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Local Continuity
Topological Definition

Definition (Local Continuity (Topological) ?)

A function f : X → Y between topological spaces is locally
continuous at x ∈ X if there exists a set Ux ⊂ X such that

(i) Ux is open,

(ii) x ∈ Ūx ,

(iii) for every neighbourhood Vf (x) of f (x) ∈ Y there exists a
neighbourhood Wx of x ∈ X such that

f [Wx∩Ux ] ⊂ Vf (x).

Remark

The set Wx ∩ Ux is a non-empty open set.
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Local Continuity
Key Property

Lemma (Key Lemma)

Let f : X → R be locally continuous at x ∈ X . Suppose that
f (x) > α. Then there is an open set V ⊂ X such that f (x ′) > α
for all x ′ ∈ V .

Proof.

The claim follows simply by noticing that (α,∞) is a
neighbourhood of f (x). �
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Local Continuity
Metric Definition

Definition (Local Continuity (Metric))

Let X and Y be metric spaces. A function f : X → Y is locally
continuous if for all x ∈ X there exists an open Ux ⊂ X such
that x ∈ Ūx and f (xn)→ f (x) whenever xn → x in Ux .

Remark (Local, Directional, and Proper Continuity)

Local continuity at x is continuity from the direction Ux . If x ∈ Ux

then local continuity is continuity.

Remark (Generalization to (Topological) Measure
Spaces)

One might want to consider local continuity in measure spaces.
Then the open local continuity set is replaced by a non-null
local continuity set.
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Local Continuity
Examples

Example (Simple One)

An indicator 1A : R→ R

1 is locally continuous if A = Ḡ , G is open,

2 is not locally continuous if A has an isolated point.

Example (Interesting One)

A functional τ : C [0,T ]→ [0,T ] defined by

τ(ω) = min {t;ω(t) = c}

is locally continuous. Indeed, for ω0 ∈ C [0,T ], take

Uω0 = {ω;ω(t) > ω0(t) for all t ∈ [0,T ]} .
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2 is not locally continuous if A has an isolated point.

Example (Interesting One)

A functional τ : C [0,T ]→ [0,T ] defined by

τ(ω) = min {t;ω(t) = c}

is locally continuous. Indeed, for ω0 ∈ C [0,T ], take

Uω0 = {ω;ω(t) > ω0(t) for all t ∈ [0,T ]} .
7 / 25



Local Continuity
Local Continuity vs. Directional Continuity

Example

Consider functions f : R2 → R.

1

f (x , y) = 1{0}×[0,∞)(x , y)

is directionally continuous at (0, 0) along path {(0, y); y ≥ 0},
but not locally continuous at (0, 0).

2

f (x , y) =
∞∑

n=1

1n
4−n−1≤

√
x2+y2≤4−n

o
is locally continuous at (0, 0) but not directionally continuous
along any path ending at (0, 0).
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Stopping Times
Stopping Times

Definition (Stopping Time)

Let (Ft)t∈[0,T ] be a flow of information. A random variable
τ : Ω→ [0,T ] is an (Ft)-stopping time if {τ ≤ t} ∈ Ft for all
t ∈ [0,T ].

Example

Let (Ft) be the information generated by observing a stochastic
process (St). Then

1 τ(ω) = inf{t; St(ω) ≥ c} is a stopping time,

2 τ(ω) = inf{t; St(ω) = maxu∈[0,T ] Su(ω)} is not a stopping
time.
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Stopping Times
Locally Continuous Stopping Times

The following stopping times τ : C [0,T ]→ [0,T ] are locally
continuous.

Example

1 τ(ω) = inf{t;ω(t) ∈ F}, F is closed,

2 τ(ω) = inf{t;ψ(t, ω) ∈ Ḡ}, ψ is continuous and G is open,

3 τ(ω) = inf{t; (t, ω) ∈ Ū}, U is open.

The functionals in the example above are locally continuous even if
they were not stopping times.

11 / 25



Stopping Times
Locally Continuous Stopping Times

The following stopping times τ : C [0,T ]→ [0,T ] are locally
continuous.

Example

1 τ(ω) = inf{t;ω(t) ∈ F}, F is closed,
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The functionals in the example above are locally continuous even if
they were not stopping times.

11 / 25



Outline

1 Local Continuity

2 Stopping Times

3 Options, Arbitrage, and Replication

4 Market Models with Quadratic Variation and
Small-Balls

12 / 25



Options, Arbitrage, and Replication
Options

Let S = (St)t∈[0,T ] be an asset-price process. We consider the
canonical probability space, where Ω = C+[0,T ], F is its
Borel-σ-algebra, and P is the distribution of S . So we have
St(ω) = ω(t).

Definition (Option)

Option is simply a mapping G : C+[0,T ]→ R. The asset S is the
underlying of the option G .

Example

G = (ST − K )+ is a call-option,

G = (K − ST )+ is a put-option,

G = ST − K is a future.

13 / 25



Options, Arbitrage, and Replication
Options

Let S = (St)t∈[0,T ] be an asset-price process. We consider the
canonical probability space, where Ω = C+[0,T ], F is its
Borel-σ-algebra, and P is the distribution of S . So we have
St(ω) = ω(t).

Definition (Option)

Option is simply a mapping G : C+[0,T ]→ R. The asset S is the
underlying of the option G .

Example

G = (ST − K )+ is a call-option,

G = (K − ST )+ is a put-option,

G = ST − K is a future.

13 / 25



Options, Arbitrage, and Replication
Options

Let S = (St)t∈[0,T ] be an asset-price process. We consider the
canonical probability space, where Ω = C+[0,T ], F is its
Borel-σ-algebra, and P is the distribution of S . So we have
St(ω) = ω(t).

Definition (Option)

Option is simply a mapping G : C+[0,T ]→ R. The asset S is the
underlying of the option G .

Example

G = (ST − K )+ is a call-option,

G = (K − ST )+ is a put-option,

G = ST − K is a future.
13 / 25



Options, Arbitrage, and Replication
Arbitrage

A trading strategy Φ = (Φt)t∈[0,T ] is an S-adapted
stochastic process that tells the units of the underlying asset S the
investor has is her portfolio at any time t ∈ [0,T ].

The wealth of the trading strategy Φ is (in the discounted world)
satisfies

dVt(Φ) = Φt dSt ,

where the differentials are of “forward type”.

Definition (Arbitrage)

Arbitrage is a trading strategy Φ with the properties:
V0(Φ) = 0, Vt(Φ) ≥ 0 for all t ∈ [0,T ], and P[VT (Φ) > 0] > 0.

It is an economic axiom that there should be no arbitrage.
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Options, Arbitrage, and Replication
Replication

Replication principle is used to hedge and price options.

Definition (Replication principle)

Let G be an option. Suppose that there is a trading strategy Φ
with initial wealth V0(Φ) such that G = VT (Φ). Then the price of
the option G is V0(Φ).

The replication requirement G = VT (Φ) can be written as

G = V0(Φ) +

∫ T

0
Φt dSt ,

where the integral is of “forward type”.
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Market Models with Quadratic Variation and
Small-Balls
Canonical Space

Assume that S is continuous, strictly positive, starts from s0, and
the information used in trading is generated by it.

Assume that S has the quadratic variation

(dSt)2 = σ2S2
t dt.

Assume the conditional small-ball property

P

[
sup

t∈[τ,T ]
|St − ω(t)| < ε

∣∣∣∣Fτ
]
> 0

P-a.s. for all paths ω, positive ε, and stopping times τ .

So, we have a collection of models P on the canonical filtered
space Cs0,σ[0,T ], where P is restricted only by the assumptions of
quadratic variation and conditional small-ball property.
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Market Models with Quadratic Variation and
Small-Balls
No-Arbitrage by Continuity

[BSV]1 showed that with allowed strategies that depend
smoothly on time, spot, running maximum, running minimum and
such one cannot do arbitrage.

The result followed from the fact that

Vt(Φ)(ω) = V0(Φ)(ω) + v(t, ω;ϕ) for P-a.a. ω,

where v(t, ω;ϕ) is continuous in ω uniformly in t. Here ϕ is the
strategy functional associated to Φ:

Φt(ω) = ϕ
(
t, ω(t), g1(t, ω), . . . , gm(t, ω)

)
,

where ϕ is smooth and g1, . . . , gm are hindsight factors.

1Bender, S., Valkeila: No-arbitrage pricing beyond semimartingales. WIAS
Preprint No. 1110, 2006.
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Market Models with Quadratic Variation and
Small-Balls
No-Arbitrage by Continuity

([BSV] also showed that allowed hedging strategies are robust:
They only depend on quadratic variation.)

The allowed strategies are natural from the hedging point of view:
Hedging strategies of typical options are of this type. However,
from the no-arbitrage point of view the allowed strategies are not
so natural: They do not include stopping times.

We can extend the no-arbitrage result of [BSV] to strategies that
include locally continuous stopping times.

While stopping times are rarely continuous, the author is not aware
of any (reasonable) stopping times that are not locally continuous.
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Market Models with Quadratic Variation and
Small-Balls
No-Arbitrage by Local Continuity

Definition (Stopping-Allowed Strategies)

A trading strategy Φ is Stopping-Allowed if it is of the form

Φt =
n∑

k=1

Φ
(k)
t 1(τk ,τk+1](t),

where the Φ(k)’s are allowed and τk ’s are locally continuous.

The definition above is understood in the conditional sense, i.e.
Φ(k) may depend on on Fτk and τk+1 ≥ τk is locally continuous in
the conditioned, or quotient, space CSτk

,σ[τk ,T ].
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Theorem (No-Arbitrage with Stopping-Allowed
Strategies)

Let Φ be a stopping-allowed strategy. Then Φ is not an arbitrage
opportunity.

Theorem (No-Arbitrage with Stopping-Allowed Strategies) follows
by applying the conditional small-ball property n times with the
following lemma:

Lemma (No-Arbitrage with Take-the-Money-and-Run
Strategies)

Let Φ be allowed strategy and let τ be a locally continuous
stopping time. Then Φ1[0,τ ] is not an arbitrage opportunity.
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Proof of Lemma (No-Arbitrage with
Take-the-Money-and-Run Strategies).

Let Φ1[0,τ ] be a candidate for an arbitrage opportunity:
V0(Φ1[0,τ ]) = 0 and VT (Φ1[0,τ ]) ≥ 0 P-a.s., or

v(τ(ω), ω;ϕ) ≥ 0 for P-a.a. ω.

We show that v(τ(ω), ω;ϕ) ≥ 0 for all ω: Suppose that
v(τ(ω0), ω0;ϕ) < 0 for some ω0. Let Uω0 be the local continuity
set of τ at ω0. Since v(t, ·;ϕ) is continuous uniformly in t we see
that v(τ(·), ·;ϕ) is continuous on Uω0 . So, there must be a ball
B ⊂ Uω0 such that v(τ(ω), ω;ϕ) < 0 for all ω ∈ B. But due to the
small-ball property this means that P[VT (Φ1[0,τ ]) < 0] > 0, which
is a contradiction.
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Proof of Lemma (No-Arbitrage with
Take-the-Money-and-Run Strategies), contd.

Since v(τ(ω), ω;ϕ) ≥ 0 for all ω we have in particular that
VT (Φ1[0,τ ]) ≥ 0 P̃-a.s. (P̃ stands for the Black-Scholes reference
model).

The classical theory then tells us that VT (Φ1[0,τ ]) = 0

P̃-a.s. Then, by using the local continuity as before, we see that
v(τ(ω), ω;ϕ) = 0 for all ω. But this means that V (Φ1[0,τ ]) = 0
P-a.s. So, Φ1[0,τ ] is not an arbitrage opportunity. �
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Proof of Theorem (No-Arbitrage with
Stopping-Allowed Strategies).

By using the conditional small-ball property instead of an
unconditional one we see that Lemma (No-Arbitrage with
Take-the-Money-and-Run Strategies) can be strengthened to:

Φ(k)1(τk ,τk+1]

is not an arbitrage opportunity. Here the allowed strategy Φ(k)

may depend additionally on Fτk , and τk+1 is locally continuous on
the quotient, or conditioned, space CSτk

,σ[τk ,T ].

But this means that the stopping-allowed strategy Φ does not
generate arbitrage on any of the stochastic intervals (τk , τk+1].
Hence, it cannot generate arbitrage on the interval [0,T ]. �
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- The End -
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