Local continuity

(for stopping times)

Tommi Sottinen

Reykjavík University

Finnish mathematical days — 4th January 2008
1. Local Continuity

2. Stopping Times

3. Options, Arbitrage, and Replication

4. Market Models with Quadratic Variation and Small-Balls
Outline

1 Local Continuity

2 Stopping Times

3 Options, Arbitrage, and Replication

4 Market Models with Quadratic Variation and Small-Balls
Local Continuity

Topological Definition

Definition (Local Continuity (Topological) ?)

A function \(f : \mathcal{X} \to \mathcal{Y} \) between topological spaces is **locally continuous** at \(x \in \mathcal{X} \) if there exists a set \(U_x \subset \mathcal{X} \) such that

1. \(U_x \) is open,
2. \(x \in \overline{U}_x \),
3. for every neighbourhood \(V \) of \(f(x) \) there exists a neighbourhood \(W \) of \(x \) such that \(f(W \cap U_x) \subset V \).

Remark

The set \(W \cap U_x \) is a non-empty open set.
Local Continuity
Topological Definition

Definition (Local Continuity (Topological) ?)

A function $f : \mathcal{X} \to \mathcal{Y}$ between topological spaces is **locally continuous at $x \in \mathcal{X}$** if there exists a set $U_x \subset \mathcal{X}$ such that

(I) U_x is open,

(II) $x \in \overline{U}_x$,

(III) for every neighbourhood $V_{f(x)}$ of $f(x) \in \mathcal{Y}$ there exists a neighbourhood W_x of $x \in \mathcal{X}$ such that

$$f [W_x \cap U_x] \subset V_{f(x)}.$$
Definition (Local Continuity (Topological) ?)

A function $f : \mathcal{X} \rightarrow \mathcal{Y}$ between topological spaces is **locally continuous at** $x \in \mathcal{X}$ if there exists a set $U_x \subset \mathcal{X}$ such that

(I) U_x is open,

(II) $x \in \overline{U}_x$,

(III) for every neighbourhood $V_{f(x)}$ of $f(x) \in \mathcal{Y}$ there exists a neighbourhood W_x of $x \in \mathcal{X}$ such that

$$f [W_x \cap U_x] \subset V_{f(x)}.$$

Remark

The set $W_x \cap U_x$ is a non-empty open set.
Lemma (Key Lemma)

Let $f : X \rightarrow \mathbb{R}$ be locally continuous at $x \in X$. Suppose that $f(x) > \alpha$. Then there is an open set $V \subset X$ such that $f(x') > \alpha$ for all $x' \in V$.

Proof. The claim follows simply by noticing that (α, ∞) is a neighbourhood of $f(x)$. \Box
Lemma (Key Lemma)

Let $f : X \to \mathbb{R}$ be locally continuous at $x \in X$. Suppose that $f(x) > \alpha$. Then there is an open set $V \subset X$ such that $f(x') > \alpha$ for all $x' \in V$.

Proof.

The claim follows simply by noticing that (α, ∞) is a neighbourhood of $f(x)$.

\square
Local Continuity
Metric Definition

Definition (Local Continuity (Metric))

Let \mathcal{X} and \mathcal{Y} be metric spaces. A function $f : \mathcal{X} \to \mathcal{Y}$ is **locally continuous** if for all $x \in \mathcal{X}$ there exists an open $U_x \subset \mathcal{X}$ such that $x \in \overline{U}_x$ and $f(x_n) \to f(x)$ whenever $x_n \to x$ in U_x.
Definition (Local Continuity (Metric))

Let \mathcal{X} and \mathcal{Y} be metric spaces. A function $f : \mathcal{X} \rightarrow \mathcal{Y}$ is **locally continuous** if for all $x \in \mathcal{X}$ there exists an open $U_x \subset \mathcal{X}$ such that $x \in \bar{U}_x$ and $f(x_n) \rightarrow f(x)$ whenever $x_n \rightarrow x$ in U_x.

Remark (Local, Directional, and Proper Continuity)

Local continuity at x is continuity from the direction U_x. If $x \in U_x$ then local continuity is continuity.
Local Continuity
Metric Definition

Definition (Local Continuity (Metric))

Let \mathcal{X} and \mathcal{Y} be metric spaces. A function $f : \mathcal{X} \to \mathcal{Y}$ is **locally continuous** if for all $x \in \mathcal{X}$ there exists an open $U_x \subset \mathcal{X}$ such that $x \in \overline{U}_x$ and $f(x_n) \to f(x)$ whenever $x_n \to x$ in U_x.

Remark (Local, Directional, and Proper Continuity)

Local continuity at x is continuity from the direction U_x. If $x \in U_x$ then local continuity is continuity.

Remark (Generalization to (Topological) Measure Spaces)

One might want to consider local continuity in measure spaces. Then the **open** local continuity set is replaced by a **non-null** local continuity set.
Example (Simple One)

An indicator $1_A : \mathbb{R} \rightarrow \mathbb{R}$

1. is locally continuous if $A = \tilde{G}$, G is open,
2. is not locally continuous if A has an isolated point.
Local Continuity

Examples

Example (Simple One)

An indicator $1_A : \mathbb{R} \to \mathbb{R}$

1. is locally continuous if $A = \bar{G}$, G is open,
2. is not locally continuous if A has an isolated point.

Example (Interesting One)

A functional $\tau : C[0, T] \to [0, T]$ defined by

$$\tau(\omega) = \min \{ t; \omega(t) = c \}$$

is locally continuous.
Local Continuity

Examples

Example (Simple One)

An indicator \(1_A : \mathbb{R} \to \mathbb{R}\)

1. is locally continuous if \(A = \bar{G}\), \(G\) is open,
2. is not locally continuous if \(A\) has an isolated point.

Example (Interesting One)

A functional \(\tau : C[0, T] \to [0, T]\) defined by

\[
\tau(\omega) = \min \{t; \omega(t) = c\}
\]

is locally continuous. Indeed, for \(\omega_0 \in C[0, T]\), take

\[
U_{\omega_0} = \{\omega; \omega(t) > \omega_0(t) \text{ for all } t \in [0, T]\}.
\]
Example

Consider functions $f : \mathbb{R}^2 \to \mathbb{R}$.
Consider functions \(f : \mathbb{R}^2 \to \mathbb{R} \).

1. \(f(x, y) = 1_{\{0\} \times [0, \infty)}(x, y) \)

 is directionally continuous at \((0, 0)\) along path \(\{(0, y); y \geq 0\} \), but not locally continuous at \((0, 0)\).
Local Continuity

Local Continuity vs. Directional Continuity

Example

Consider functions \(f : \mathbb{R}^2 \to \mathbb{R} \).

1. \[
f(x, y) = 1_{\{0\} \times [0, \infty)}(x, y)
\]
 is directionally continuous at \((0, 0)\) along path \(\{(0, y); y \geq 0\}\), but not locally continuous at \((0, 0)\).

2. \[
f(x, y) = \sum_{n=1}^{\infty} 1_{\left\{ 4^{-n-1} \leq \sqrt{x^2+y^2} \leq 4^{-n} \right\}}
\]
 is locally continuous at \((0, 0)\) but not directionally continuous along any path ending at \((0, 0)\).
1 Local Continuity
2 Stopping Times
3 Options, Arbitrage, and Replication
4 Market Models with Quadratic Variation and Small-Balls
Definition (Stopping Time)

Let \((\mathcal{F}_t)_{t \in [0, T]} \) be a flow of information. A random variable \(\tau : \Omega \to [0, T] \) is an \((\mathcal{F}_t) \)-**STOPPING TIME** if \(\{\tau \leq t\} \in \mathcal{F}_t \) for all \(t \in [0, T] \).
Definition (Stopping Time)

Let \((\mathcal{F}_t)_{t \in [0, T]}\) be a flow of information. A random variable \(\tau : \Omega \to [0, T]\) is an \((\mathcal{F}_t)\)-**STOPPING TIME** if \(\{\tau \leq t\} \in \mathcal{F}_t\) for all \(t \in [0, T]\).

Example

Let \((\mathcal{F}_t)\) be the information generated by observing a stochastic process \((S_t)\). Then
Definition (Stopping Time)

Let $(\mathcal{F}_t)_{t \in [0,T]}$ be a flow of information. A random variable $\tau : \Omega \to [0, T]$ is an (\mathcal{F}_t)-**STopping Time** if $\{\tau \leq t\} \in \mathcal{F}_t$ for all $t \in [0, T]$.

Example

Let (\mathcal{F}_t) be the information generated by observing a stochastic process (S_t). Then

1. $\tau(\omega) = \inf\{t; S_t(\omega) \geq c\}$ is a stopping time,
Definition (Stopping Time)

Let \((\mathcal{F}_t)_{t \in [0, T]}\) be a flow of information. A random variable \(\tau : \Omega \rightarrow [0, T]\) is an \((\mathcal{F}_t)\)-**STOPPING TIME** if \(\{\tau \leq t\} \in \mathcal{F}_t\) for all \(t \in [0, T]\).

Example

Let \((\mathcal{F}_t)\) be the information generated by observing a stochastic process \((S_t)\). Then

1. \(\tau(\omega) = \inf\{t; S_t(\omega) \geq c\}\) is a stopping time,
2. \(\tau(\omega) = \inf\{t; S_t(\omega) = \max_{u \in [0, T]} S_u(\omega)\}\) is not a stopping time.
The following stopping times $\tau : C[0, T] \rightarrow [0, T]$ are locally continuous.
The following stopping times \(\tau : C[0, T] \to [0, T] \) are locally continuous.

Example
The following stopping times $\tau : C[0, T] \to [0, T]$ are locally continuous.

Example

1. $\tau(\omega) = \inf\{t; \omega(t) \in F\}$, F is closed,
The following stopping times \(\tau : C[0, T] \rightarrow [0, T] \) are locally continuous.

Example

1. \(\tau(\omega) = \inf\{t; \omega(t) \in F\} \), \(F \) is closed,
2. \(\tau(\omega) = \inf\{t; \psi(t, \omega) \in \bar{G}\} \), \(\psi \) is continuous and \(G \) is open,
The following stopping times $\tau : C[0, T] \rightarrow [0, T]$ are locally continuous.

Example

1. $\tau(\omega) = \inf\{t; \omega(t) \in F\}$, F is closed,
2. $\tau(\omega) = \inf\{t; \psi(t, \omega) \in \bar{G}\}$, ψ is continuous and G is open,
3. $\tau(\omega) = \inf\{t; (t, \omega) \in \bar{U}\}$, U is open.
The following stopping times $\tau : C[0, T] \rightarrow [0, T]$ are locally continuous.

Example

1. $\tau(\omega) = \inf\{t; \omega(t) \in F\}$, F is closed,
2. $\tau(\omega) = \inf\{t; \psi(t, \omega) \in \bar{G}\}$, ψ is continuous and G is open,
3. $\tau(\omega) = \inf\{t; (t, \omega) \in \bar{U}\}$, U is open.

The functionals in the example above are locally continuous even if they were not stopping times.
Outline

1 Local Continuity

2 Stopping Times

3 Options, Arbitrage, and Replication

4 Market Models with Quadratic Variation and Small-Balls
Let $S = (S_t)_{t \in [0,T]}$ be an asset-price process. We consider the canonical probability space, where $\Omega = C_+[0, T]$, \mathcal{F} is its Borel-σ-algebra, and \mathbf{P} is the distribution of S. So we have $S_t(\omega) = \omega(t)$.
Let $S = (S_t)_{t \in [0, T]}$ be an asset-price process. We consider the canonical probability space, where $\Omega = C_+[0, T]$, \mathcal{F} is its Borel-σ-algebra, and \mathbb{P} is the distribution of S. So we have $S_t(\omega) = \omega(t)$.

Definition (Option)

Option is simply a mapping $G : C_+[0, T] \rightarrow \mathbb{R}$. The asset S is the **underlying** of the option G.
Let $S = (S_t)_{t \in [0, T]}$ be an asset-price process. We consider the canonical probability space, where $\Omega = C_+[0, T], \mathcal{F}$ is its Borel-σ-algebra, and \mathbf{P} is the distribution of S. So we have $S_t(\omega) = \omega(t)$.

Definition (Option)

Option is simply a mapping $G : C_+[0, T] \to \mathbb{R}$. The asset S is the **underlying** of the option G.

Example

- $G = (S_T - K)^+$ is a **call-option**,
- $G = (K - S_T)^+$ is a **put-option**,
- $G = S_T - K$ is a **future**.
A **trading strategy** $\Phi = (\Phi_t)_{t \in [0, T]}$ is an S-adapted stochastic process that tells the units of the underlying asset S the investor has is her portfolio at any time $t \in [0, T]$.

Definition (Arbitrage)

Arbitrage is a trading strategy Φ with the properties:

- $V_0(\Phi) = 0$,
- $V_t(\Phi) \geq 0$ for all $t \in [0, T]$, and
- $P[V_T(\Phi) > 0] > 0$.

It is an economic axiom that there should be no arbitrage.
A **trading strategy** $\Phi = (\Phi_t)_{t \in [0, T]}$ is an S-adapted stochastic process that tells the units of the underlying asset S the investor has is her portfolio at any time $t \in [0, T]$.

The **wealth** of the trading strategy Φ is (in the discounted world) satisfies

$$dV_t(\Phi) = \Phi_t \, dS_t,$$

where the differentials are of "forward type".
A trading strategy \(\Phi = (\Phi_t)_{t \in [0, T]} \) is an \(S \)-adapted stochastic process that tells the units of the underlying asset \(S \) the investor has is her portfolio at any time \(t \in [0, T] \).

The wealth of the trading strategy \(\Phi \) is (in the discounted world) satisfies
\[
dV_t(\Phi) = \Phi_t dS_t,
\]
where the differentials are of \textquotedblleft forward type\textquotedblright.

Definition (Arbitrage)

Arbitrage is a trading strategy \(\Phi \) with the properties:
\(V_0(\Phi) = 0, \ V_t(\Phi) \geq 0 \) for all \(t \in [0, T] \), and \(P[V_T(\Phi) > 0] > 0 \).
A trading strategy $\Phi = (\Phi_t)_{t \in [0, T]}$ is an S-adapted stochastic process that tells the units of the underlying asset S the investor has is her portfolio at any time $t \in [0, T]$.

The wealth of the trading strategy Φ is (in the discounted world) satisfies

$$dV_t(\Phi) = \Phi_t dS_t,$$

where the differentials are of “forward type”.

Definition (Arbitrage)

Arbitrage is a trading strategy Φ with the properties:

$V_0(\Phi) = 0$, $V_t(\Phi) \geq 0$ for all $t \in [0, T]$, and $P[V_T(\Phi) > 0] > 0$.

It is an economic axiom that there should be no arbitrage.
Replication principle is used to hedge and price options.
Replication principle is used to hedge and price options.

Definition (Replication principle)

Let G be an option. Suppose that there is a trading strategy Φ with initial wealth $V_0(\Phi)$ such that $G = V_T(\Phi)$. Then the price of the option G is $V_0(\Phi)$.

<table>
<thead>
<tr>
<th>Definition (Replication principle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be an option. Suppose that there is a trading strategy Φ with initial wealth $V_0(\Phi)$ such that $G = V_T(\Phi)$. Then the price of the option G is $V_0(\Phi)$.</td>
</tr>
</tbody>
</table>
Replication principle is used to hedge and price options.

Definition (Replication principle)

Let G be an option. Suppose that there is a trading strategy Φ with initial wealth $V_0(\Phi)$ such that $G = V_T(\Phi)$. Then the price of the option G is $V_0(\Phi)$.

The replication requirement $G = V_T(\Phi)$ can be written as

$$G = V_0(\Phi) + \int_0^T \Phi_t \, dS_t,$$

where the integral is of “forward type”.
1 Local Continuity

2 Stopping Times

3 Options, Arbitrage, and Replication

4 Market Models with Quadratic Variation and Small-Balls
Assume that S is continuous, strictly positive, starts from s_0, and the information used in trading is generated by it.
Assume that S is continuous, strictly positive, starts from s_0, and
the information used in trading is generated by it.

Assume that S has the **QUADRATIC VARIATION**

$$(dS_t)^2 = \sigma^2 S_t^2 dt.$$
Assume that S is continuous, strictly positive, starts from s_0, and the information used in trading is generated by it.

Assume that S has the **QUADRATIC VARIATION**

$$(dS_t)^2 = \sigma^2 S_t^2 dt.$$

Assume the **CONDITIONAL SMALL-BALL PROPERTY**

$$\mathbb{P} \left[\sup_{t \in [\tau, T]} |S_t - \omega(t)| < \varepsilon \left| \mathcal{F}_\tau \right. \right] > 0$$

\mathbb{P}-a.s. for all paths ω, positive ε, and stopping times τ.
Market Models with Quadratic Variation and Small-Balls Canonical Space

Assume that S is continuous, strictly positive, starts from s_0, and the information used in trading is generated by it.

Assume that S has the QUADRATIC VARIATION

$$(dS_t)^2 = \sigma^2 S_t^2 dt.$$

Assume the CONDITIONAL SMALL-BALL PROPERTY

$$P \left[\sup_{t \in [\tau, T]} |S_t - \omega(t)| < \varepsilon \mid \mathcal{F}_\tau \right] > 0$$

P-a.s. for all paths ω, positive ε, and stopping times τ.

So, we have a collection of models P on the canonical filtered space $C_{s_0,\sigma}[0, T]$, where P is restricted only by the assumptions of quadratic variation and conditional small-ball property.
[BSV]1 showed that with \textit{ALLOWED} strategies that depend smoothly on time, spot, running maximum, running minimum and such one cannot do arbitrage.

1Bender, S., Valkeila: \textit{No-arbitrage pricing beyond semimartingales}. WIAS Preprint No. 1110, 2006.
[BSV]1 showed that with **ALLOWED** strategies that depend smoothly on time, spot, running maximum, running minimum and such one cannot do arbitrage.

The result followed from the fact that

$$V_t(\Phi)(\omega) = V_0(\Phi)(\omega) + v(t, \omega; \varphi) \quad \text{for } P\text{-a.a. } \omega,$$

where $v(t, \omega; \varphi)$ is continuous in ω uniformly in t. Here φ is the strategy functional associated to Φ:

$$\Phi_t(\omega) = \varphi(t, \omega(t), g_1(t, \omega), \ldots, g_m(t, \omega)),$$

where φ is smooth and g_1, \ldots, g_m are **HINDSIGHT FACTORS**.

([BSV] also showed that allowed hedging strategies are robust: They only depend on quadratic variation.)
([BSV] also showed that allowed hedging strategies are robust: They only depend on quadratic variation.)

The allowed strategies are natural from the hedging point of view: Hedging strategies of typical options are of this type. However, from the no-arbitrage point of view the allowed strategies are not so natural: They do not include stopping times.
([BSV] also showed that allowed hedging strategies are robust: They only depend on quadratic variation.)

The allowed strategies are natural from the hedging point of view: Hedging strategies of typical options are of this type. However, from the no-arbitrage point of view the allowed strategies are not so natural: They do not include stopping times.

We can extend the no-arbitrage result of [BSV] to strategies that include **locally continuous** stopping times.
([BSV] also showed that allowed hedging strategies are robust: They only depend on quadratic variation.)

The allowed strategies are natural from the hedging point of view: Hedging strategies of typical options are of this type. However, from the no-arbitrage point of view the allowed strategies are not so natural: They do not include stopping times.

We can extend the no-arbitrage result of [BSV] to strategies that include **locally continuous** stopping times.

While stopping times are rarely continuous, the author is not aware of any (reasonable) stopping times that are not locally continuous.
Definition (Stopping-Allowed Strategies)

A trading strategy Φ is **Stopping-Allowed** if it is of the form

$$\Phi_t = \sum_{k=1}^{n} \Phi^{(k)}_t 1_{(\tau_k, \tau_{k+1}]}(t),$$

where the $\Phi^{(k)}$'s are allowed and τ_k's are locally continuous.
A trading strategy Φ is **Stopping-Allowed** if it is of the form

$$\Phi_t = \sum_{k=1}^{n} \Phi_t^{(k)} 1_{(\tau_k, \tau_{k+1}]}(t),$$

where the $\Phi^{(k)}$’s are allowed and τ_k’s are locally continuous.

The definition above is understood in the conditional sense, i.e. $\Phi^{(k)}$ may depend on \mathcal{F}_{τ_k} and $\tau_{k+1} \geq \tau_k$ is locally continuous in the conditioned, or quotient, space $C_{\tau_k', \sigma} [\tau_k, T]$.
Theorem (No-Arbitrage with Stopping-Allowed Strategies)

Let Φ be a stopping-allowed strategy. Then Φ is not an arbitrage opportunity.
Let Φ be a stopping-allowed strategy. Then Φ is not an arbitrage opportunity.

Theorem (No-Arbitrage with Stopping-Allowed Strategies) follows by applying the conditional small-ball property n times with the following lemma:
Theorem (No-Arbitrage with Stopping-Allowed Strategies)

Let \(\Phi \) be a stopping-allowed strategy. Then \(\Phi \) is not an arbitrage opportunity.

Theorem (No-Arbitrage with Stopping-Allowed Strategies) follows by applying the conditional small-ball property \(n \) times with the following lemma:

Lemma (No-Arbitrage with Take-the-Money-and-Run Strategies)

Let \(\Phi \) be allowed strategy and let \(\tau \) be a locally continuous stopping time. Then \(\Phi 1_{[0,\tau]} \) is not an arbitrage opportunity.

Let $\Phi_{[0, \tau]}$ be a candidate for an arbitrage opportunity:

$V_0(\Phi_{[0, \tau]}) = 0$ and $V_T(\Phi_{[0, \tau]}) \geq 0$ \mathbb{P}-a.s., or

$v(\tau(\omega), \omega; \phi) \geq 0$ for \mathbb{P}-a.a. ω.

We show that $v(\tau(\omega), \omega; \phi) \geq 0$ for all ω:

Suppose that $v(\tau(\omega_0), \omega_0; \phi) < 0$ for some ω_0.

Let U_{ω_0} be the local continuity set of τ at ω_0. Since $v(t, \cdot; \phi)$ is continuous uniformly in t we see that $v(\tau(\cdot), \cdot; \phi)$ is continuous on U_{ω_0}.

So, there must be a ball $B \subset U_{\omega_0}$ such that $v(\tau(\omega), \omega; \phi) < 0$ for all $\omega \in B$.

But due to the small-ball property this means that $\mathbb{P}[V_T(\Phi_{[0, \tau]}) < 0] > 0$, which is a contradiction.

Let $\Phi_{1[0,\tau]}$ be a candidate for an arbitrage opportunity: $V_0(\Phi_{1[0,\tau]}) = 0$ and $V_T(\Phi_{1[0,\tau]}) \geq 0$ \mathbb{P}-a.s., or

$$v(\tau(\omega), \omega; \varphi) \geq 0 \quad \text{for } \mathbb{P}\text{-a.a. } \omega.$$

Let $\Phi_1^{[0,\tau]}$ be a candidate for an arbitrage opportunity: $V_0(\Phi_1^{[0,\tau]}) = 0$ and $V_\tau(\Phi_1^{[0,\tau]}) \geq 0$ \mathbb{P}-a.s., or

$$v(\tau(\omega), \omega; \varphi) \geq 0 \quad \text{for } \mathbb{P}\text{-a.a. } \omega.$$

We show that $v(\tau(\omega), \omega; \varphi) \geq 0$ for all ω:

Let \(\Phi_1[0,\tau] \) be a candidate for an arbitrage opportunity:
\(V_0(\Phi_1[0,\tau]) = 0 \) and \(V_T(\Phi_1[0,\tau]) \geq 0 \) \(\mathbb{P} \)-a.s., or
\[
\nu(\tau(\omega), \omega; \varphi) \geq 0 \quad \text{for} \quad \mathbb{P}\text{-a.a.} \quad \omega.
\]

We show that \(\nu(\tau(\omega), \omega; \varphi) \geq 0 \) for all \(\omega \): Suppose that
\(\nu(\tau(\omega_0), \omega_0; \varphi) < 0 \) for some \(\omega_0 \).

Let $\Phi_{1[0,\tau]}$ be a candidate for an arbitrage opportunity: $V_0(\Phi_{1[0,\tau]}) = 0$ and $V_T(\Phi_{1[0,\tau]}) \geq 0$ P-a.s., or

$$v(\tau(\omega), \omega; \varphi) \geq 0 \quad \text{for } P\text{-a.a. } \omega.$$

We show that $v(\tau(\omega), \omega; \varphi) \geq 0$ for all ω: Suppose that $v(\tau(\omega_0), \omega_0; \varphi) < 0$ for some ω_0. Let U_{ω_0} be the local continuity set of τ at ω_0. Since $v(t, \cdot; \varphi)$ is continuous uniformly in t we see that $v(\tau(\cdot), \cdot; \varphi)$ is continuous on U_{ω_0}.

Let $\Phi_1^{[0,\tau]}$ be a candidate for an arbitrage opportunity: $V_0(\Phi_1^{[0,\tau]}) = 0$ and $V_T(\Phi_1^{[0,\tau]}) \geq 0$ \mathbb{P}-a.s., or

$v(\tau(\omega), \omega; \varphi) \geq 0$ for \mathbb{P}-a.a. ω.

We show that $v(\tau(\omega), \omega; \varphi) \geq 0$ for all ω: Suppose that $v(\tau(\omega_0), \omega_0; \varphi) < 0$ for some ω_0. Let U_{ω_0} be the local continuity set of τ at ω_0. Since $v(t, \cdot; \varphi)$ is continuous uniformly in t we see that $v(\tau(\cdot), \cdot; \varphi)$ is continuous on U_{ω_0}. So, there must be a ball $B \subset U_{\omega_0}$ such that $v(\tau(\omega), \omega; \varphi) < 0$ for all $\omega \in B$.

Let $\Phi_1[0,\tau]$ be a candidate for an arbitrage opportunity: $V_0(\Phi_1[0,\tau]) = 0$ and $V_T(\Phi_1[0,\tau]) \geq 0$ P-a.s., or

$$v(\tau(\omega), \omega; \varphi) \geq 0 \quad \text{for P-a.a. } \omega.$$

We show that $v(\tau(\omega), \omega; \varphi) \geq 0$ for all ω: Suppose that $v(\tau(\omega_0), \omega_0; \varphi) < 0$ for some ω_0. Let U_{ω_0} be the local continuity set of τ at ω_0. Since $v(t, \cdot; \varphi)$ is continuous uniformly in t we see that $v(\tau(\cdot), \cdot; \varphi)$ is continuous on U_{ω_0}. So, there must be a ball $B \subset U_{\omega_0}$ such that $v(\tau(\omega), \omega; \varphi) < 0$ for all $\omega \in B$. But due to the small-ball property this means that $P[V_T(\Phi_1[0,\tau]) < 0] > 0$, which is a contradiction.
Proof of Lemma (No-Arbitrage with Take-the-Money-and-Run Strategies), contd.

Since $v(\tau(\omega), \omega; \varphi) \geq 0$ for all ω we have in particular that $V_T(\Phi 1_{[0,\tau]} \geq 0 \tilde{\mathbb{P}}$-a.s. ($\tilde{\mathbb{P}}$ stands for the Black-Scholes reference model).
Proof of Lemma (No-Arbitrage with Take-the-Money-and-Run Strategies), contd.

Since \(\nu(\tau(\omega), \omega; \varphi) \geq 0 \) for all \(\omega \) we have in particular that \(V_T(\Phi 1_{[0, \tau]} \geq 0 \) \(\tilde{\mathcal{P}} \)-a.s. (\(\tilde{\mathcal{P}} \) stands for the Black-Scholes reference model). The classical theory then tells us that \(V_T(\Phi 1_{[0, \tau]} = 0 \) \(\tilde{\mathcal{P}} \)-a.s.
Proof of Lemma (No-Arbitrage with Take-the-Money-and-Run Strategies), contd.

Since $\nu(\tau(\omega), \omega; \varphi) \geq 0$ for all ω we have in particular that $V_T(\Phi 1_{[0, \tau]}) \geq 0$ \tilde{P}-a.s. (\tilde{P} stands for the Black-Scholes reference model). The classical theory then tells us that $V_T(\Phi 1_{[0, \tau]}) = 0$ \tilde{P}-a.s. Then, by using the local continuity as before, we see that $\nu(\tau(\omega), \omega; \varphi) = 0$ for all ω.
Since \(\nu(\tau(\omega), \omega; \varphi) \geq 0 \) for all \(\omega \) we have in particular that \(V_T(\Phi 1_{[0,\tau]}) \geq 0 \tilde{\mathbb{P}}\)-a.s. (\(\tilde{\mathbb{P}} \) stands for the Black-Scholes reference model). The classical theory then tells us that \(V_T(\Phi 1_{[0,\tau]}) = 0 \tilde{\mathbb{P}}\)-a.s. Then, by using the local continuity as before, we see that \(\nu(\tau(\omega), \omega; \varphi) = 0 \) for all \(\omega \). But this means that \(V(\Phi 1_{[0,\tau]}) = 0 \mathbb{P}\)-a.s. So, \(\Phi 1_{[0,\tau]} \) is not an arbitrage opportunity.
Proof of Theorem (No-Arbitrage with Stopping-Allowed Strategies).

By using the conditional small-ball property instead of an unconditional one we see that Lemma (No-Arbitrage with Take-the-Money-and-Run Strategies) can be strengthened to:

\[\Phi^{(k)}1_{(\tau_k, \tau_{k+1}]} \]

is not an arbitrage opportunity. Here the allowed strategy \(\Phi^{(k)} \) may depend additionally on \(\mathcal{F}_{\tau_k} \), and \(\tau_{k+1} \) is locally continuous on the quotient, or conditioned, space \(\mathcal{C}_{S_{\tau_k, \sigma}[\tau_k, T]} \).
Proof of Theorem (No-Arbitrage with Stopping-Allowed Strategies).

By using the conditional small-ball property instead of an unconditional one we see that Lemma (No-Arbitrage with Take-the-Money-and-Run Strategies) can be strengthened to:

\[\Phi^{(k)} 1_{(\tau_k, \tau_{k+1}]} \]

is not an arbitrage opportunity. Here the allowed strategy \(\Phi^{(k)} \) may depend additionally on \(\mathcal{F}_{\tau_k} \), and \(\tau_{k+1} \) is locally continuous on the quotient, or conditioned, space \(\mathcal{C}_{\mathbb{S} \tau_k, \sigma [\tau_k, T]} \).

But this means that the stopping-allowed strategy \(\Phi \) does not generate arbitrage on any of the stochastic intervals \((\tau_k, \tau_{k+1}] \). Hence, it cannot generate arbitrage on the interval \([0, T]\). \(\square \)
- The End -