP, Proof of If Part

where we have denoted e∗ = K ∗e. Consequently, the Strong IBP
Formula yields

iE
[
Xte

iθZ
]
= −θ

∫ 1

0
K (t, s)e∗(s) ds φ(θ).

By Fubini theorem justified by the covariance computation, we also
have

φ′(θ) = E
[
iZ eiθZ

]
.

Thus we obtain that φ′(θ) = −cθ φ(θ), where we have denoted

c =

∫ 1

0

(
n∑

k=1

ak (K (tk , s)− K (tk−1, s)) e
∗(s)

)
ds < ∞.

This implies that φ(θ) = e−
1
2
cθ2 , and since φ is a characteristic

function, c > 0. Consequently, Z is a centered Gaussian random
variable with variance c .
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Strong IBP, Proof of Only If Part

Since the co-ordinate process X : Ω → L2 is Gaussian, we have the
full power of Malliavin calculus at our disposal.

In particular, we can use Malliavin IBP Formula

E[FG ] = E[F ]E[G ] + E
[
⟨DF ,−DL−1G ⟩H

]
.

with F = Dt f (X ) and G = Xt . Since E[Xt ] = 0, we obtain

E [XtDt f (X )] = E
[
⟨D2

t,·f (X ),−DL−1Xt⟩I
]

But −DL−1Xt = 1t and K ∗ is an isometry between I and L2.
Therefore, by noticing that K ∗1t(s) = K (t, s), we obtain
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Strong IBP, Proof of Only If Part

E [XtDt f (X )] = E
[
⟨D2

t,·f (X ), 1t⟩I
]

= E
[
⟨K ∗D2

t,·f (X ),K ∗1t⟩L2
]

= E

[∫ 1

0
K ∗ [D2

t,·f (X )
]
(s)K ∗1t(s) ds

]
= E

[∫ 1

0
K ∗ [D2

t,·f (X )
]
(s)K (t, s)ds

]
showing the claim.
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Weak Form Integration-by-Parts
Characterization

By using Fubini to the Strong IBP Formula, we obtain

Theorem (Weak Integration-by-Parts
Characterization)

Let K ∈ L2 × L2. Assume that the co-ordinate process X : Ω → L2

satisfies X ∈ L2(dt ⊗ P), i.e.∫ 1

0
E
[
X 2
t

]
dt < ∞.

Then X is centered Gaussian with the Fredholm kernel K if and
only if

E

[∫ 1

0
XtDt f (X ) dt

]
= E

[∫ 1

0

∫ 1

0
K (t, s)K ∗ [D2

t, · f (X )
]
(s)dsdt

]
for all f ∈ S.
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Thank you for listening!

Any questions?
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