Local Continuity of Stopping Times and Arbitrage

Tommi Sottinen

Reykjavík University

Vienna, September 17-22, 2007

Workshop and Mid-Term Conference on Advanced Mathematical Methods for Finance
Outline

1. Quadratic Variation Market Models with Conditional Small-Ball Property
2. No-Arbitrage with Allowed Strategies
3. Locally Continuous Stopping Times
4. No-Arbitrage with Stopping-Allowed Strategies
5. No-Arbitrage with Simple Strategies
Outline

1 Quadratic Variation Market Models with Conditional Small-Ball Property

2 No-Arbitrage with Allowed Strategies

3 Locally Continuous Stopping Times

4 No-Arbitrage with Stopping-Allowed Strategies

5 No-Arbitrage with Simple Strategies
We assume that the stock-price process $S = (S_t)_{t \in [0,T]}$ is (almost surely) continuous, strictly positive, starts from s_0, and the information used in trading is generated by it.
We assume that the stock-price process \(S = (S_t)_{t \in [0, T]} \) is (almost surely) continuous, strictly positive, starts from \(s_0 \), and the information used in trading is generated by it.

So, we work in the canonical space \(\Omega = C_{s_0, \sigma} [0, T] \) with \(S_t(\eta) = \eta(t) \) and

\[
\mathcal{F}_t = \sigma \{ \eta(s); s \leq t \},
\]

\(\mathcal{F} = \mathcal{F}_T \). (The index \(\sigma > 0 \) will be explained in the next slide.)
We assume that almost surely the stock-price process has the **quadratic variation** of the Black-Scholes model:

\[d\langle S\rangle_t = \sigma^2 S_t^2 dt. \]
We assume that almost surely the stock-price process has the QUADRATIC VARIATION of the Black-Scholes model:

$$d\langle S\rangle_t = \sigma^2 S_t^2 dt.$$

We assume that the following CONDITIONAL SMALL-BALL PROPERTY is satisfied:

$$P \left[\sup_{t \in [\tau, T]} |S_t - \eta(t)| < \varepsilon \left| F_{\tau} \right. \right] > 0$$

P-a.s. for all paths η, positive ε, and stopping times τ.

So, we have a collection of models P on the canonical filtered space $C_{[0, T]}$, where P is restricted only by the assumptions of QUADRATIC VARIATION and CONDITIONAL SMALL-BALL PROPERTY.
We assume that almost surely the stock-price process has the **quadratic variation** of the Black-Scholes model:

\[d\langle S\rangle_t = \sigma^2 S_t^2 \, dt. \]

We assume that the following **conditional small-ball property** is satisfied:

\[
P\left[\sup_{t \in [\tau, T]} |S_t - \eta(t)| < \varepsilon \mid \mathcal{F}_\tau \right] > 0
\]

\(P\)-a.s. for all paths \(\eta\), positive \(\varepsilon\), and stopping times \(\tau\).

So, we have a collection of models \(P\) on the canonical filtered space \(C_{s_0, \sigma}[0, T]\), where \(P\) is restricted only by the assumptions of quadratic variation and conditional small-ball property.
1. Quadratic Variation Market Models with Conditional Small-Ball Property

2. No-Arbitrage with Allowed Strategies

3. Locally Continuous Stopping Times

4. No-Arbitrage with Stopping-Allowed Strategies

5. No-Arbitrage with Simple Strategies
In [BSV] (Bender, Sottinen, Valkeila: No-arbitrage pricing beyond semimartingales. WIAS Preprint No. 1110, 2006) we showed that with strategies that depend in a smooth way on time, spot, running maximum, running minimum and such one cannot make arbitrage in quadratic-variation small-ball models. These strategies were called **ALLOWED**
In [BSV] (Bender, Sottinen, Valkeila: No-arbitrage pricing beyond semimartingales. WIAS Preprint No. 1110, 2006) we showed that with strategies that depend in a smooth way on time, spot, running maximum, running minimum and such one cannot make arbitrage in quadratic-variation small-ball models. These strategies were called **ALLOWED**

The no-arbitrage result followed basically from the fact that we can write the value $V_t(\Phi)(\eta)$ of an allowed strategy (almost surely) by using a value functional $\nu(t, \eta; \varphi)$:

$$V_t(\Phi)(\eta) = V_0(\Phi)(\eta) + \nu(t, \eta; \varphi) \quad \text{for } P\text{-a.a. } \eta,$$

and $\nu(t, \eta; \varphi)$ is continuous in η uniformly in t. Here φ is the strategy functional associated to Φ:

$$\Phi_t(\eta) = \varphi\left(t, \eta(t), g_1(t, \eta), \ldots, g_m(t, \eta)\right),$$

where φ is smooth and g_1, \ldots, g_m are **HINDSIGHT FACTORS**.
The allowed strategies are natural from the hedging point of view: Hedging strategies of typical options are of this type. However, from the no-arbitrage point of view the allowed strategies are not so natural: They do not include stopping times.
No-Arbitrage with Allowed Strategies

The allowed strategies are natural from the hedging point of view: Hedging strategies of typical options are of this type. However, from the no-arbitrage point of view the allowed strategies are not so natural: They do not include stopping times.

In this talk we extend the no-arbitrage result of [BSV] to strategies that include certain kind of stopping times. The key concept is LOCAL CONTINUITY.
No-Arbitrage with Allowed Strategies

The allowed strategies are natural from the hedging point of view: Hedging strategies of typical options are of this type. However, from the no-arbitrage point of view the allowed strategies are not so natural: They do not include stopping times.

In this talk we extend the no-arbitrage result of [BSV] to strategies that include certain kind of stopping times. The key concept is **local continuity**.

While stopping times are rarely continuous, the author is not aware of any (reasonable) stopping time that is not locally continuous.
Outline

1. Quadratic Variation Market Models with Conditional Small-Ball Property

2. No-Arbitrage with Allowed Strategies

3. Locally Continuous Stopping Times

4. No-Arbitrage with Stopping-Allowed Strategies

5. No-Arbitrage with Simple Strategies
Definition (Local Continuity)

Let \mathcal{X} and \mathcal{Y} be metric spaces. A function $f : \mathcal{X} \to \mathcal{Y}$ is **locally continuous** if for all $x \in \mathcal{X}$ there exists an open $U_x \subset \mathcal{X}$ such that $x \in \bar{U}_x$ and $f(x_n) \to f(x)$ whenever $x_n \to x$ in U_x.

Example

An indicator $1_A : \mathbb{R} \to \mathbb{R}$ is **locally continuous** if $A = \bar{G}$, G is open, 2 is not locally continuous if A has an isolated point.
Definition (Local Continuity)

Let \mathcal{X} and \mathcal{Y} be metric spaces. A function $f : \mathcal{X} \to \mathcal{Y}$ is **locally continuous** if for all $x \in \mathcal{X}$ there exists an open $U_x \subset \mathcal{X}$ such that $x \in \bar{U}_x$ and $f(x_n) \to f(x)$ whenever $x_n \to x$ in U_x.

Local continuity at x is continuity from the direction U_x. If $x \in U_x$ then local continuity is continuity.
Locally Continuous Stopping Times

Definition (Local Continuity)

Let \mathcal{X} and \mathcal{Y} be metric spaces. A function $f : \mathcal{X} \rightarrow \mathcal{Y}$ is **locally continuous** if for all $x \in \mathcal{X}$ there exists an open $U_x \subset \mathcal{X}$ such that $x \in \bar{U}_x$ and $f(x_n) \rightarrow f(x)$ whenever $x_n \rightarrow x$ in U_x.

Local continuity at x is continuity from the direction U_x. If $x \in U_x$ then local continuity is continuity.

Example

An indicator $1_A : \mathbb{R} \rightarrow \mathbb{R}$

1. is locally continuous if $A = \bar{G}$, G is open,
2. is not locally continuous if A has an isolated point.
Locally Continuous Stopping Times

The following stopping times $\tau : C_{s_0,\sigma}[0, T] \rightarrow [0, T]$ are locally continuous.

Example 1

$\tau(\eta) = \inf\{t; \eta(t) \in F\}$, F is closed,

Example 2

$\tau(\eta) = \inf\{t; \psi(t, \eta) \in \bar{G}\}$, ψ is continuous and G is open,

Example 3

$\tau(\eta) = \inf\{t; (t, \eta) \in \bar{U}\}$, U is open.

In the case (3) above we say that τ is fat. All the stopping times in the example above are fat.

The functionals in the example above are locally continuous even if they were not stopping times.
The following stopping times $\tau : C_{s_0,\sigma}[0, T] \to [0, T]$ are locally continuous.

Example
The following stopping times $\tau : C_{s_0, \sigma}[0, T] \to [0, T]$ are locally continuous.

Example

1. $\tau(\eta) = \inf\{t; \eta(t) \in F\}$, F is closed,
Locally Continuous Stopping Times

The following stopping times $\tau : C_{s0,\sigma}[0, T] \rightarrow [0, T]$ are locally continuous.

Example

1. $\tau(\eta) = \inf\{t; \eta(t) \in F\}$, F is closed,
2. $\tau(\eta) = \inf\{t; \psi(t, \eta) \in \bar{G}\}$, ψ is continuous and G is open,
The following stopping times $\tau : C_{s_0,\sigma}[0, T] \rightarrow [0, T]$ are locally continuous.

Example

1. $\tau(\eta) = \inf\{t; \eta(t) \in F\}$, F is closed,
2. $\tau(\eta) = \inf\{t; \psi(t, \eta) \in \bar{G}\}$, ψ is continuous and G is open,
3. $\tau(\eta) = \inf\{t; (t, \eta) \in \bar{U}\}$, U is open.
Locally Continuous Stopping Times

The following stopping times \(\tau : C_{s_0,\sigma}[0, T] \rightarrow [0, T] \) are locally continuous.

Example

1. \(\tau(\eta) = \inf\{t; \eta(t) \in F\}, \) if \(F \) is closed,
2. \(\tau(\eta) = \inf\{t; \psi(t, \eta) \in \bar{G}\}, \) if \(\psi \) is continuous and \(G \) is open,
3. \(\tau(\eta) = \inf\{t; (t, \eta) \in \bar{U}\}, \) if \(U \) is open.

In the case (3) above we say that \(\tau \) is **FAT**. All the stopping times in the example above are fat.
The following stopping times $\tau : C_{s0,\sigma}[0, T] \rightarrow [0, T]$ are locally continuous.

Example

1. $\tau(\eta) = \inf\{t; \eta(t) \in F\}, \ F \text{ is closed},$
2. $\tau(\eta) = \inf\{t; \psi(t, \eta) \in \bar{G}\}, \ \psi \text{ is continuous and } G \text{ is open},$
3. $\tau(\eta) = \inf\{t; (t, \eta) \in \bar{U}\}, \ U \text{ is open}.$

In the case (3) above we say that τ is **FAT**. All the stopping times in the example above are fat.

The functionals in the example above are locally continuous even if they were not stopping times.
Outline

1 Quadratic Variation Market Models with Conditional Small-Ball Property

2 No-Arbitrage with Allowed Strategies

3 Locally Continuous Stopping Times

4 No-Arbitrage with Stopping-Allowed Strategies

5 No-Arbitrage with Simple Strategies
A trading strategy Φ is **Stopping-Allowed** if it is of the form

$$
\Phi_t = \sum_{k=1}^{n} \Phi^{(k)}_t 1_{(\tau_k, \tau_{k+1}]}(t),
$$

where the $\Phi^{(k)}$'s are allowed and τ_k's are locally continuous.
No-Arbitrage with Stopping-Allowed Strategies

Definition (Stopping-Allowed Strategies)

A trading strategy \(\Phi \) is \textbf{Stopping-Allowed} if it is of the form

\[
\Phi_t = \sum_{k=1}^{n} \Phi_t^{(k)} 1_{(\tau_k, \tau_{k+1}]}(t),
\]

where the \(\Phi^{(k)} \)'s are allowed and \(\tau_k \)'s are locally continuous.

The definition above is understood in the conditional sense, i.e. \(\Phi^{(k)} \) may depend on on \(\mathcal{F}_{\tau_k} \) and \(\tau_{k+1} \geq \tau_k \) is locally continuous in the conditioned, or quotient, space \(\mathcal{C}_{S_{\tau_k}, \sigma}[\tau_k, T] \).
Theorem (No-Arbitrage with Stopping-Allowed Strategies)

Let Φ be a stopping-allowed strategy. Then Φ is not an arbitrage opportunity.
Theorem (No-Arbitrage with Stopping-Allowed Strategies)

Let Φ be a stopping-allowed strategy. Then Φ is not an arbitrage opportunity.

Theorem (No-Arbitrage with Stopping-Allowed Strategies) follows by applying the conditional small-ball property n times with the following lemma:
No-Arbitrage with Stopping-Allowed Strategies

Theorem (No-Arbitrage with Stopping-Allowed Strategies)

Let Φ be a stopping-allowed strategy. Then Φ is not an arbitrage opportunity.

Theorem (No-Arbitrage with Stopping-Allowed Strategies) follows by applying the conditional small-ball property n times with the following lemma:

Lemma (No-Arbitrage with Take-the-Money-and-Run Strategies)

Let Φ be allowed strategy and let τ be a locally continuous stopping time. Then $\Phi 1_{[0,\tau]}$ is not an arbitrage opportunity.
No-Arbitrage with Stopping-Allowed Strategies

Let $\Phi_{[0,\tau]}$ be a candidate for an arbitrage opportunity: $V_0(\Phi_{[0,\tau]}) = 0$ and $V_T(\Phi_{[0,\tau]}) \geq 0 \ P$-a.s., or $v(\tau(\eta),\eta;\phi) \geq 0$ for P-a.a. η.

We show that $v(\tau(\eta),\eta;\phi) \geq 0$ for all η:

Suppose that $v(\tau(\eta_0),\eta_0;\phi) < 0$ for some η_0. Let U_{η_0} be the local continuity set of τ at η_0. Since $v(t,\cdot;\phi)$ is continuous uniformly in t we see that $v(\tau(\cdot),\cdot;\phi)$ is continuous on U_{η_0}.

So, there must be a ball $B \subset U_{\eta_0}$ such that $v(\tau(\eta),\eta;\phi) < 0$ for all $\eta \in B$.

But due to the small-ball property this means that $P[V_T(\Phi_{[0,\tau]}) < 0] > 0$, which is a contradiction.

Let $\Phi_{[0,\tau]}$ be a candidate for an arbitrage opportunity:

$V_0(\Phi_{[0,\tau]}) = 0$ and $V_T(\Phi_{[0,\tau]}) \geq 0$ P-a.s., or

$v(\tau(\eta), \eta; \varphi) \geq 0$ for P-a.a. η.

Let $\Phi_1[0,\tau]$ be a candidate for an arbitrage opportunity: $V_0(\Phi_1[0,\tau]) = 0$ and $V_T(\Phi_1[0,\tau]) \geq 0$ \mathbb{P}-a.s., or

$$v(\tau(\eta), \eta; \varphi) \geq 0 \quad \text{for } \mathbb{P}\text{-a.a. } \eta.$$

We show that $v(\tau(\eta), \eta; \varphi) \geq 0$ for all η:

No-Arbitrage with Stopping-Allowed Strategies

Let \(\Phi_{1[0,\tau]} \) be a candidate for an arbitrage opportunity:
\[V_0(\Phi_{1[0,\tau]}) = 0 \text{ and } V_T(\Phi_{1[0,\tau]}) \geq 0 \text{ P-a.s., or} \]

\[v(\tau(\eta), \eta; \varphi) \geq 0 \text{ for P-a.a. } \eta. \]

We show that \(v(\tau(\eta), \eta; \varphi) \geq 0 \) for all \(\eta \): Suppose that \(v(\tau(\eta_0), \eta_0; \varphi) < 0 \) for some \(\eta_0 \).
No-Arbitrage with Stopping-Allowed Strategies

Let $\Phi_{1[0,\tau]}$ be a candidate for an arbitrage opportunity: $V_0(\Phi_{1[0,\tau]}) = 0$ and $V_T(\Phi_{1[0,\tau]}) \geq 0$ P-a.s., or

$$v(\tau(\eta), \eta; \varphi) \geq 0 \quad \text{for } P\text{-a.a. } \eta.$$

We show that $v(\tau(\eta), \eta; \varphi) \geq 0$ for all η: Suppose that $v(\tau(\eta_0), \eta_0; \varphi) < 0$ for some η_0. Let U_{η_0} be the local continuity set of τ at η_0. Since $v(t, \cdot; \varphi)$ is continuous uniformly in t we see that $v(\tau(\cdot), \cdot; \varphi)$ is continuous on U_{η_0}.

Let $\Phi_{1[0,\tau]}$ be a candidate for an arbitrage opportunity:

$V_0(\Phi_{1[0,\tau]}) = 0$ and $V_T(\Phi_{1[0,\tau]}) \geq 0 \text{ P-a.s.}$, or

$$v(\tau(\eta), \eta; \varphi) \geq 0 \quad \text{for P-a.a. } \eta.$$

We show that $v(\tau(\eta), \eta; \varphi) \geq 0$ for all η: Suppose that $v(\tau(\eta_0), \eta_0; \varphi) < 0$ for some η_0. Let U_{η_0} be the local continuity set of τ at η_0. Since $v(t, \cdot; \varphi)$ is continuous uniformly in t we see that $v(\tau(\cdot), \cdot; \varphi)$ is continuous on U_{η_0}. So, there must be a ball $B \subset U_{\eta_0}$ such that $v(\tau(\eta), \eta; \varphi) < 0$ for all $\eta \in B$.

Let $\Phi_{1[0,\tau]}$ be a candidate for an arbitrage opportunity: $V_0(\Phi_{1[0,\tau]}) = 0$ and $V_T(\Phi_{1[0,\tau]}) \geq 0$ P-a.s., or

$$v(\tau(\eta), \eta; \varphi) \geq 0$$

for P-a.a. η.

We show that $v(\tau(\eta), \eta; \varphi) \geq 0$ for all η: Suppose that $v(\tau(\eta_0), \eta_0; \varphi) < 0$ for some η_0. Let U_{η_0} be the local continuity set of τ at η_0. Since $v(t, \cdot; \varphi)$ is continuous uniformly in t we see that $v(\tau(\cdot), \cdot; \varphi)$ is continuous on U_{η_0}. So, there must be a ball $B \subset U_{\eta_0}$ such that $v(\tau(\eta), \eta; \varphi) < 0$ for all $\eta \in B$. But due to the small-ball property this means that $P[V_T(\Phi_{1[0,\tau]}) < 0] > 0$, which is a contradiction.

Since $\nu(\tau(\eta), \eta; \varphi) \geq 0$ for all η we have in particular that $V_T(\Phi 1_{[0,\tau]}) \geq 0 \tilde{P}$-a.s. ($\tilde{P}$ stands for the Black-Scholes reference model).
No-Arbitrage with Stopping-Allowed Strategies

Since $\nu(\tau(\eta), \eta; \varphi) \geq 0$ for all η we have in particular that $V_T(\Phi 1_{[0,\tau]}) \geq 0$ $\tilde{\mathbb{P}}$-a.s. ($\tilde{\mathbb{P}}$ stands for the Black-Scholes reference model). The classical theory then tells us that $V_T(\Phi 1_{[0,\tau]}) = 0$ $\tilde{\mathbb{P}}$-a.s.
No-Arbitrage with Stopping-Allowed Strategies

Since $\nu(\tau(\eta), \eta; \varphi) \geq 0$ for all η we have in particular that $V_T(\Phi 1_{[0, \tau]}) \geq 0 \tilde{P}$-a.s. ($\tilde{P}$ stands for the Black-Scholes reference model). The classical theory then tells us that $V_T(\Phi 1_{[0, \tau]}) = 0 \tilde{P}$-a.s. Then, by using the local continuity as before, we see that $\nu(\tau(\eta), \eta; \varphi) = 0$ for all η.

Since \(\nu(\tau(\eta), \eta; \varphi) \geq 0 \) for all \(\eta \) we have in particular that
\[V_T(\Phi 1_{[0,\tau]}) \geq 0 \tilde{\mathbb{P}}\text{-a.s.} \] (\(\tilde{\mathbb{P}} \) stands for the Black-Scholes reference model). The classical theory then tells us that \(V_T(\Phi 1_{[0,\tau]}) = 0 \tilde{\mathbb{P}}\text{-a.s.} \). Then, by using the local continuity as before, we see that \(\nu(\tau(\eta), \eta; \varphi) = 0 \) for all \(\eta \). But this means that \(V(\Phi 1_{[0,\tau]}) = 0 \mathbb{P}\text{-a.s.} \). So, \(\Phi 1_{[0,\tau]} \) is not an arbitrage opportunity. \(\square \)
By using the conditional small-ball property instead of an unconditional one we see that Lemma (No-Arbitrage with Take-the-Money-and-Run Strategies) can be strengthened to:

\[\Phi^{(k)} \mathbf{1}_{(\tau_k, \tau_{k+1}]} \]

is not an arbitrage opportunity. Here the allowed strategy \(\Phi^{(k)} \) may depend additionally on \(\mathcal{F}_{\tau_k} \), and \(\tau_{k+1} \) is locally continuous on the quotient, or conditioned, space \(\mathcal{C}_{S_{\tau_k}, \sigma[\tau_k, T]} \).
No-Arbitrage with Stopping-Alowed Strategies

Proof of Theorem (No-Arbitrage with Stopping-Alowed Strategies).

By using the conditional small-ball property instead of an unconditional one we see that Lemma (No-Arbitrage with Take-the-Money-and-Run Strategies) can be strengthened to:

\[\Phi^{(k)} \mathbf{1}_{(\tau_k, \tau_{k+1}]} \]

is not an arbitrage opportunity. Here the allowed strategy \(\Phi^{(k)} \) may depend additionally on \(\mathcal{F}_{\tau_k} \), and \(\tau_{k+1} \) is locally continuous on the quotient, or conditioned, space \(\mathcal{C}_{S_{\tau_k}, \sigma[\tau_k, T]} \).

But this means that the stopping-allowed strategy \(\Phi \) does not generate arbitrage on any of the stochastic intervals \((\tau_k, \tau_{k+1}]\). Hence, it cannot generate arbitrage on the interval \([0, T]\). \(\square\)
Outline

1. Quadratic Variation Market Models with Conditional Small-Ball Property

2. No-Arbitrage with Allowed Strategies

3. Locally Continuous Stopping Times

4. No-Arbitrage with Stopping-Allowed Strategies

5. No-Arbitrage with Simple Strategies
We have shown that combinations of allowed strategies are free of arbitrage if the switching between the strategies is done with locally continuous stopping times.
No-Arbitrage with Simple Strategies

We have shown that combinations of allowed strategies are free of arbitrage if the switching between the strategies is done with locally continuous stopping times.

Following an allowed strategy means continuous trading. In practise continuous trading is impossible: Trading strategy is constant between switching.
We have shown that combinations of allowed strategies are free of arbitrage if the switching between the strategies is done with locally continuous stopping times.

Following an allowed strategy means continuous trading. In practise continuous trading is impossible: Trading strategy is constant between switching.

If we assume that the trading strategy is constant between the switching stopping times we can weaken the local continuity assumption.
We have shown that combinations of allowed strategies are free of arbitrage if the switching between the strategies is done with locally continuous stopping times.

Following an allowed strategy means continuous trading. In practise continuous trading is impossible: Trading strategy is constant between switching.

If we assume that the trading strategy is constant between the switching stopping times we can weaken the local continuity assumption.

One way to weaken the assumption is to ask only local lower semi-continuity instead of local “full” continuity.
Definition (Local Lower Semi-Continuity)

Let \mathcal{X} be a metric space and let \mathcal{Y} be an ordered complete metric space. A function $f : \mathcal{X} \rightarrow \mathcal{Y}$ is **locally lower semi-continuous** if for all $x \in \mathcal{X}$ there exists an open $U_x \subset \mathcal{X}$ such that $x \in \overline{U}_x$ and $\liminf f(x_n) \geq f(x)$ whenever $x_n \rightarrow x$ in U_x.

Example

An indicator $1_A : \mathcal{X} \rightarrow \mathbb{R}$ is locally lower semi-continuous if for all $x \in A$ and $\varepsilon > 0$ there exists a ball $B \subset A$ such that $\operatorname{dist}(x, B) < \varepsilon$.

No-Arbitrage with Simple Strategies
No-Arbitrage with Simple Strategies

Definition (Local Lower Semi-Continuity)

Let \mathcal{X} be a metric space and let \mathcal{Y} be an ordered complete metric space. A function $f : \mathcal{X} \to \mathcal{Y}$ is **locally lower semi-continuous** if for all $x \in \mathcal{X}$ there exists an open $U_x \subset \mathcal{X}$ such that $x \in \bar{U}_x$ and $\liminf f(x_n) \geq f(x)$ whenever $x_n \to x$ in U_x.

Example

An indicator $1_A : \mathcal{X} \to \mathbb{R}$ is locally lower semi-continuous if for all $x \in A$ and $\varepsilon > 0$ there exists a ball $B \subset A$ such that $\text{dist}(x, B) < \varepsilon$.
Definition (Simple Strategy)

A trading \(\Phi \) strategy is **SIMPLE** if it is of the form

\[
\Phi_t = \sum_{k=1}^{n} \xi_k 1_{(\tau_k, \tau_{k+1}]},
\]

where \(\tau_k \) is locally lower semi-continuous stopping times (relative to \(\tau_{k-1} \)) and \(\xi_k \)'s are \(\mathcal{F}_{\tau_k} \) measurable.
No-Arbitrage with Simple Strategies

Definition (Simple Strategy)

A trading \(\Phi \) strategy is **simple** if it is of the form

\[
\Phi_t = \sum_{k=1}^{n} \xi_k 1_{(\tau_k, \tau_{k+1}]},
\]

where \(\tau_k \) is locally lower semi-continuous stopping times (relative to \(\tau_{k-1} \)) and \(\xi_k \)'s are \(\mathcal{F}_{\tau_k} \) measurable.

Theorem (No-Arbitrage with Simple Strategies)

Let \(\Phi \) be a simple strategy. Then \(\Phi \) is not an arbitrage opportunity.
Before going to the proof of Theorem (No-Arbitrage with Simple Strategies) let us note that the theorem is true even without the assumption on the quadratic variation. In contrast, Theorem (No-Arbitrage with Stopping-Allowed Strategies) fails to be true if the quadratic variation vanishes.
Before going to the proof of Theorem (No-Arbitrage with Simple Strategies) let us note that the theorem is true even without the assumption on the quadratic variation. In contrast, Theorem (No-Arbitrage with Stopping-Allowed Strategies) fails to be true if the quadratic variation vanishes.

Because of the “time-linearity” of the arbitrage and conditional small-ball property it is enough to show the following:
Before going to the proof of Theorem (No-Arbitrage with Simple Strategies) let us note that the theorem is true even without the assumption on the quadratic variation. In contrast, Theorem (No-Arbitrage with Stopping-Allowed Strategies) fails to be true if the quadratic variation vanishes.

Because of the “time-linearity” of the arbitrage and conditional small-ball property it is enough to show the following:

Lemma (Up’n’Down)

Let τ be locally lower semi-continuous stopping time. Then

\[P[S_\tau > s_0] > 0 \quad \text{and} \quad P[S_\tau < s_0] > 0. \]
Proof of Lemma (Up’n’Down).

We show that \(P[S_\tau > s_0] > 0 \); the case \(P[S_\tau < s_0] > 0 \) is symmetric.
No-Arbitrage with Simple Strategies

Proof of Lemma (Up’n’Down).

We show that \(P[S_\tau > s_0] > 0 \); the case \(P[S_\tau < s_0] > 0 \) is symmetric.

We show that the set \(\{S_\tau > s_0\} = \{\eta; \eta(\tau(\eta)) > s_0\} \) contains a ball. Then the claim will follow from the small-ball property.
Proof of Lemma (Up’n’Down).

We show that $\mathbb{P}[S_\tau > s_0] > 0$; the case $\mathbb{P}[S_\tau < s_0] > 0$ is symmetric.

We show that the set $\{S_\tau > s_0\} = \{\eta; \eta(\tau(\eta)) > s_0\}$ contains a ball. Then the claim will follow from the small-ball property.

Fix an increasing and concave path η_0 with $\eta_0(0) = s_0$ and a local lower semi-continuity set U_{η_0} of τ at η_0.

No-Arbitrage with Simple Strategies
Proof of Lemma (Up’n’Down).

We show that $P[S_\tau > s_0] > 0$; the case $P[S_\tau < s_0] > 0$ is symmetric.

We show that the set $\{S_\tau > s_0\} = \{\eta; \eta(\tau(\eta)) > s_0\}$ contains a ball. Then the claim will follow from the small-ball property.

Fix an increasing and concave path η_0 with $\eta_0(0) = s_0$ and a local lower semi-continuity set U_{η_0} of τ at η_0.

Since τ is lower semi-continuous on U_{η_0} we can find such an $\varepsilon < 1/2 (\eta_0(\tau(\eta_0)) - s_0)$ that $\tau(\eta) \geq 1/2 \tau(\eta_0)$ whenever $\eta \in B$, where B is some ball contained in $B_{\eta_0}(\varepsilon) \cap U_{\eta_0}$.
Proof of Lemma (Up’n’Down).

Since η_0 is increasing and concave

\[
\begin{align*}
\eta(\tau(\eta)) & > \eta_0(\tau(\eta)) - \frac{1}{2} (\eta_0(\tau(\eta)) - s_0) \\
& \geq \eta_0 \left(\frac{1}{2} \tau(\eta_0) \right) - \frac{1}{2} \eta_0(\tau(\eta_0)) + \frac{1}{2} s_0 \\
& \geq \frac{1}{2} \eta_0(0) + \frac{1}{2} s_0 = s_0.
\end{align*}
\]

So, the ball B is contained in the set $\{S_{\tau(\eta)} > s_0\}$, which implies that $P[S_{\tau(\eta)} > s_0] > 0$. □
Proof of Lemma (Up’n’Down).

Since η_0 is increasing and concave

$$
\eta(\tau(\eta)) > \eta_0(\tau(\eta)) - \frac{1}{2} (\eta_0(\tau(\eta_0)) - s_0)
\geq \eta_0 \left(\frac{1}{2} \tau(\eta_0) \right) - \frac{1}{2} \eta_0(\tau(\eta_0)) + \frac{1}{2} s_0
\geq \frac{1}{2} \eta_0(0) + \frac{1}{2} s_0 = s_0.
$$

So, the ball B is contained in the set $\{ S_\tau > s_0 \}$, which implies that $P[S_\tau > s_0] > 0$.

The Lemma (Up’n’Down) is true with local lower semi-continuity replaced by a weaker assumption of ε-DELAY:

For all η_0 there are positive $\varepsilon = \varepsilon(\eta_0)$ and $\delta = \delta(\eta_0)$ such that

$$\tau(\eta) \geq \varepsilon \quad \text{when} \quad \eta \in B_{\eta_0}(\delta).$$
Remark (ε-delay)

The Lemma (Up’n’Down) is true with local lower semi-continuity replaced by a weaker assumption of ε-delay:

For all η_0 there are positive $\varepsilon = \varepsilon(\eta_0)$ and $\delta = \delta(\eta_0)$ such that

$$\tau(\eta) \geq \varepsilon \quad \text{when} \quad \eta \in B_{\eta_0}(\delta).$$

- The End -