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Black & Scholes pricing model

In the classical Black & Scholes pricing model
the randomness of the stock price S is due
to Brownian motion W:

dSy = Si(udt + odWi), Sp > 0.

The bond price is By = €.

Parameters p € R, r,0 € R4 supposed to be
known.

Traditionally one assumes that there are no
dividends, no transaction costs, same inter-
est rate r for lending and saving on the bond
and no limitations on short-selling of the
stock.



B-S model, cont.

Some properties of this pricing model:
e T he model is arbitrage free.

e One can give a unique price for options
on the stock S, e.g. the fair price of an
European call-option (Sp — K)T is

So®(y1) — Ke "o (yn), (1)
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e One can hedge options using the Ito-
Clark-Ocone formula.



Discussion

According to the B & S - model the log-

returns
St

St—1
should be independent normal variables.

R; :=log

e [ he dependence structure of the log-
returns have been studied using the Hurst
parameter H. In the independent case
one should have H = % However, some
studies show that H ~ .6.

e [ here are empirical studies indicating
that the log-returns are not normal.

To overcome with the first critical point, it
has been proposed that one should replace
the Brownian motion W by fractional Brow-
nian motion.

[We will ignore completely the second critical
point in what follows.]



Fractional Brownian motion

Fractional Brownian motion Z is a continu-
ous and centered Gaussian process with sta-
tionary increments and variance

EZ? = t°H.

The parameter H allows us to model the
statistical long-range dependence of the log-
returns. In financial modeling it is assumed
that 5 < H < 1.

Replace W with Z and consider the following
dynamics for the stock price S

dS; = Si(udt + odZy). (2)

The solution to (2) is called a geometric frac-
tional Brownian motion.



Fractional B-S model

Problems:

(a) How to define the stochastic integral (2)7

(b) Is the modified pricing model arbitrage
free?

(c) Is the modified pricing model complete,
i.e. is there a fractional analogue of the
Ito-Clark-Ocone formula?

For the problem (a) two possible definitions:
path-wise definition and definition based on
generalized stochastic processes.




fractional B - S model, cont.

Path-wise solution to (2) is

St = Soexp(ut + oZy)

and generalized solution is

2
St = Spgexp(ut — %tQH + o Z4).

With generalized solutions to (2) the frac-
tional pricing model is arbitrage free and
complete, i.e. problems (b) and (c) are
solved [H®@]. However, it seems to be diffi-
cult to give an economical interpretation to
the formulas.

With path-wise solutions to (2) and with con-
tinuous trading one can do arbitrage in the
fractional pricing model [C,Sh]. Surprisingly,
the arbitrage arises in a modified binomial
approximation [SO].



European options in fractional

models

Using a weak pricing principle one can com-
pute the prices of European options in the
path-wise fractional model [V]. These prices
coincide with the ones obtained in the gen-
eralized model [HQ].

E.g. the price of an call-option (S; — K)7T is

So®(y1(H)) — Ke "t (ya(H)), (3)

where
() — Iog 0+ T+ % o?2H
yl - O'TH 9
2
(H) — Iog 0 4 pT — T2H
y2 - O'TH .

Note that (3) converges to (1) as H — 5.



Other topics

e Mixed models: W — W 4+ Z [C,MV].

e Regularizations of the fractional Brown-
ian motion [C].
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